JPS62106425A - Optical system for focus detection - Google Patents

Optical system for focus detection

Info

Publication number
JPS62106425A
JPS62106425A JP60245829A JP24582985A JPS62106425A JP S62106425 A JPS62106425 A JP S62106425A JP 60245829 A JP60245829 A JP 60245829A JP 24582985 A JP24582985 A JP 24582985A JP S62106425 A JPS62106425 A JP S62106425A
Authority
JP
Japan
Prior art keywords
lens
auxiliary
auxiliary lens
light receiving
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60245829A
Other languages
Japanese (ja)
Inventor
Koichi Ueda
浩市 上田
Masamichi Toyama
当山 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60245829A priority Critical patent/JPS62106425A/en
Publication of JPS62106425A publication Critical patent/JPS62106425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To improve the distance measurement accuracy by arranging auxiliary lenses between the second lens group and a light emitting element and between the second lens group and a light receiving element on specific conditions. CONSTITUTION:Relations 1/S'=1/S+1/f exist where S is the distance from the rear principal plane of an auxiliary lens 22 to an image surface P for the absence of the auxiliary lens 22 and S' is the distance from the rear principal plane of the auxiliary lens 22 to an image surface and (f) is the focal length of the auxiliary lens 22, and thereby, a magnification beta is expressed with S'/S. An angle theta2 of inclination of the image surface Q for insertion of the auxiliary lens 22 to a virtual object surface is expressed with (1-beta).theta1 where theta1 is the angle of inclination of the auxiliary lens to the object surface. The image surface is arranged at a angle which satisfies these relations, thereby obtaining a spot image with variable distortion effect compensated.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、近赤外光を被写体に向けて投射し、その反射
光を受光した受光素子の光電変換信号から焦点状態を検
出する所謂アクティブ方式の焦点検出用光学系に関する
ものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention is directed to a so-called active camera that projects near-infrared light toward a subject and detects the focus state from a photoelectric conversion signal of a light receiving element that receives the reflected light. The present invention relates to a focus detection optical system of the method.

[従来の技術] 従来のこの種の焦点検出用光学系は、発光素イと受光素
子を撮影レンズの列部に設けた外部測距方式と、画素子
を撮影レンズの内部に設け、投光光束及び受光光束を撮
影レンズの一部を通過させるようにした所謂TTL測距
方式とに大別される。
[Prior Art] Conventional optical systems for focus detection of this type include an external distance measuring method in which a light emitting element and a light receiving element are provided in a row of the photographing lens, and a pixel element is provided inside the photographing lens and a light emitting method is used. It is broadly classified into the so-called TTL distance measuring method in which the light beam and the received light beam pass through a part of the photographing lens.

前者の外部測距方式は撮影レンズのフォーカシング動作
に連動して受光素子又は発光素子を機械的に動かして、
三角X1ll flの原理により測距する方式であるか
ら、機械的な連動部において部材の形状誤差に起因する
測距誤差を免れ得ない。従って、測距精度を良好にする
ためには、成る程度の長さの基線長が必要になり、その
ために装置の小型化が難しいという問題を有している。
The former external distance measuring method mechanically moves the light receiving element or light emitting element in conjunction with the focusing operation of the photographic lens.
Since the distance measurement method is based on the principle of triangle X1ll fl, distance measurement errors due to shape errors of members in mechanical interlocking parts cannot be avoided. Therefore, in order to improve the distance measurement accuracy, a certain length of base line length is required, which poses a problem that it is difficult to miniaturize the device.

また、外部測距方式の別のタイプとして、受光素子にP
 S D (Position 5ensitive 
Device)を使用するものも知られており、これは
受光素子又は発光素子を動かす必要が無いという長所を
有しているが、位置検出特性の直線性に限界があるため
、これも成る程度長い基線長を必要とし同様に小型化に
限界がある。
In addition, as another type of external distance measurement method, P
S D (Position 5 sensitive
Devices are also known, which have the advantage of not having to move the light-receiving element or the light-emitting element, but this also has a limited linearity due to the limited linearity of the position detection characteristics. A baseline length is required, which also limits miniaturization.

