JPS62108176A - Radar equipment - Google Patents

Radar equipment

Info

Publication number
JPS62108176A
JPS62108176A JP60248335A JP24833585A JPS62108176A JP S62108176 A JPS62108176 A JP S62108176A JP 60248335 A JP60248335 A JP 60248335A JP 24833585 A JP24833585 A JP 24833585A JP S62108176 A JPS62108176 A JP S62108176A
Authority
JP
Japan
Prior art keywords
wave
power
waveguide
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248335A
Other languages
Japanese (ja)
Inventor
Hiroo Nakatsuka
中司 浩生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60248335A priority Critical patent/JPS62108176A/en
Publication of JPS62108176A publication Critical patent/JPS62108176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To highly precisely measure the range to a target body the relative speed to the target body which appears at a very near range and moves slowly, by providing a transmitter, a waveguide, a variable attenuator, etc. CONSTITUTION:Transmitted 1a RF power is passed from the terminal 1 to terminal 2 of a directional coupler 3a and from the terminal 1 to terminal 2 of a circulator 4a and radiated 5a. The radiated 5a RF power is reflected by a corner reflector 9 and part of the reflected RF power is received by a radiator 5a. The power is variable-attenuated 10a and applied to coaxial/ waveguide conversion 7a' through a unilateral tube 6a'. The received power is again applied to coaxial/waveguide conversion 7a when passing through a waveguide 8a and absorbed by the next unilateral tube 6a. On the other hand, the transmitted 1b RF power advances from the terminal 1 to terminal 2 of a coupler 3b. Moreover, an electric-field standing wave is produced by the progressive wave from the unilateral tube 6b side and reflected wave from the unilateral tube 6a side in a waveguide 8b. Then the distance to a target is found in the unit of 1/2 wavelength in accordance with the standing wave and, at the same time, the moving speed of the target can be found from the produced cycle of the trough of a standing wave.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、至近距離にあって距離がゆっくりと変って
いる目標体までの距離および相対速度を高精度で測定す
るレーダ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a radar device that measures with high precision the distance and relative speed to a target object that is close and whose distance is slowly changing. .

〔従来の技術〕[Conventional technology]

従来、至近距離の目標体の測距を行うには9強い漏洩電
力によって起こる受信不能期間を小さくするために送信
パルス幅を極めて小さくしたパルスレーダにより、パル
スの目顔体までの往復時間を計測するかり電波高度計の
ようにFM−CW レーダによって送咬信信号の周波数
差を計測する方法によっていた。一方す 目標体の相対
速度の測定は、パルスレーダではキャリア周波数のドツ
プラ偏移の計測によって行っていた。
Conventionally, in order to measure the distance to a target at close range, a pulse radar with an extremely small transmission pulse width was used to measure the round trip time of the pulse to the eyes, face, and body in order to reduce the period of no reception caused by strong leakage power. The method used was to measure the frequency difference between transmitted and transmitted signals using an FM-CW radar, similar to a radio altimeter. On the other hand, pulse radar measures the relative velocity of a target object by measuring the Doppler shift of the carrier frequency.

〔発明が解決しようとする問題点」 しかし、パルスレーダでは、送信パルス幅を小さくして
も、ぜいぜい2〜3nSecが限度で一受信回路の回復
時間を考慮に入れると測距可能な最短距離を1m以下に
することは相当困難である。
[Problem to be solved by the invention] However, with pulse radar, even if the transmission pulse width is reduced, distance measurement is only possible within 2 to 3 nSec at most, taking into account the recovery time of one receiving circuit. It is quite difficult to reduce the shortest distance to 1 m or less.

FM−CW レーダによっても周波数測定精度の限界に
より、せいぜい数10cnLどまりである。またt測距
精度についても各種の誤差原因によって数10cIrL
以下とすることt′i相当に困難である。その上、FM
−CW レーダによって目標体の相対速度を測定するこ
とは原理的に極めて離しい。
Even with FM-CW radar, the frequency measurement accuracy is limited to a few tens of cnL at most. In addition, the distance measurement accuracy is several tens of cIrL due to various error causes.
It is considerably difficult to do the following t'i. Besides, F.M.
-CW Measuring the relative velocity of a target object using radar is extremely difficult in principle.

