JPS6210868A - Separator for fuel cell - Google Patents

Separator for fuel cell

Info

Publication number
JPS6210868A
JPS6210868A JP60148879A JP14887985A JPS6210868A JP S6210868 A JPS6210868 A JP S6210868A JP 60148879 A JP60148879 A JP 60148879A JP 14887985 A JP14887985 A JP 14887985A JP S6210868 A JPS6210868 A JP S6210868A
Authority
JP
Japan
Prior art keywords
separator
groove
reaction gas
fuel cell
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60148879A
Other languages
Japanese (ja)
Inventor
Minoru Koga
実 古賀
Tsutomu Hara
勉 原
Morikazu Muraoka
村岡 守一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60148879A priority Critical patent/JPS6210868A/en
Publication of JPS6210868A publication Critical patent/JPS6210868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce cost of a separator by forming corrugated smooth recessed and projecting portions in a thin steel plate, dividing a large number of grooves in a gas flow direction, and specifying the pitch and height of groove and the thickness of the plate. CONSTITUTION:A plurality sets of smooth and corrugated recess and projecting portions 2 which are divided in plurality from one side to the other are formed on both sides of the center of a thin steel plate 1 with a press. A divided parts 31 located between the recessed and projecting portions 2 of each set is formed so that its both surfaces are flat. A pitch P and the height H of the groove formed by the recessed and projecting portion 2, and the thickness T of the plate are specified to meet the following relations, H/P=0.2-1.7, and T/P=0.06-0.42. Since groove formation in the separator is made easy, cost is reduced. In addition, the total height of the stack can be decreased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はL N Gや石炭ガス等の有する化学エネルギ
ーを直接電気エネルギーに変換させるエネルギ一部門で
使用される燃料電池に用いるセパレータに関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a separator used in fuel cells used in the energy sector that directly converts the chemical energy of LNG, coal gas, etc. into electrical energy. be.

[従来の技術1 燃料電池は、1. N G及び石炭ガス等の有する化学
エネルギーを電気エネルギーに直接変換するため、従来
の発電方式(化学Tネルギー→熱エネルギー→機械エネ
ルギー→電気エネルギー)に比べて下記のメリットがあ
る。
[Conventional technology 1 Fuel cells have the following features: 1. Since the chemical energy of NG and coal gas is directly converted into electrical energy, it has the following advantages compared to the conventional power generation method (chemical T energy → thermal energy → mechanical energy → electrical energy).

■ カルノーサイクルの制約がないため、高い効率が期
待できる。
■ High efficiency can be expected as there is no Carnot cycle restriction.

■ 回転部分がないので騒音が少ない。■ Since there are no rotating parts, there is less noise.

■ 電池作動温度に近い比較的高温の有効な発熱が得ら
れる。
■ Effective heat generation can be obtained at a relatively high temperature close to the battery operating temperature.

■ 出力を変えても効率が余り変らない。■ Efficiency does not change much even if the output is changed.

■ 規模の制約がない。■ No size restrictions.

■ 逐次増設が可能である。■ Sequential expansion is possible.

燃料電池は、−上記した多くのメリットを有することか
ら、従来燃料電池の研究が進められ、電解質タイルにカ
ソード、アノードの各電極を均一な血圧で押し付けるよ
うにした燃料電池ユニットをセパレータを介して多層に
積層する積層型燃料電池の開発が進められている。
Since fuel cells have many of the above-mentioned advantages, research into fuel cells has been progressing, and a fuel cell unit in which the cathode and anode electrodes are pressed against an electrolyte tile with uniform blood pressure is connected through a separator. Stacked fuel cells, which are stacked in multiple layers, are being developed.