次に、後者のTTL測距方式を第4図について説明する
と、1はフォーカシングレンズであり、その後方に順次
にズーミング用のバリエータ2、コンペンセータ3、ア
フォーカルレンズ4、絞り5、リレーレンズ6が配置さ
れており、Aは撮像面であって、全体としてズームレン
ズを構成している。そして、フォーカシングレンズ1の
焦点Fと光学的に共役な位置に、発光素子7と受光素子
8とが配置されている。発光素子7からの近赤外光を投
光レンズ9、全反射ミラー10、フォーカシングレンズ
1を経て被写体に投射し、被写体からの反射光をフォー
カシングレンズ1、全反射ミラー11、受光レンズ12
を経て、例えば2画素から成る受光素子8で受光するよ
うになっている。
Next, to explain the latter TTL distance measurement method with reference to FIG. 4, numeral 1 is a focusing lens, behind which a variator 2 for zooming, a compensator 3, an afocal lens 4, an aperture 5, and a relay lens 6 are sequentially installed. A is an imaging surface, and the lens as a whole constitutes a zoom lens. A light emitting element 7 and a light receiving element 8 are arranged at a position optically conjugate with the focal point F of the focusing lens 1. The near-infrared light from the light emitting element 7 is projected onto the subject via the projecting lens 9, the total reflection mirror 10, and the focusing lens 1, and the reflected light from the subject is transmitted through the focusing lens 1, the total reflection mirror 11, and the light receiving lens 12.
After that, the light is received by a light receiving element 8 consisting of, for example, two pixels.

ここで、フォーカシングレンズlが被写体に対して合焦
状態にある時は、受光素子8」二の発光スポット像Bは
、第5図(a)に示すように受光素子8の中央に位置す
るが、非合焦状態では(b)に示すように中央からずれ
た位置に至るために、2画素の差信号又は比信号により
フォーカシングレンズ1を駆動して自動焦点調節を行う
ことができる。
Here, when the focusing lens l is in focus on the subject, the light emitting spot image B of the light receiving element 8'' is located at the center of the light receiving element 8, as shown in FIG. 5(a). In the out-of-focus state, the focusing lens 1 can be driven by a difference signal or a ratio signal of two pixels to perform automatic focus adjustment to reach a position shifted from the center as shown in (b).

このようなTTL測距方式では、フォーカシングレンズ
l以外は可動部、が無く、またPSDを使用する必要も
ないから、1.’(tta 1つまりこの場合にはフォ
ーカシングレンズ1内の投光・受光光束の射出瞳間隔を
短くすることができ、小型化が可能である。しかし、フ
ォーカシングレンズ1内を投光・受光光束を通過させる
ため、直径の大きなフォーカシングレンズ1を用いる必
要があり、このために重量も大きくなりコスト的にも不
利である。
In such a TTL distance measurement method, there are no moving parts other than the focusing lens l, and there is no need to use a PSD, so 1. '(tta 1) In other words, in this case, it is possible to shorten the exit pupil interval of the emitting and receiving light beams within the focusing lens 1, and downsizing is possible. In order to allow the light to pass through, it is necessary to use a focusing lens 1 with a large diameter, which increases the weight and is disadvantageous in terms of cost.

[発明の目的] 本発明の目的は、撮影系フォーカシングレンズの周辺に
このフォーカシングレンズと等価な焦点距離を有する別
のレンズを配置し、このレンズをフォーカシングレンズ
と一体に可動できるようにして、測距精度を向上し、小
型化を実現し得る焦点検出用光学系を提供することにあ
る。
[Object of the Invention] An object of the present invention is to arrange another lens having a focal length equivalent to that of the focusing lens around the imaging system focusing lens, and to make this lens movable together with the focusing lens. It is an object of the present invention to provide a focus detection optical system that can improve distance accuracy and realize miniaturization.

[発明の概要] 上述の目的を達成するための本発明の要旨は、焦点調節
のため光軸方向に可動なフォーカシングレンズの周辺部
に、該フォーカシングレンズと等価な焦点距離を有する
第2のレンズを該フォーカシングレンズと一体で可動す
るように配置し、前記第2のレンズの焦点面側に発光素
子と受光素子を配置したアクティブ方式の焦点検出用光
学系であって、前記第2のレンズと発光素子、受光素子
のそれぞれの間に補助レンズを配置し、前記補助レンズ
を挿入した場合の像面の被写体面に対する傾き角度を0
2、前記補助レンズの被写体面に対する傾き角度をOI
、前記補助レンズの倍率なβとした場合に、 θ2=(1−β)・01 をほぼ満足するようにしたことを特徴とする焦点検出用
光学系である。
[Summary of the Invention] The gist of the present invention to achieve the above-mentioned object is to provide a second lens having a focal length equivalent to that of the focusing lens, which is movable in the optical axis direction for focus adjustment, at the periphery of the focusing lens. is arranged to move integrally with the focusing lens, and a light emitting element and a light receiving element are arranged on the focal plane side of the second lens. An auxiliary lens is placed between each of the light-emitting element and the light-receiving element, and when the auxiliary lens is inserted, the tilt angle of the image plane with respect to the subject plane is set to 0.
2. The inclination angle of the auxiliary lens with respect to the object plane is OI.
, the focus detection optical system is characterized in that, when β is the magnification of the auxiliary lens, θ2=(1−β)·01 is approximately satisfied.