このようにt従来の技術は、担11定可能な最短距離を
余り小さくできないこと、高い測距精度が得られないこ
と、FM  CW レーダでは相対速屁の測定が困雌で
あることなどの問題があり、この発明はこの工うな問題
を解決しょうとするものである。
In this way, the conventional technology has problems such as the inability to reduce the shortest distance that can be measured, the inability to obtain high distance measurement accuracy, and the difficulty in measuring relative velocity with FM CW radar. This invention attempts to solve this difficult problem.

〔問題点全解決するための手段〕[Means to solve all problems]

2種類の周波数でCWO成波を送信する送信機と、この
送信機による送信電波と目標体から反射されて戻って来
る受信電波とを干渉させ、電界定在波を生じさせる導波
管と2この導波管によって生じる゛電界定在波を前記2
種類の周波数の各々について検出して2時間的変化の異
なる2つのビデオ出力を得穿この2つのビデオ出力差が
一方の周波数を他方から漸次離してゆくときに零となる
点を検出する零点検出回路と、2種類の周波数を固定し
たときに得られる電界定住波の谷(零点)を計時するパ
ルス計時回路と、この計時と前記零点検出とに:つで目
標体までの距離と目標体移動速度を求める演算回路とを
備えたものである。
A transmitter that transmits CWO waves at two different frequencies; a waveguide that causes the radio waves transmitted by the transmitter to interfere with the received radio waves that are reflected from the target object and returns; and a waveguide that generates an electric field standing wave. The electric field standing wave generated by this waveguide is
Zero point detection that detects each type of frequency to obtain two video outputs with different temporal changes and detects the point where the difference between these two video outputs becomes zero when one frequency is gradually separated from the other. A circuit, a pulse timing circuit that measures the trough (zero point) of the electric field settled wave obtained when two types of frequencies are fixed, and this timing and the zero point detection: distance to the target object and movement of the target object. It is equipped with an arithmetic circuit that calculates speed.

〔作用J 計測された2つのビデオ出力の差のビデオ電圧は、一方
の波長を固定してt他方の波長を漸次離してゆくと、2
つのビデオ出力の時間的変化が相違することによって電
界定在波の測定点から目標までの距離に対応したある波
長において前記差のビデオ電圧が零となる。よってこの
ときの波長から距離を計算することができる。
[Effect J: The video voltage of the difference between the two measured video outputs is 2 when one wavelength is fixed and the other wavelength is gradually separated.
Due to the difference in the temporal changes of the two video outputs, the video voltage of the difference becomes zero at a certain wavelength corresponding to the distance from the measuring point of the electric field standing wave to the target. Therefore, the distance can be calculated from the wavelength at this time.

次に前記2つのビデオ電圧は、目標体の移動に伴う定在
波の移動によって周期的に変化するから。
Next, the two video voltages change periodically due to the movement of the standing wave as the target object moves.

その変化率を計測することによって目標の相対速度を求
めることができる。
By measuring the rate of change, the relative speed of the target can be determined.

〔実施例〕〔Example〕

第1図にこの発明の実施例を示す。図において(1a)
* (Ie)はそれぞれ波長λ1.λ2の送信機、(1
b)は波長がλ1 からλ1 の数チ増まで漸増しりこ
れを繰返すFM送信機、(2)は高周波スイッチ+  
(3a)。
FIG. 1 shows an embodiment of the invention. In the figure (1a)
*(Ie) is the wavelength λ1. λ2 transmitter, (1
b) is an FM transmitter whose wavelength gradually increases from λ1 to several λ1 and repeats this; (2) is a high frequency switch +
(3a).

(3b)は方向性結合器、(4a)+ (4b)はサー
キュレータ+(5a)、(5b)は互に直交する偏波面
をもつ放射器、(6a)、(63′)、(6b)、(6
b′)はアイソレータ、 (7a)。
(3b) is a directional coupler, (4a) + (4b) is a circulator + (5a), (5b) is a radiator with mutually orthogonal polarization planes, (6a), (63'), (6b) , (6
b') is an isolator, (7a).