従来の積層型燃料電池の一例を示すと、第4図に示す如
く、電解質を多孔質物質に浸み込ませてなるタイル(電
解質板)aを、カソードbとアノードCの両電極で両面
から挾み、カソードb側に反応ガスとしてCO2を含ん
だ空気を流すと共に、アノードC側に反応ガスとしてH
2等の燃料gを流すことによりカソードbとアノードC
との間で発生する電位差により発電が行われるようにし
た燃料電池ユニットを、セパレータdを介して多層に積
層させ、適当な締付力で一体的に固定させるようにしで
ある。eは、セパレータdの電極側に設けである反応ガ
ス通路である。
To show an example of a conventional stacked fuel cell, as shown in Fig. 4, a tile (electrolyte plate) a made of a porous material impregnated with electrolyte is heated from both sides with cathode b and anode C. Then, air containing CO2 is passed as a reaction gas to the cathode B side, and H is passed as a reaction gas to the anode C side.
Cathode B and anode C by flowing second class fuel g
The fuel cell units, which generate electricity by the potential difference generated between the two, are stacked in multiple layers with separators d interposed therebetween, and are integrally fixed with an appropriate tightening force. e is a reaction gas passage provided on the electrode side of the separator d.

[発明が解決しようとする問題点] ところが、燃料電池システムの全コストの半分は、電解
質タイル、電極をセパレータを介し多層に積層してなる
電池本体であり、この中でも2種類の反応ガス(空気と
燃料)を仕切るセパレータの溝加工費が大ぎなウェイト
を占めている。セパレータの溝加工は、反応ガスの流れ
を明害することがないような通路を形成すると同時に電
極を電解質タイルに押し付1−jで接触させるための突
起を形成させるだめのものであり、現状では、第5図に
示1如く、エンドミルに、j、り溝加工を実施して突起
IIを形成ざ1主、@iのピッチpは3〜5mn+、溝
深さは1〜2mm程度としである。しかも上記突起1)
はタイルに電極を接触させるためにその頂部の平坦度を
確保する必要があることから、セパレータの板厚が厚く
なっており、そのため、積層してスタック化1−ノだ場
合、スタックの全高が高<<Kる欠点がある1゜そこで
、本発明は、セパレータのロス1−ダウンを図ると共に
]ンパク1〜にできて燃料電池スタックとしたときの全
高を低くできるようにしようとするものである。
[Problems to be solved by the invention] However, half of the total cost of a fuel cell system is the cell body, which is made up of electrolyte tiles and electrodes stacked in multiple layers with separators interposed in between. The cost of machining the grooves for the separator that separates the fuel and fuel occupies a large portion of the cost. The groove processing of the separator is to form a passage that does not obstruct the flow of the reaction gas, and at the same time to form a protrusion for pressing the electrode against the electrolyte tile and contacting it at 1-j. As shown in Fig. 5, the protrusion II is formed by grooving on the end mill. . Moreover, the above protrusion 1)
Since it is necessary to ensure the flatness of the top of the tile in order to make the electrode contact with the tile, the thickness of the separator is thick. Therefore, the present invention aims to reduce the loss of the separator by 1, and also to reduce the overall height when used as a fuel cell stack by reducing the size by 1. be.

E問題点を解決するための手段1 本発明は、反応ガスの通路が、反応ガスの供給側から排
出側に向けて平行となるようにコルゲート形状の滑らか
な凹凸を、薄鋼板の中央部にプレス加工にで形成すると
共に、上記凹凸により形成される多数の溝列を、反応ガ
スの流れ方向に分割して、該分割部を平面とし、口つ上
記)にのピッチをPS28全高をH1板厚を王としたと
き、H/P= 0.2〜1.7 、 T/P=0.06
〜0.42の寸法比範囲となるようにした構成とする。
Means for Solving Problem E 1 The present invention provides smooth corrugated irregularities in the center of a thin steel plate so that the reaction gas passages are parallel from the reaction gas supply side to the reaction gas discharge side. At the same time as forming by press working, the large number of groove rows formed by the above-mentioned unevenness are divided in the flow direction of the reaction gas, and the divided part is made a plane, and the pitch of the PS28 is set to the H1 plate. When thickness is the king, H/P=0.2~1.7, T/P=0.06
The structure is such that the size ratio ranges from 0.42 to 0.42.