[発明の実施例] 本発明を第1図〜第3図に図示の実施例に基づいて詳細
に説明する。
[Embodiments of the Invention] The present invention will be described in detail based on embodiments illustrated in FIGS. 1 to 3.

第1図は本発明を応用するに適したズームレンズ系であ
り、符号1〜12は第4図の部材と同−又は同等の部材
を示している。フォーカシングレンズ1の周辺には、フ
ォーカシングレンズlと焦点距離の等しい第2のレンズ
群、即ち投光用フォーカシングレンズ13、受光用フォ
ーカシングレンズ14が配置され、これら第2のレンズ
群13.14はフォーカシングレンズlと共に、フォー
カシングユニット15として光軸方向に−体重に駆動さ
れる。これら第2のレンズ群13.14のそれぞれの焦
点面側には、発光素子7及び受光素子8がフォーカシン
グレンズ1の焦点Fと光学的に共役な位置に配置されて
いる。
FIG. 1 shows a zoom lens system suitable for applying the present invention, and reference numerals 1 to 12 indicate the same or equivalent members as those in FIG. 4. A second lens group having the same focal length as the focusing lens l, that is, a light emitting focusing lens 13 and a light receiving focusing lens 14, are arranged around the focusing lens 1. Together with the lens l, the focusing unit 15 is driven by the weight in the optical axis direction. On the focal plane side of each of the second lens groups 13 and 14, a light emitting element 7 and a light receiving element 8 are arranged at positions optically conjugate with the focal point F of the focusing lens 1.

この第1図の構成は光学的には前述の第4図の構成と全
く等価であり、従ってTTL測距方式の長所はそのまま
保有されている。しかし、撮影用のフォーカシングレン
ズ1はその直径を第4図のものよりも小さくできるから
、小型軽量にすることができる。また、第2のレンズ群
13.14はプラスチック酸の非球面レンズとすること
ができるので、これらの第2のレンズ群13.14が附
加されても、フォーカシングレンズ1の小型化によって
全体のコストを安価にすることができる。
The configuration shown in FIG. 1 is optically completely equivalent to the configuration shown in FIG. 4 described above, and therefore retains the advantages of the TTL ranging method. However, since the diameter of the focusing lens 1 for photographing can be made smaller than that shown in FIG. 4, it can be made smaller and lighter. Furthermore, since the second lens group 13.14 can be made of an aspherical lens made of plastic acid, even if these second lens groups 13.14 are added, the overall cost can be reduced due to the miniaturization of the focusing lens 1. can be made inexpensive.

しかし、このような優れた長所を有する反面、測距精度
が低下するという欠点を持っている。即ち、このような
光学系では、投光レンズ9、受光レンズ12を撮影系光
軸から離して配置することになるため、第2のレンズ群
13.14の光軸とが、像に歪みを生じ測距精度が低下
する原因となるので、像面を撮影系光軸に垂直に近付け
ることが望ましい。
However, although it has such excellent advantages, it also has the disadvantage of reduced distance measurement accuracy. In other words, in such an optical system, the light emitting lens 9 and the light receiving lens 12 are placed apart from the optical axis of the photographing system, so that the optical axes of the second lens group 13 and 14 do not cause distortion to the image. Therefore, it is desirable to place the image plane perpendicularly close to the optical axis of the photographing system.

この測距精度の低下を防止するため、本発明では光学系
が第2図に例示するような特定の条件で配置されている
。このt52図において、21は撮影系フォーカシング
レンズ1と等価な第2のレンズ、Cは撮影系光軸、22
は第1図の投光レンズ9又は受光レンズ12に相当する
補助レンズ、Pは補助レンズ22が存在しない場合の像
面、Qは次に述べる条件を満足した補助レンズ22を挿
入した場合の像面を表している。
In order to prevent this decrease in distance measurement accuracy, in the present invention, the optical system is arranged under specific conditions as illustrated in FIG. In this t52 diagram, 21 is a second lens equivalent to the focusing lens 1 of the imaging system, C is the optical axis of the imaging system, and 22
is an auxiliary lens corresponding to the light emitting lens 9 or the light receiving lens 12 in Fig. 1, P is the image plane when the auxiliary lens 22 is not present, and Q is the image when the auxiliary lens 22 satisfying the following conditions is inserted. represents the surface.