(7a’)、 (7b)、 (7b’)はバッファ用抵
抗体を内蔵した同軸/導波管変換器、  (8a) 、
 (8b)は長さの比が。
(7a'), (7b), (7b') are coaxial/waveguide converters with built-in buffer resistors, (8a),
(8b) has a length ratio.

λ1Tλ2に対する管内波長比に等しくなる工うに作ら
れた導波管、(9)は移動目標体の表面に装着したコー
ナレフレクタ、  (10a)、 (10b)は目標体
までの距離に応じて自動的に減衰!kを変えt受信電力
をほぼ一定に維持する可変減衰器*  (11a)+ 
(11b)は導波管(8a)、 (8b)の中に挿入さ
れ、導波管中の電界と結合するプローブ+  (12a
)+ (12b)は検波器。
A waveguide made to have an internal wavelength ratio equal to λ1Tλ2, (9) a corner reflector attached to the surface of a moving target, (10a) and (10b) automatic reflection according to the distance to the target. Attenuation! Variable attenuator that changes k and maintains t received power almost constant* (11a)+
(11b) is inserted into the waveguides (8a) and (8b), and the probe + (12a
)+ (12b) is a detector.

(i3a)+ (13b)はビデオ増幅器、  (14
a)、(14b)は切換スイッチ、α1は減算回路tu
eは零点検出回路・(17a)・(17b)は飽和増幅
器、 aSはパルス計時回路。
(i3a) + (13b) is a video amplifier, (14
a), (14b) are changeover switches, α1 is a subtraction circuit tu
e is a zero point detection circuit, (17a) and (17b) are saturation amplifiers, and aS is a pulse timing circuit.

翰に距離・速度の演算回路である。又2図のA−A’及
びB−B’間のRF’回路は導波管(8a)、(8b)
を除き全て同軸回路部品に1って構成されており。
It is a calculation circuit for distance and speed. In addition, the RF' circuit between A-A' and B-B' in Figure 2 is a waveguide (8a) and (8b).
All except for 1 are composed of coaxial circuit components.

送信機(1aXまたは(1b)) からグローブ(11
a)(ま几は(11b))まで、及びプローブ(11a
)(または(11b))から放射器(5aXまたU (
5b))  までの電気長は簡単のためA(またはB)
からC(tfcはD)までt及びC(またはD〕からA
′(またはB′)までの電気長11及び12に、それぞ
れ等しくしであるものとする。
From the transmitter (1aX or (1b)) to the glove (11
a) up to (11b), and probe (11a)
) (or (11b)) to the radiator (5aX or U (
The electrical length up to 5b)) is A (or B) because it is simple.
from C (tfc is D) and from C (or D) to A
' (or B') are equal to the electrical lengths 11 and 12, respectively.

今、送信機(1a)から送信された波長λ1 のRF電
力は、方向性結合器(3a)の端子1から2へtサーキ
ュレータ(4a)の端子1から2へと抜け・放射器(5
a)から空中に放射される。一方!方向性結合器(3a
)で結合し、その端子3に現われたRF電力の1部は曾
アイソレータ(6a)を通り同軸/導波管変換器(7a
)で導波管モードに変換され、導波管(8a)を通過す
ると同軸/導波管変換器(7aりによって再び同軸モー
ドに変換されて次のアイソレータ(6a′)に吸収され
る。
Now, the RF power of wavelength λ1 transmitted from the transmitter (1a) is passed from terminals 1 to 2 of the directional coupler (3a) to terminals 1 to 2 of the circulator (4a), and the RF power of the radiator (5
a) is radiated into the air. on the other hand! Directional coupler (3a
), and a portion of the RF power appearing at terminal 3 passes through the isolator (6a) to the coaxial/waveguide converter (7a).
), and after passing through the waveguide (8a), it is converted back into a coaxial mode by the coaxial/waveguide converter (7a) and absorbed by the next isolator (6a').