[作   用] 反応ガスは供給側の孔からセパレータ中央部の溝部に流
入する際、カーボン析出反応が起ることがあり、このカ
ーボン析出反応で析出したカーボンが溝を閉塞する可能
性があるが、溝がその長手方向に分割してあり且つ分割
部が平面としであるため、溝を閉塞することがあっても
その下流は周囲から流れ込んで合流でき、電極に沿い均
一に反応ガスを流すことができることになる。
[Function] When the reaction gas flows into the groove in the center of the separator from the hole on the supply side, a carbon precipitation reaction may occur, and the carbon deposited in this carbon precipitation reaction may clog the groove. Since the groove is divided in its longitudinal direction and the divided parts are flat, even if the groove is blocked, the downstream part can flow in from the surroundings and merge, allowing the reactant gas to flow uniformly along the electrode. will be possible.

し実 施 例] 以下、本発明の実施例を図面を参照して説明する。Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明のセパレータの一例を説明すると、第1図
及び第2図に示す如く、高温耐食性に優れ且つプレス成
形に適した材質の7tIn4板(たとえば、S IJ 
S 、インコネル等)1の中央部に、−側から他側の方
向へ複数に分割されIこ滑らかな曲線(たとえば、円弧
、三角関数曲線、直線等〉の波板状凹凸2を表裏両面に
わたつCプレス加工に゛C複数組成形し、該各相の凹凸
2間に位置する分割部3は表裏両面が平面となるように
し、各凹凸2によって形成される溝列が分割部3で不連
続となるようにする。上記N鋼板1の周辺部には、その
−側に異なる反応ガスである空気と燃料の各供給流路孔
5ど6を、又、その他側には空気と燃料の排出流路孔7
と8をそれぞれ貫通させて設け、供給孔5′S2は6か
ら導かれる空気又は燃料の反応ガスが中央部のプレス成
形された各満4を下流側であるjJl出流路流路孔78
側へ流されるようにする。又、薄鋼     ′板1の
周辺部には、燃料電池のタイルへの電解質補給用の孔9
を貫通させて設(1、タイル中の電解質が経時に蒸発又
は分解すると補給できるようにしである。更に、薄鋼板
1の外端部には、燃料電池スタックとして組立時の組立
基準となる切欠部10を設けると共に電ff取出し用の
端子” 11を6月する。
First, an example of the separator of the present invention will be described. As shown in FIGS. 1 and 2, a 7tIn4 plate (for example, S IJ
S, Inconel, etc.) 1 is divided into multiple parts from the - side to the other side, and a corrugated plate-like unevenness 2 of a smooth curve (for example, a circular arc, a trigonometric function curve, a straight line, etc.) is formed on both the front and back sides. A plurality of "C" compositions are formed in the Watatsu C press processing, and the divided part 3 located between the unevenness 2 of each phase is made so that both the front and back surfaces are flat, and the groove array formed by each unevenness 2 is formed in the divided part 3. At the periphery of the N steel plate 1, there are supply passage holes 5 and 6 for air and fuel, which are different reaction gases, on the negative side, and air and fuel on the other side. Exhaust channel hole 7
and 8, respectively, and the supply hole 5'S2 is provided through the air or fuel reaction gas led from 6 to the press-formed central part 4.
Let it flow to the side. In addition, holes 9 for supplying electrolyte to the fuel cell tiles are provided around the thin steel plate 1.
(1) so that the electrolyte in the tile can be replenished when it evaporates or decomposes over time.Furthermore, at the outer end of the thin steel plate 1, there is a notch that serves as an assembly standard when assembling the fuel cell stack. A section 10 is provided, and a terminal 11 for taking out the electric power is installed.

1記した本発明のセパレータの製造においC(i、滑ら
かな曲線のコルゲート形状にプレス成形するどき、]コ
ルゲート部の板がプレス成形萌引張応力を受けて伸びる
。この伸びは、セパレータの局部クラックを防止するた
めにコルゲート全面にわたりほぼ均一にする必要がある
。このために、溝形状は、塑性加工時のマスフロを生ず
るよう円弧、直線等で滑らかな曲線で形成させる必要が
ある。父、コルゲート部のクラックを防止するためには
、溝ピッチP、満全高]」、板厚Tから決定される伸び
率εを鋼板の引張り伸び以下に抑える必要がある。たと
えば、SU S−316の薄鋼板を円弧のみを用いて溝
形状を形成づる場合、溝伸び率εは下記のように定義さ
れる。
In the production of the separator of the present invention as described in 1.C (i. When press-molding into a corrugated shape with a smooth curve), the plate of the corrugated part is elongated due to tensile stress during press-forming. This elongation is caused by local cracks in the separator. In order to prevent this, it is necessary to make the groove almost uniform over the entire surface of the corrugate.For this reason, the groove shape must be formed with a smooth curve such as an arc or a straight line to generate mass flow during plastic working.Father, Corrugate In order to prevent cracks in the steel plate, it is necessary to suppress the elongation rate ε, which is determined from the groove pitch P, the full height] and the plate thickness T, to less than the tensile elongation of the steel plate. When the groove shape is formed using only circular arcs, the groove elongation rate ε is defined as follows.