補助レンズ22の前側主平面から補助レンズ22かない
場合の像面Pまでの距陣をS、補助レンズ22の後側主
平面から像面Qまでの距離をS′ とし、補助レンズ2
2の焦点距離をfとすれば、 L/S’ = 1/S+I/f    ・・・(1)な
る関係が存在し、これにより倍率βは、β=S’/S 
              ・・・(2)となる。
The distance from the front principal plane of the auxiliary lens 22 to the image plane P without the auxiliary lens 22 is S, and the distance from the rear principal plane of the auxiliary lens 22 to the image plane Q is S'.
If the focal length of 2 is f, then the following relationship exists: L/S' = 1/S+I/f (1), so the magnification β is β=S'/S
...(2).

補助レンズ22を挿入した場合の像面Qの仮想の被写体
面に対する傾き角度θ2は、 θ2=(1−β)・01     ・・・(3)で表さ
れる。ここで、θ1は補助レンズ22の被写体面に対す
る傾き角度である。この(3)式を満足する角度に像面
を配置することにより、変歪効果の補正されたスポット
像を得ることが可能となる。
The inclination angle θ2 of the image plane Q with respect to the virtual object plane when the auxiliary lens 22 is inserted is expressed as θ2=(1−β)·01 (3). Here, θ1 is the inclination angle of the auxiliary lens 22 with respect to the subject plane. By arranging the image plane at an angle that satisfies this equation (3), it is possible to obtain a spot image in which the distortion effect is corrected.

第3図は撮影系フォーカシングレンズ1と等価な第2の
レンズをフレネル型レンズ23で構成した実施例を示し
、この場合に補助レンズ22の傾き角度θ1は、フレネ
ル型レンズ23の自動合焦系についての有効領域の中心
と、補助レンズ22が無い場合の像面Pとを結ぶ直線と
、補助レンズ22の主平面とが垂直になるように設定す
ることが望ましい。
FIG. 3 shows an embodiment in which the second lens equivalent to the focusing lens 1 of the photographing system is composed of a Fresnel type lens 23. In this case, the inclination angle θ1 of the auxiliary lens 22 is It is desirable to set the main plane of the auxiliary lens 22 so that the straight line connecting the center of the effective area for the auxiliary lens 22 and the image plane P when the auxiliary lens 22 is not provided is perpendicular to the main plane of the auxiliary lens 22.

[発明の効果] 以上説明したように本発明に係る焦点検出用光学系は、
撮影系フォーカシングレンズの周辺部に、このフォーカ
シングレンズと等しい焦点距離を有する投受光用の第2
のレンズ群を一体に可動できるよう配置し、この第2の
レンズ群の焦点面側に発光素子と受光素子を配設し、第
2のレンズ群と発光素子、受光素子とのそれぞれの間に
設ける補助レンズを特定の条件で配置することにより、
受光素子上のスポット像の変歪を補正することができ、
測距精度を大1q11に向」−できるという効果がある
[Effects of the Invention] As explained above, the focus detection optical system according to the present invention has the following effects:
A second light emitting/receiving lens having the same focal length as the focusing lens is installed around the imaging system focusing lens.
A light emitting element and a light receiving element are arranged on the focal plane side of the second lens group, and a light emitting element and a light receiving element are arranged between the second lens group and the light emitting element and the light receiving element respectively. By arranging the auxiliary lens under specific conditions,
It is possible to correct distortion of the spot image on the light receiving element,
This has the effect of increasing the distance measurement accuracy to 1q11.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第3図は本発明に係る焦点検出用光学系の
実施例を示し、第1図は本発明を適用したズームレンズ
光学系を示す構成図、第2図、第3図は焦点検出用光学
系の構成図であり、第4図は従来のTTL測距測距方式
用適用ズームレンズ光学系の構成図、第5図はこの場合
の受光素子上のスポット像の説明図である。 符号1はフォーカシングレンズ、2はバリエータ、3は
コンペンセータ、4はアフォーカルレンズ、5は絞り、
6はリレーレンズ、7は発光素子、8は受光素子、9は
投光レンズ、12は受光レンズ、13は投光用フォーカ
シングレンズ、14は受光用フォーカシングレンズ、1
5はフォーカシングユニット、21は撮影系フォーカシ
ングレンズと等価なレンズ、22は補助レンズ、23は
フレネル型レンズである。 特許出願人   キャノン株式会社 第3し 第1図 第2図
1 to 3 show an embodiment of a focus detection optical system according to the present invention, FIG. 1 is a configuration diagram showing a zoom lens optical system to which the present invention is applied, and FIGS. FIG. 4 is a configuration diagram of a focus detection optical system; FIG. 4 is a configuration diagram of a zoom lens optical system applicable to a conventional TTL ranging method; and FIG. 5 is an explanatory diagram of a spot image on a light receiving element in this case. be. 1 is a focusing lens, 2 is a variator, 3 is a compensator, 4 is an afocal lens, 5 is an aperture,
6 is a relay lens, 7 is a light emitting element, 8 is a light receiving element, 9 is a light projecting lens, 12 is a light receiving lens, 13 is a focusing lens for light projecting, 14 is a focusing lens for light receiving, 1
5 is a focusing unit, 21 is a lens equivalent to a focusing lens of a photographing system, 22 is an auxiliary lens, and 23 is a Fresnel type lens. Patent applicant: Canon Co., Ltd. No. 3, Fig. 1, Fig. 2