放射器(5a)から放射されたRF電力はコーナレフレ
クタ(9)で反射されその1部が放射器(5a)で受信
される。受信された電力はサーキュレータ(4a)の端
子2から3へ進み可変減衰器(1Oa)で適当な値に減
衰されアイソレータ(6a’)  を経て同軸/導波管
変換器(7a’)  で導波管モードに変換される。
The RF power radiated from the radiator (5a) is reflected by the corner reflector (9), and part of it is received by the radiator (5a). The received power goes from terminal 2 to terminal 3 of the circulator (4a), is attenuated to an appropriate value by a variable attenuator (1Oa), passes through an isolator (6a'), and is guided by a coaxial/waveguide converter (7a'). Converted to tube mode.

導波管モードに変換された受信電力は導波管(8a)中
を通過すると同軸/導波管変換器(7a)で再び同軸モ
ードに変換され2次のアイソレータ(6a)に吸収され
る。ところで、導波管(8a )O中にはアイソレータ
(6a)側から進入して来る送信電力の1部(進行波)
とアイソレータ(6a’Jから進入し、て来る受信電力
(反射波)とによって電界定在波を発生する。今、進行
波の強度に対して反射波の強度が充分小さくなるように
可変減衰器(10a)の減衰量が与えられるものとすれ
ば、この電界定在波1Ealは 1Eal= ka (1+αasinβIJ )   
    (11但し+ka+αaは定数、αa(1,β
1=2π/λ1゜1 = h + Is で表され、グローブ(11a)によって電界をピックア
ップい検波器(12a)で検波し、これをビデオ増幅器
(13a)で増幅すればlの変化に伴いλ1/2の周期
で正弦波状に変化する電圧が得られる(第2図)。
When the received power converted to the waveguide mode passes through the waveguide (8a), it is converted back to the coaxial mode by the coaxial/waveguide converter (7a) and absorbed by the secondary isolator (6a). By the way, a part (traveling wave) of the transmitted power entering the waveguide (8a) from the isolator (6a) side
An electric field standing wave is generated by the isolator (6a'J) and the received power (reflected wave).Now, a variable attenuator is installed so that the intensity of the reflected wave is sufficiently small compared to the intensity of the traveling wave. Assuming that the amount of attenuation (10a) is given, this electric field standing wave 1Eal is 1Eal= ka (1+αasinβIJ)
(11 However, +ka + αa is a constant, αa (1, β
1 = 2π/λ1゜1 = h + Is If the electric field is picked up by the globe (11a), detected by the detector (12a), and amplified by the video amplifier (13a), λ1 changes as l changes. A voltage that changes sinusoidally with a period of /2 is obtained (Figure 2).

一方、送信1(1b)から送信されたRF電力はp高周
波スイッチ(2)の端子1から3を経て方向性結合器(
3b)の端子1から2へと同かい、以下A系統と全く同
じ工うにしで導波管(8b)の中にはアイソレータ(6
b)側から進入して来る進行波とアイソレータ(6bリ
 側から進入して来る反射波とによって電界定住波を発
生する。この′電界定在波(6)blはIEbl= k
b (1+αhain2βg )       +21
但し kbsαbは定数、αb(1,β=2π/λ。
On the other hand, the RF power transmitted from the transmitter 1 (1b) passes through terminals 1 to 3 of the p high frequency switch (2) to the directional coupler (
3b) terminals 1 to 2 are the same as the A system, and there is an isolator (6b) in the waveguide (8b).
An electric field standing wave is generated by the traveling wave that enters from the b) side and the reflected wave that enters from the isolator (6b) side. This 'electric field standing wave (6) bl is IEbl = k
b (1+αhain2βg) +21
However, kbsαb is a constant, αb(1, β=2π/λ.

1=lz+ls で表され、ビデオ増幅器(151))の出力端にはlの
変化に伴いλ/2の周期で正弦波状に変化する電圧が得
られる(第2図)。
1=lz+ls, and a voltage that changes sinusoidally with a period of λ/2 as l changes is obtained at the output end of the video amplifier (151) (FIG. 2).