5US−316の引張り伸びは、約50%であるが、溝
形状P、H,Tをいろいろ変えてテストした結果ε〈0
.3以下Cあれば、コルゲート部にクラックが生じない
ことがわかった。
The tensile elongation of 5US-316 is about 50%, but tests with various groove shapes P, H, and T showed that ε〈0
.. It was found that if C was 3 or less, no cracks would occur in the corrugated portion.

次に、燃焼電池用セパレータの溝寸法に対する要求は下
記のとおりである。
Next, the requirements for the groove dimensions of a separator for a combustion battery are as follows.

■ 燃焼電池反応ガスのカーボン析出反応2 CO−+
CO2+ C(ljl化鉄−触媒)が起る可能性があり
、反応ガス通路が析出カーボンで閉塞しないためには満
全高[1を1〜2m…程度とする必要がある。
■ Carbon precipitation reaction 2 of combustion cell reaction gas CO-+
There is a possibility that CO2+C (iron chloride-catalyst) may occur, and in order to prevent the reaction gas passage from being clogged with precipitated carbon, the total height [1] needs to be approximately 1 to 2 m...

■ セパレータの板厚Tは、主としてセパレータに流出
する電解質に対する高温腐食寿命及び薄型単セルの要求
との兼ね合いで決定され、現状では0.25〜0.50
111111程度である。
■ The plate thickness T of the separator is mainly determined based on the high-temperature corrosion life of the electrolyte flowing into the separator and the requirements for thin single cells, and currently it is 0.25 to 0.50.
It is about 111111.

■ 溝ピッチPは電極とタイルの接触を良くするために
は極力小さくすることが要求される。
(2) The groove pitch P is required to be as small as possible in order to improve the contact between the electrode and the tile.

以上のことから、セパレータの溝部にクラックを発生さ
せず■つ燃料電池溝形状要求を満すためには、下記の条
件を満足する必要がある。
From the above, in order to satisfy the fuel cell groove shape requirements without causing cracks in the separator grooves, the following conditions must be satisfied.

(セパレータ材質S U S−316、溝形状−円弧の
みで形成する場合) ε−H/P−T/P<0.41→p>2.43(H−1
−)H=  1.2mm T= 0.25〜0.5mm ↓ P=1.2〜4.3 セパレータ幾何学的相似則から上記諸条件を満足する溝
寸法比は、下記のとおりである。
(Separator material SUS-316, groove shape - when formed with only circular arcs) ε-H/P-T/P<0.41→p>2.43 (H-1
-) H = 1.2 mm T = 0.25 to 0.5 mm ↓ P = 1.2 to 4.3 From the separator geometric similarity law, the groove size ratio that satisfies the above conditions is as follows.

