JPS62108456A - Non aqueous secondary cell - Google Patents

Non aqueous secondary cell

Info

Publication number
JPS62108456A
JPS62108456A JP60246674A JP24667485A JPS62108456A JP S62108456 A JPS62108456 A JP S62108456A JP 60246674 A JP60246674 A JP 60246674A JP 24667485 A JP24667485 A JP 24667485A JP S62108456 A JPS62108456 A JP S62108456A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
manganese dioxide
electrode active
mno2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60246674A
Other languages
Japanese (ja)
Other versions
JPH0619996B2 (en
Inventor
Kazuo Terashi
和生 寺司
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60246674A priority Critical patent/JPH0619996B2/en
Publication of JPS62108456A publication Critical patent/JPS62108456A/en
Publication of JPH0619996B2 publication Critical patent/JPH0619996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the cycle characteristic of cell by employing a chemical MnO2 thermally processed under specific temperature as a positive electrode active material. CONSTITUTION:A chemical MnO2 thermally processed under the temperature between 350 deg.C to 430 deg.C is employed as a positive electrode active material. Then a positive electrode 4 employing said active material and a negative electrode 6 employing Li or Li alloy as an active material are assembled through a separator 8 and employed in a non aqueous cell. Said MnO2 is mainly occupied with gamma-type having low collapse of the crystal structure after discharge while having a good reversibility and the water is almost removed. Consequently, when employing said MnO2 as a positive electrode active material, the cell will exhibit an excellent cycle characteristic.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明はリチウムを負極活物質とする非水系二次電池に
係り、特に正極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a non-aqueous secondary battery using lithium as a negative electrode active material, and particularly relates to improvement of a positive electrode.

(ロ) 従来の技術 この種二次電池の正極活物質としては二酸化モリブデン
、五酸化バナジウム、チタン或いはニオブの硫化物など
が提案きれているが未だ実用化には至っていない。
(b) Prior Art As positive electrode active materials for this type of secondary battery, molybdenum dioxide, vanadium pentoxide, titanium or niobium sulfides have been proposed, but they have not yet been put to practical use.

一方、非水系−次電池の正極活物質としては二酸化マン
ガン、フッ化炭素が代表的なものとじて知られており、
且これらは既に実用化されている。
On the other hand, manganese dioxide and carbon fluoride are known as typical positive electrode active materials for non-aqueous secondary batteries.
Moreover, these have already been put into practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的に
豊富であり、且安価であるという利点を有するものであ
る。そしてこのような利点を有する二酸化マンガンを非
水系電池の正極活物質として用いるに際しては、負極活
物質であるリチウトが水分との反応性に富むため水分除
去処理を施す必要があり、具体的には例えば特公昭57
−4064号公報に開示されているように350°Cを
越えて430°Cまでの温度で熱処理している。
Here, manganese dioxide in particular has the advantages of excellent preservability, abundant resources, and low cost. When manganese dioxide, which has these advantages, is used as a positive electrode active material in non-aqueous batteries, it is necessary to perform water removal treatment because lithium, which is a negative electrode active material, is highly reactive with water. For example, special public service in 1987
As disclosed in Japanese Patent No. -4064, heat treatment is performed at a temperature exceeding 350°C to 430°C.

ところで、二酸化マンガンは大別すると電解二酸化マン
ガン(E M D )、化学二酸化マンガン(CMD)
及び天然二酸化マンガン(NMD)に分けられ、これら
のうち電池用活物質としては高活性な電解二酸化マンガ
ンが用いられている。
By the way, manganese dioxide can be roughly divided into electrolytic manganese dioxide (EMD) and chemical manganese dioxide (CMD).
and natural manganese dioxide (NMD), and among these, highly active electrolytic manganese dioxide is used as an active material for batteries.