さて、前記進行波と反射波のいずれも、A系統とB系統
で同じ強度になる工うに回路の設計および調整がなされ
ているものとすれば、第1式と第2式においてka =
kb *αa=αbとなる。従ってこのような状態でビ
デオ増幅器(13a)、 (13b)の出力をそれぞれ
スイッチ(14a) + (14b)の端子3から2ヲ
経て減算回路α9に導けば、その出力端にはE(λ)〆
th (r+β)AI血(バーβ)/   (31なる
出力が得られる(第2図)。よってλをλ1から漸増さ
せ。
Now, assuming that the circuit is designed and adjusted so that both the traveling wave and the reflected wave have the same intensity in the A system and the B system, then in the first and second equations, ka =
kb *αa=αb. Therefore, in such a state, if the outputs of the video amplifiers (13a) and (13b) are respectively led to the subtraction circuit α9 through terminals 3 and 2 of the switches (14a) + (14b), the output terminal has E(λ). 〆th (r+β)AI blood (bar β)/(An output of 31 is obtained (Fig. 2). Therefore, λ is gradually increased from λ1.

に達するとE(λ)が零になるからt次の零点検出回路
aQによってこれを検出すれば、このときのλから演算
回路α傷において第4式にエリ!を求めることができ+
  15=l −1h  にエリ、放射器(5a)。
When E(λ) reaches zero, if this is detected by the t-th zero point detection circuit aQ, then from λ at this time, E(λ) becomes zero in the arithmetic circuit α. +
15=l −1h, Eri, radiator (5a).

(5b)から目標体のコーナレフレクタ(9)までの距
離を求めることができる。
(5b), the distance to the corner reflector (9) of the target object can be determined.

次ニ、 高周波スイッチ(2)および切換スイッチ(1
4a) 、 (14b)を矢印側に切換えると同時に可
変減衰器(10a)・(10b ”)の減衰21減らい
進行波の強度と反射波の強度がほぼ等しくなるようにす
れば。
Second, high frequency switch (2) and selector switch (1)
4a) and (14b) are switched to the arrow side, and at the same time the attenuation 21 of the variable attenuators (10a) and (10b'') is reduced so that the intensity of the traveling wave and the intensity of the reflected wave become almost equal.

導波管(8a)、(8b)中の電界定在波IEa’1−
IEb’lはIE a’lx k a”pkβ111 
         (5)Ig b’l= kb’1g
1n /211           (6)但しk 
a’+  k b’は定数、β1=2r/λ1.β2−
2π/λ2 となり、プローブ(11a)l (11b)によって電
界をピックアップし、検波器(12a)、 (12b)
で検波し、これをビデオ増幅器(13a) + (13
b)で増幅すれば、lの変化に伴い定在波の谷(零点)
がそれぞれλ1/2.λ2/2の周期で繰返されるよう
な電圧が得られる。
Electric field standing wave IEa'1- in waveguides (8a) and (8b)
IEb'l is IE a'lx k a"pkβ111
(5) Ig b'l= kb'1g
1n /211 (6) However, k
a'+k b' is a constant, β1=2r/λ1. β2−
2π/λ2, the electric field is picked up by the probes (11a) and (11b), and the detectors (12a) and (12b)
The signal is detected by the video amplifier (13a) + (13
If amplified in b), the trough (zero point) of the standing wave will change as l changes.
are respectively λ1/2. A voltage that is repeated at a period of λ2/2 is obtained.

これらを切換えスイッチ(14a)、 (14b)の端
子3から1を1経由して飽和増幅器(17a)、 (1
7b)に加えれば、これらの出力端には目標体が1/2
 波長移動する毎に1回′亀圧値が零付近まで低下する
ようなスパイク状出力電圧を発生する(第2図)。
These are connected via the terminals 3 to 1 of the switch (14a) and (14b) to the saturation amplifier (17a) and (1
7b), the target object is 1/2 at these output terminals.
Every time the wavelength is shifted, a spike-like output voltage is generated such that the tortoise pressure value decreases to near zero once (FIG. 2).

λ1に対してλ2が1例えば5チ大きく設定されている
ものとすれば、スパイク状電圧かA系統で20回発生す
る間にB系統で19回発生する。
If λ2 is set to be 1, for example, 5 inches larger than λ1, a spike voltage will occur 19 times in the B system while it occurs 20 times in the A system.