H/P= 0.2〜1.7 T/P= 0.06〜0.42 次に、第3図は本発明のセパレータを用いた燃料電池ス
タックの概念を示すもので、イオン導電性を有する電解
質及びこれを保持する材料からなるタイル12を、カソ
ード13とアノード14の両電極で両側から挾み、この
タイル12と電極13.14からなるユニットを本発明
のセパレータ15を介して積層させる。セパ・レータ1
5の周辺部と電極との間には、中央部分を切除したマニ
ホールド板16.17を介在させ、このカソード側のマ
ニホールド板16は、空気の供給側流通孔5と排出側流
通孔7を中央部の開口部に開放させる切欠(図示せず)
を設置、空気がセパレータ15の片面の溝を通って、カ
ソード電極面に沿い均一に流れるようにすると共に、セ
パレータの溝を形成している凸部で電極をタイル12に
所定の圧力で押圧しているようにする。同様にアノード
側のマニホールド板17にも燃litを中央部の開口部
へ導けるように燃料の供給側流路孔6及び排出側流路孔
8に切欠18を設け、燃料がセパレータ15の溝を流れ
ることによってアノード電極に沿い均一に流れるように
しである。19と20は上部及び下部ホルダー〇あり、
上下のホルダー19.20を所定の締付力で締め付(−
Iることにより電極がタイル12に均一の圧力で押し付
けられた燃料電池スタックが得られる。21は燃料、2
2は空気である。
H/P = 0.2-1.7 T/P = 0.06-0.42 Next, Figure 3 shows the concept of a fuel cell stack using the separator of the present invention. A tile 12 made of an electrolyte and a material that holds it is sandwiched between cathode 13 and anode 14 electrodes from both sides, and a unit consisting of this tile 12 and electrodes 13 and 14 is laminated via the separator 15 of the present invention. . Separator 1
A manifold plate 16, 17 with a central portion cut out is interposed between the peripheral part of the air supply side 5 and the electrode, and this cathode side manifold plate 16 connects the air supply side circulation hole 5 and the discharge side circulation hole 7 to the center. Notch (not shown) that opens into the opening of the
is installed so that air flows uniformly along the cathode electrode surface through the grooves on one side of the separator 15, and the electrode is pressed against the tile 12 with a predetermined pressure by the convex part forming the groove of the separator. Make sure that you are Similarly, notches 18 are provided in the fuel supply side passage hole 6 and the discharge side passage hole 8 in the manifold plate 17 on the anode side so that the fuel lit can be guided to the central opening. This allows for uniform flow along the anode electrode. 19 and 20 have upper and lower holders,
Tighten the upper and lower holders 19 and 20 with the specified tightening force (-
By doing this, a fuel cell stack in which the electrodes are pressed against the tiles 12 with uniform pressure is obtained. 21 is fuel, 2
2 is air.

[発明の効果1 以上述べた如く、本発明のセパレータによれば、滑らか
なコルゲート部が反応ガスの流れ方向に分割させ、この
分割部を平面に構成しているので、次の如き優れた効果
を奏し得る。
[Effects of the Invention 1 As described above, according to the separator of the present invention, the smooth corrugated portion is divided in the flow direction of the reactant gas, and the divided portion is configured to be flat, so that the separator has the following excellent effects. can be played.

(D  カーボン析出反応から遊動炭素が反応ガス通路
である溝を閉塞することがあっても、溝は流れ方向に分
断されCいて分断され−Cいる部分が平面としCあるこ
とから、閉塞した溝の下流では周囲からガスが流れ込ん
で合流でき、反応ガスの流れか田舎されることがなくな
る。
(D Even if free carbon from the carbon precipitation reaction may block the groove that is the reaction gas passage, the groove is divided in the flow direction and the part marked C is flat and the part marked C is a flat surface. Downstream of the reactor, gases from the surroundings can flow in and merge, preventing the flow of reactant gas from being interrupted.

(ii)  溝の流れ方向分割は、反応ガスの拡散現象
に注目すると溝壁面に生ずるガス境界層の厚さが薄くな
るので、ガス拡散及び熱伝達を促進できる。
(ii) Dividing the groove in the flow direction can promote gas diffusion and heat transfer since the thickness of the gas boundary layer formed on the groove wall becomes thinner when focusing on the reaction gas diffusion phenomenon.