きて、電解二酸化マンガンを前述せる温度、即ち350
℃を越えて430℃までの温度で熱処理するとその結晶
構造はγ型からγ−β或いはβ型に変化する。このよう
に電解二厳化マンガンは熱処理温度に伴って結晶構造が
変化するという性質を有する。
The electrolytic manganese dioxide was heated to the above temperature, i.e. 350
When heat treated at a temperature exceeding 430°C, the crystal structure changes from γ type to γ-β or β type. As described above, electrolytically hardened manganese has the property that its crystal structure changes depending on the heat treatment temperature.

上記せる背景に鑑みて、非水系二次電池の正極活物質と
して二酸化マンガンを用いることが有益であると考えら
れるが、ここで二次電池特有の問題があることがわかっ
た。即ち、二酸化マンガンの結晶構造に関して、γ−β
或いはβ型の二酸化マンガンは放電後の結晶構造の崩れ
が大きく可逆性に難があることである。
In view of the above background, it is considered to be beneficial to use manganese dioxide as a positive electrode active material for non-aqueous secondary batteries, but it has been found that there are problems unique to secondary batteries. That is, regarding the crystal structure of manganese dioxide, γ-β
Another problem with β-type manganese dioxide is that its crystal structure collapses significantly after discharge, making reversibility difficult.

これに対してγ型の二酸化マンガンは放電後の結晶構造
の崩れが小さいという利点を有することがわかった。そ
して、二酸化マンガンのうち化学二酸化マンガンは下表
の如く粒度か細く充填密度、が小さいものの高温で熱処
理しても結晶構造の変化は抑えられ大部分がγ型を維持
していることがわかった。尚、充填密度が小さい点につ
いては一次電池系では致命的な問題であるが、二次電池
系では充電により活物質が再生されることを考慮すると
それほど重要な問題とはりらない。
On the other hand, it has been found that γ-type manganese dioxide has the advantage that the crystal structure is less likely to collapse after discharge. As shown in the table below, chemical manganese dioxide has a fine particle size and a small packing density, but even when heat treated at high temperatures, the change in crystal structure is suppressed and most of it maintains the γ type. Although the low packing density is a fatal problem in primary battery systems, it is not so important in secondary battery systems considering that the active material is regenerated by charging.

(ハ) 発明が解決しようとする問題点本発明は改良さ
れた二酸化マンガンを正極活物質として用いることによ
り、安価でサイクル特性に優れた非水系二次電池を提供
することを目的とする。
(c) Problems to be Solved by the Invention An object of the present invention is to provide a nonaqueous secondary battery that is inexpensive and has excellent cycle characteristics by using improved manganese dioxide as a positive electrode active material.

(ニ) 問題点を解決するための手段 本発明はリチウム或いはリチウム合金を活物質とする負
極を備えた非水系二次電池において、正極活物質として
350℃を越えて430 ’Cまでの温度で熱処理した
化学二酸化マンガンを用いることを特徴とする。
(d) Means for solving the problems The present invention provides a non-aqueous secondary battery equipped with a negative electrode using lithium or a lithium alloy as an active material, which can be used as a positive electrode active material at temperatures exceeding 350°C and up to 430'C. It is characterized by using heat-treated chemical manganese dioxide.

(ホ) 作用 350℃を越えて430℃までの温度で熱処理した化学
二酸化マンガンはほとんど水分が除去きれており、且結
晶構造もr−β或いはβ型への変化が抑えられ、大部分
がγ型を維持しているので可逆性に優れている。
(E) Effect Chemical manganese dioxide heat-treated at temperatures exceeding 350°C and up to 430°C has almost all moisture removed, and the crystal structure is suppressed from changing to the r-β or β type, and most of the crystal structure is γ. It maintains its shape and has excellent reversibility.

(へ)実施例 以下本発明の実施例について詳述する。(f) Example Examples of the present invention will be described in detail below.