つまり、2G(λ1/2)=19(λ2/2)毎にA系
統とB系統とで同時刻にスパイク状電圧が発生する。よ
って2次のパルス計時回路α樽によって、A系統とB系
統のスパイク状電圧発生時刻を計測すると共に両者が一
致する時刻を判別する。両者が一致する時 !=10λI X n              (
71但しnは正の整数 で表されることは明らかであるから1次の演算回路α1
に2いて1式+41に基づいて得たlの値と式(7)の
lf:比較してnの値を求めると共に1時間経過に伴い
発生するスパイク状電圧の発生回数をA系統(またはB
系統)についてカウントし、その数にλ1/2(または
λ2/2)を乗することによって目標体の時々刻々の距
離を1/2波長単位で求める。又tスパイク状電圧の繰
返し1周期から目標体の移動速度を求める。
That is, spike-like voltages occur in the A system and the B system at the same time every 2G (λ1/2)=19 (λ2/2). Therefore, the secondary pulse timing circuit α barrel measures the times at which spike-like voltages are generated in the A system and the B system, and determines the time at which both coincide. When both agree! =10λI X n (
71 However, since it is clear that n is expressed as a positive integer, the first-order arithmetic circuit α1
2, and compare the value of l obtained based on formula 1 + 41 with lf of formula (7) to find the value of n, and calculate the number of spike-like voltages that occur over the course of one hour from system A (or system B).
system) and multiplying that number by λ1/2 (or λ2/2) to find the instantaneous distance of the target object in units of 1/2 wavelength. Also, the moving speed of the target object is determined from one cycle of repetition of the t-spike voltage.

但し、接近中か離隔中かの判定は第(4)式に基づくj
の数回の計測データに1って行う。
However, the determination of whether they are approaching or separating is based on equation (4).
1 for each measurement data of several times.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、  2f4!類の周波数について得
られた電界定在波を基に目標体までの距離を172波長
単位で求め得ると共に・定在波の谷の発生周期から目標
体の移動速度を求めることができ、高精度の測距と低速
度の検知を必要とする至近距離用レーダを提供すること
ができる。
According to this invention, 2f4! The distance to the target object can be determined in units of 172 wavelengths based on the electric field standing waves obtained for similar frequencies, and the moving speed of the target object can be determined from the period of occurrence of the troughs of the standing waves, resulting in high accuracy. It is possible to provide a close-range radar that requires distance measurement and low-velocity detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一冥施例を示すブロック図ν第2図
は動作の説明を示す図でlE、I 、 IEbl 、及
びE(λ)の図は、第111式、第12)式及び第(3
)式を画いたものである。 図中(1a)、(1c) t!それぞれ波長λ1.λ2
の送信機。 (1b)は波長がλ1 から連続的に変化するFM送信
機*  (8a)、(8b)は導波管、(10a) t
 QOb)は可変減衰器+  (11a)、 (11b
)は検波器* QSは減算回路Iαeは零点検出回路、
α・はパルス計時回路、 (11は演算回路である。 なお図中同一符号は同一または相当部分を示すものとす
る。
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a diagram showing an explanation of the operation. The diagrams of lE, I, IEbl, and E(λ) are based on equations 111 and 12). and the third
) is a drawing of the formula. In the figure (1a), (1c) t! Each wavelength λ1. λ2
transmitter. (1b) is an FM transmitter whose wavelength changes continuously from λ1 *(8a), (8b) are waveguides, (10a) t
QOb) is a variable attenuator + (11a), (11b
) is a detector* QS is a subtraction circuit Iαe is a zero point detection circuit,
α・ is a pulse timing circuit, (11 is an arithmetic circuit. In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 2種類の周波数のCW電波を送信する送信機と、この2
種類の周波数のそれぞれについて、送信波の一部(進行
波)と受信波(反射波)とを干渉させて電界定在波を生
じさせる2つの導波管と、これら2種類の電界定在波を
検波する2つの検波器と、この検波器により検波された
2つのビデオ出力の差を得る減算回路と、前記受信波の
強度を調整する可変減衰器と、前記2種類の周波数の一
方を他方から漸次離してゆくときに得られる前記減算回
路の出力の零点検出を行う零点検出回路と、前記2種類
の周波数の両方を固定したときに得られる電界定在波の
谷(零点)を計時するパルス計時回路と、このパルス計
時回路の計時と、前記零点検出回路の零点検出とによつ
て、1/2波長単位で目標体までの距離と、目標体移動
速度を求める演算回路とを備えてなるレーダ装置。
A transmitter that transmits CW radio waves of two types of frequencies, and these two
Two waveguides that generate an electric field standing wave by interfering with a part of the transmitted wave (progressive wave) and the received wave (reflected wave) for each type of frequency, and these two types of electric field standing waves. a subtraction circuit that obtains the difference between the two video outputs detected by the detectors, a variable attenuator that adjusts the intensity of the received waves, and a subtraction circuit that detects one of the two types of frequencies from the other. A zero point detection circuit that detects the zero point of the output of the subtraction circuit obtained when the frequency is gradually separated from , and a trough (zero point) of the electric field standing wave obtained when both of the two types of frequencies are fixed. It comprises a pulse timing circuit, and an arithmetic circuit that calculates the distance to the target object and the moving speed of the target object in units of 1/2 wavelength by the timing of the pulse timing circuit and the zero point detection of the zero point detection circuit. A radar device.
JP60248335A 1985-11-06 1985-11-06 Radar equipment Pending JPS62108176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248335A JPS62108176A (en) 1985-11-06 1985-11-06 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248335A JPS62108176A (en) 1985-11-06 1985-11-06 Radar equipment