(2) 分割する溝間のピッチ位相を流れの直角方向に
ずらすことにより−Lii[!の効果を更に高め得られ
る。
(2) By shifting the pitch phase between the dividing grooves in the direction perpendicular to the flow, -Lii[! The effect can be further enhanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセパレータの斜視図、第2図は本発明
のセパレータの溝部の断面図、第3図は本発明のセパレ
ータを用いた燃料電池スタックの概念図、第4図は従来
の燃料電池の断面図、第5図は11η来の燃料電池の1
?パレータの一例図である。 1はrt ttm 1反、2(1凹凸、3は分割部、4
は溝、12はタイル、13は〕Jソード、14はアノー
ド、15はセパレータを示η。 特  K′F   出  願  人 石川島播磨市T業株式会ン1
FIG. 1 is a perspective view of the separator of the present invention, FIG. 2 is a sectional view of the groove of the separator of the present invention, FIG. 3 is a conceptual diagram of a fuel cell stack using the separator of the present invention, and FIG. 4 is a conventional A cross-sectional view of a fuel cell, Figure 5 shows one of the fuel cells from 11η.
? FIG. 2 is an example diagram of a pallet; 1 is rt ttm 1 roll, 2 (1 unevenness, 3 is divided part, 4
12 is a groove, 12 is a tile, 13 is a J-sword, 14 is an anode, and 15 is a separator η. Special K'F Application Person Ishikawajima Harima City T Gyo Co., Ltd. 1

Claims (1)

【特許請求の範囲】 1)反応ガスの通路が、反応ガスの供給側から排出側に
向けて平行となるように滑らかなコルゲート形状の凹凸
を、薄鋼板の中央部にプレス加工にて成形すると共に、
上記凹凸により形成される多数の溝列を、反応ガスの流
れ方向に分割して、該分割部を平面とし、且つ上記溝の
ピッチP、溝全高H、板厚Tが、 H/P=0.2〜1.7、T/P=0.06〜0.42
の寸法比範囲となるようにしたことを特徴とする燃料電
池用セパレータ。
[Claims] 1) Smooth corrugate-shaped unevenness is formed by press working in the center of the thin steel plate so that the reaction gas passage is parallel from the reaction gas supply side to the reaction gas discharge side. With,
A large number of groove rows formed by the above-mentioned unevenness are divided in the flow direction of the reaction gas, and the divided portions are made flat, and the pitch P of the grooves, the total groove height H, and the plate thickness T are H/P=0. .2~1.7, T/P=0.06~0.42
1. A fuel cell separator characterized by having a dimensional ratio within the range of .
JP60148879A 1985-07-05 1985-07-05 Separator for fuel cell Pending JPS6210868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60148879A JPS6210868A (en) 1985-07-05 1985-07-05 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148879A JPS6210868A (en) 1985-07-05 1985-07-05 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JPS6210868A true JPS6210868A (en) 1987-01-19

Family

ID=15462760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148879A Pending JPS6210868A (en) 1985-07-05 1985-07-05 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JPS6210868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028133A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2003028133A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell
US7014938B2 (en) 2001-09-19 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell

Similar Documents

Publication Publication Date Title
US7718295B2 (en) Method for preparing an interconnect
US5874183A (en) Molten carbonate fuel cell and power generation system including the same
JPH08222237A (en) Separator for fuel cell
DE69108104T2 (en) Fuel cell stack with internal reforming and collecting channels arranged entirely inside.
KR102107529B1 (en) Solid oxide fuel cell
US20020110718A1 (en) Bipolar plate for a fuel cell
TW201034279A (en) A fuel-cell stack with metal separators
US8980498B2 (en) Fuel cell stack
JPH06251790A (en) Fuel cell
EP1284512A2 (en) Bipolar plate for a fuel cell
JP2000323149A (en) Separator for fuel cell and manufacturing device thereof
JPS6386361A (en) Manufacture of separator for stacked fuel cell and its structure
JPS6210868A (en) Separator for fuel cell
JP3257757B2 (en) Fuel cell separator
Dai et al. Effect of the Geometric Parameters of the Rib-Channel and Porous Cathode on the Species Distribution in the Cathodes of Protonic Ceramic Fuel Cell Stack
CN112993303B (en) Corrugated flow field structure
US8652701B2 (en) Fuel cell
JPH10154519A (en) Fuel cell separator
TWI476986B (en) Fuel cell stack and its partition plate
CN112993304B (en) Gradient corrugated flow field structure
CN220086090U (en) Bipolar plate flow field structure and fuel cell
JPS5933763A (en) Molten salt fuel cell
JPS63181271A (en) Fused carbonate fuel cell
KR100424195B1 (en) Fuel cell separator plate comprising bidirectional slot plate
JPS63116369A (en) Fuel cell