実施例1 正極の作成;平均粒径30μ以下の化学二酸化マンガン
を空気中において400℃で熱処理したものを活物質と
し、この活物′A90重量%に導電剤としてのアセチレ
ンブラック6重量%及び結着剤としてのフッ素樹脂粉末
4重量%を加え混合した正極合剤を成型圧5トン/σ2
で直径20. (1mn〆に加圧成型した後、空気中に
おいて200〜350℃の温度で熱処理して正極とする
Example 1 Preparation of positive electrode: Chemical manganese dioxide with an average particle size of 30 μm or less was heat-treated at 400°C in the air as an active material, and 90% by weight of this active material 'A' was mixed with 6% by weight of acetylene black as a conductive agent and crystals. A positive electrode mixture mixed with 4% by weight of fluororesin powder as an adhesive was molded at a pressure of 5 tons/σ2.
and diameter 20. (After being pressure-molded to a thickness of 1 mm, it is heat-treated in air at a temperature of 200 to 350°C to form a positive electrode.

第を図は上記正極を用いた本発明の扁平型非水電解液二
次電池の半断面図を示し、(1)、(2)はステンレス
類の正、負極缶であってこれらはポリプロピレン製の絶
縁バッキング(3〉によって隔離きれている。(4>は
前述せる正極であって正極缶(1)の内底面に固着した
正極集電体(5)に圧接されている。(6)はリチウム
圧延板を所定寸法に打抜いてなる負極であって、負極缶
(2)の内底面に固着せる負極集電体(7〉に圧着づれ
ている。(8)はポリプロピレン不織布よりなるセパレ
ータであって電解液が含浸されている。寛解液はプロピ
レンカーボネートと1.2ジメトキシエタンとの等容積
混合溶媒に過塩素酸リチウムを1モル/!溶解したもの
を用いた。電池寸法は直径24.0mm〆、厚み3.0
ifllであった。この電池を(A1)とする。
Figure 1 shows a half-sectional view of a flat non-aqueous electrolyte secondary battery of the present invention using the above-mentioned positive electrode, and (1) and (2) are positive and negative electrode cans made of stainless steel, and these are made of polypropylene. (4) is the above-mentioned positive electrode, which is pressed into contact with the positive electrode current collector (5) fixed to the inner bottom surface of the positive electrode can (1). (6) is The negative electrode is made by punching a rolled lithium plate into a predetermined size, and is crimped onto a negative electrode current collector (7) that is fixed to the inner bottom surface of the negative electrode can (2). (8) is a separator made of polypropylene nonwoven fabric. The battery is impregnated with an electrolytic solution.The ameliorating solution was prepared by dissolving 1 mol/! of lithium perchlorate in an equal volume mixed solvent of propylene carbonate and 1.2 dimethoxyethane.Battery dimensions were 24.0 mm in diameter. 〆, thickness 3.0
It was ifll. This battery is referred to as (A1).

比較例1 電解二酸化マンガンを空気中において400°Cで熱処
理したものを正極活物質とし、その他は本発明の実施例
1と同様の比較電池(Bυを作成した。
Comparative Example 1 A comparative battery (Bυ) was prepared in the same manner as in Example 1 of the present invention except that electrolytic manganese dioxide heat-treated at 400° C. in air was used as the positive electrode active material.

第2図はこれら電池のサイクル特性比較図を示し、サイ
クル条件は充電電流2.0mAで充電終止電圧4.Ov
、−実数電電l[2,0mAで放電終止電圧15■とし
た。
FIG. 2 shows a comparison diagram of the cycle characteristics of these batteries, and the cycle conditions are a charging current of 2.0 mA and a charge end voltage of 4.0 mA. Ov
, -Real number of electric currents 1 [2.0 mA and discharge end voltage 15 ■].

第2図より明白なるように本発明電池(A1)は比較電
池(Bl)に比してサイクル特性が向上している。
As is clear from FIG. 2, the battery of the present invention (A1) has improved cycle characteristics compared to the comparative battery (Bl).

次に固体電解質を用いた場合の例を詳述する。Next, an example in which a solid electrolyte is used will be described in detail.