Publications (1)

Publication Number Publication Date
JPS62108176A true JPS62108176A (en) 1987-05-19

Family

ID=17176554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248335A Pending JPS62108176A (en) 1985-11-06 1985-11-06 Radar equipment

Country Status (1)

Country Link
JP (1) JPS62108176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104841A1 (en) * 2002-06-07 2003-12-18 株式会社島精機製作所 Distance measurement method and device
WO2007029519A1 (en) * 2005-09-02 2007-03-15 Saika Technological Institute Foundation Distance measuring device and distance measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104841A1 (en) * 2002-06-07 2003-12-18 株式会社島精機製作所 Distance measurement method and device
JPWO2003104841A1 (en) * 2002-06-07 2005-10-06 株式会社島精機製作所 Distance measuring method and apparatus
US7145502B2 (en) 2002-06-07 2006-12-05 Shima Seiki Manufacturing Limited Distance measurement method and device
WO2007029519A1 (en) * 2005-09-02 2007-03-15 Saika Technological Institute Foundation Distance measuring device and distance measuring method

Similar Documents

Publication Publication Date Title
RU2419813C2 (en) Method and device for measuring distance
CA1332458C (en) Distance and level measuring system
GB2170907A (en) Improvements relating to distance measuring devices
US8174434B2 (en) Method and device for determining a distance to a target object
JP2003240842A (en) Radar
KR20000036154A (en) Process for determining the relative velocity between two moving objects
JPS62108176A (en) Radar equipment
KR101233745B1 (en) Apparatus and method for measuring distance
JPS61209382A (en) Range finder
RU94032128A (en) Multichannel radar
JP4771166B2 (en) FM-CW radar equipment
JP2001004741A (en) Relative distance measuring apparatus
SU1083130A1 (en) Method of measuring uhf device output reflection coefficient
JPS60218086A (en) Distance measuring instrument
JPH0634754A (en) Radar equipment
JPS62169072A (en) Tracking radar
JPH04324386A (en) Distance measuring apparatus
JPH0414757B2 (en)
JP2001337160A (en) Continuous wave radar, distance velocity measurement device, and frequency modulation method
JPS62100673A (en) Fm-cw apparatus
JPH0886858A (en) Pulse-type radar apparatus
JP2003161775A (en) Target detecting method and radar device
SU1364998A1 (en) Method of determining parameters of extended microwave circuits
RU2197000C2 (en) Range-only radar
Inomata et al. 24 GHz side-looking radar for vehicular applications