実施例2 正、負極は実施例1と同様であり、電解質として(L 
14 S f 04)0.5(L i 3 A s 0
4)0.5で表わきれるリチウムイオン導電性の固体電
解質を用いることを除いて他は実施例1と同様の本発明
電池(A2)を作成した。
Example 2 The positive and negative electrodes were the same as in Example 1, and the electrolyte (L
14 S f 04) 0.5 (L i 3 A s 0
4) A battery (A2) of the present invention was prepared in the same manner as in Example 1 except that a solid electrolyte with lithium ion conductivity expressed by 0.5 was used.

比較例2 電解二酸化マンガンを空気中において400℃で熱処理
したものを正極活物質とし、その他は本発明の実施例2
と同様の比較電池(B2)を作成した。
Comparative Example 2 Electrolytic manganese dioxide heat-treated at 400°C in air was used as the positive electrode active material, and the rest was Example 2 of the present invention.
A comparative battery (B2) similar to the above was created.

第3図はこれら電池(A2)(B2)のサイクル特性比
較図を示し、サイクル条件は充電電流150μ^で充電
終止電圧4.Ov、−実数電寛流15h^で放電終止電
圧1,5■とした。
FIG. 3 shows a comparison diagram of the cycle characteristics of these batteries (A2) and (B2), and the cycle conditions are a charging current of 150 μ^ and a charge end voltage of 4. Ov, -Real number current current 15h^ and discharge end voltage 1.5■.

第3図より明白なるように本発明電池(A2)は比較電
池(B2)に比してサイクル特性が向上している。
As is clear from FIG. 3, the battery of the present invention (A2) has improved cycle characteristics compared to the comparative battery (B2).

この理由を考察するに、比較電池(Bl)(B2)の場
合、正極活物質は電解二酸化マンガンを400℃で熱処
理したものであり水分はほとんど除去きれているものの
結晶構造はγ−β或いはβ型を呈し可逆性に難を有する
ことが要因と考えられる。
Considering the reason for this, in the case of comparative batteries (Bl) (B2), the positive electrode active material is electrolytic manganese dioxide heat-treated at 400°C, and although most of the moisture has been removed, the crystal structure is γ-β or β. This is thought to be due to the fact that it exhibits a mold and has difficulty in reversibility.

これに対して、本発明電池(AI)(A2)の場合、正
極活物質は高温処理されているため水分はほとんど除去
きれていると共に、二酸化マンガンの種類が高温熱処理
によってもγ−β或いはβ型への変化が抑えられ大部分
がγ型を維持せる化学二酸化マンガンを用いているため
可逆性に優れていることが要因と考えられる。
On the other hand, in the case of the battery of the present invention (AI) (A2), the positive electrode active material has been subjected to high-temperature treatment, so almost all moisture has been removed, and the type of manganese dioxide has changed to γ-β or β even after high-temperature heat treatment. This is thought to be due to the excellent reversibility of chemical manganese dioxide, which suppresses changes to the γ-type and maintains most of the γ-type.

更に、実施例1の如く非水電解液二次電池の場合、化学
二酸化マンガンは電解二酸化マンガンに比して粒度が小
さいため充填密度は小さいものの、成型体中の空隙が多
いため含液率は高く、二次電池の活物質として特有の効
果を奏するものである。即ち、電極体において寛解液量
が不足して電解液分布が不均一になると、電解液不足部
分の抵抗が高まって電流が集中し、その結果その部分に
対向するリチウム負極にはデンドライト現象が発生する
ことになり内部短絡を引起こす懸念がある。
Furthermore, in the case of a non-aqueous electrolyte secondary battery as in Example 1, chemical manganese dioxide has a smaller particle size than electrolytic manganese dioxide, so the packing density is lower, but the liquid content is lower because there are more voids in the molded body. It is highly effective as an active material for secondary batteries. In other words, when the electrolyte distribution becomes uneven due to insufficient amount of relieving solution in the electrode body, the resistance of the electrolyte-depleted area increases and current concentrates, resulting in a dendrite phenomenon occurring in the lithium negative electrode facing that area. There is a concern that this may cause an internal short circuit.

ところが、本発明における正極では含液率が高いため電
解液不足の部分が生じ難く、その結果としてリチウム負
極のデンドライト現象が発生し難いという効果がある。
However, since the positive electrode according to the present invention has a high liquid content, it is difficult to have a portion where the electrolyte is insufficient, and as a result, there is an effect that the dendrite phenomenon of the lithium negative electrode is difficult to occur.

(ト)発明の効果 上述した如く、350℃を越えて430℃までの温度で
熱処理した化学二酸化マンガンを正極活物質として用い
ることにより、サイクル特性に優れた非水系二次電池を
得ることができるものでありその工業的価値は極めて犬
である。
(g) Effects of the invention As mentioned above, by using chemical manganese dioxide heat-treated at a temperature exceeding 350°C to 430°C as a positive electrode active material, a non-aqueous secondary battery with excellent cycle characteristics can be obtained. Its industrial value is extremely limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による非水系二次電池の半断
面図、第2図及び第3図は充放電サイクル特性比較図を
夫々示す。 (1)・・・正極缶、(2)・・・負極缶、(3〉・・
・絶縁バッキング、(4)・・・正極、(6)・・・負
極、(8)・・・セパレータ、(AI)(A2)・・・
本発明電池、(Bl)(B2)・・・比較電池。
FIG. 1 is a half-sectional view of a non-aqueous secondary battery according to an embodiment of the present invention, and FIGS. 2 and 3 are comparative diagrams of charge-discharge cycle characteristics. (1)...Positive electrode can, (2)...Negative electrode can, (3>...
・Insulating backing, (4)...Positive electrode, (6)...Negative electrode, (8)...Separator, (AI) (A2)...
Batteries of the present invention, (Bl) (B2)... Comparative batteries.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム或いはリチウム合金を活物質とする負極
と、350℃を越えて430℃までの温度で熱処理した
化学二酸化マンガンを活物質とする正極とを備えた非水
系二次電池。
(1) A non-aqueous secondary battery comprising a negative electrode that uses lithium or a lithium alloy as an active material, and a positive electrode that uses chemical manganese dioxide as an active material that has been heat-treated at a temperature exceeding 350°C to 430°C.
JP60246674A 1985-11-01 1985-11-01 Non-aqueous secondary battery Expired - Lifetime JPH0619996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246674A JPH0619996B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246674A JPH0619996B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS62108456A true JPS62108456A (en) 1987-05-19
JPH0619996B2 JPH0619996B2 (en) 1994-03-16

Family

ID=17151925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246674A Expired - Lifetime JPH0619996B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0619996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169870A (en) * 1987-12-25 1989-07-05 Sony Corp Organic electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169870A (en) * 1987-12-25 1989-07-05 Sony Corp Organic electrolyte cell

Also Published As

Publication number Publication date
JPH0619996B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP4411690B2 (en) Lithium ion secondary battery
JPS63114064A (en) Nonaqueous secondary battery
JPS6223433B2 (en)
JPS62108456A (en) Non aqueous secondary cell
JPS63148550A (en) Nonaqueous secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPS62108457A (en) Non aqueous secondary cell
JPS62108455A (en) Non aqueous secondary cell
JPH0475267A (en) Nonaqueous secondary battery
JPH04206276A (en) Nonaqueous electrolyte secondary battery
JPH05166539A (en) Internal structure of battery
JPH04237955A (en) Nonaqueous secondary battery
JPH067493B2 (en) Flat battery
JP2698180B2 (en) Non-aqueous secondary battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPH0564431B2 (en)
JPS59165372A (en) Nonaqueous electrolyte secondary battery
JPS59128779A (en) Nonaqueous electrolyte secondary battery
JPH04301366A (en) Lithium secondary battery
JPH0287466A (en) Positive electrode for non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term