Claims (1)

【特許請求の範囲】 1、焦点調節のため光軸方向に可動なフォーカシングレ
ンズの周辺部に、該フォーカシングレンズと等価な焦点
距離を有する第2のレンズを該フォーカシングレンズと
一体で可動するように配置し、前記第2のレンズの焦点
面側に発光素子と受光素子を配置したアクティブ方式の
焦点検出用光学系であって、前記第2のレンズと発光素
子、受光素子のそれぞれの間に補助レンズを配置し、前
記補助レンズを挿入した場合の像面の被写体面に対する
傾き角度をθ_2、前記補助レンズの被写体面に対する
傾き角度をθ_1、前記補助レンズの倍率をβとした場
合に、 θ_2=(1−β)・θ_1 をほぼ満足するようにしたことを特徴とする焦点検出用
光学系。 2、前記第2のレンズをフレネル型レンズとした特許請
求の範囲第1項に記載の焦点検出用光学系。
[Claims] 1. A second lens having a focal length equivalent to that of the focusing lens is movable integrally with the focusing lens at the periphery of the focusing lens that is movable in the optical axis direction for focus adjustment. an active type focus detection optical system in which a light emitting element and a light receiving element are arranged on the focal plane side of the second lens, and an auxiliary lens is provided between the second lens and each of the light emitting element and the light receiving element. When the lens is arranged and the auxiliary lens is inserted, the inclination angle of the image plane with respect to the object plane is θ_2, the inclination angle of the auxiliary lens with respect to the object plane is θ_1, and the magnification of the auxiliary lens is β, then θ_2= A focus detection optical system characterized by substantially satisfying (1-β)·θ_1. 2. The focus detection optical system according to claim 1, wherein the second lens is a Fresnel type lens.
JP60245829A 1985-11-01 1985-11-01 Optical system for focus detection Pending JPS62106425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245829A JPS62106425A (en) 1985-11-01 1985-11-01 Optical system for focus detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245829A JPS62106425A (en) 1985-11-01 1985-11-01 Optical system for focus detection

Publications (1)

Publication Number Publication Date
JPS62106425A true JPS62106425A (en) 1987-05-16

Family

ID=17139472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245829A Pending JPS62106425A (en) 1985-11-01 1985-11-01 Optical system for focus detection

Country Status (1)

Country Link
JP (1) JPS62106425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273210A (en) * 1987-05-01 1988-11-10 Dowa Mining Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273210A (en) * 1987-05-01 1988-11-10 Dowa Mining Co Ltd Magnetic recording medium
JPH0542055B2 (en) * 1987-05-01 1993-06-25 Dowa Mining Co

Similar Documents

Publication Publication Date Title
JP3076122B2 (en) camera
US20060203358A1 (en) Micromirror array lens with focal length gradient
US4370551A (en) Focus detecting device
JPS6269217A (en) Focus detecting device
JPS63118112A (en) Focus detector
US6324012B1 (en) Optical system and image pickup apparatus having the same
JPS58106511A (en) Focusing detecting optical system
US6351338B2 (en) Image pickup optical system
JPH0621898B2 (en) Shooting optics
US4455065A (en) Optical device
JPS62106425A (en) Optical system for focus detection
US5241168A (en) Focus detecting apparatus with selectively positioned deflecting component
JPH0713699B2 (en) Projection system for automatic focus detection
JPH11325887A (en) Branch optical system automatic focus detector
US4786150A (en) Zoom lens with beam splitter
JP2706932B2 (en) Focus detection device for camera
JP3337528B2 (en) Distance measuring device
JPS6275410A (en) Focus detecting device
JP4323592B2 (en) Focus detection device
JPH09179169A (en) Camera
JPH029323B2 (en)
JP2623851B2 (en) Viewfinder optical system with photometric system
JPH0423223Y2 (en)
JPS62106424A (en) Optical system for focus detection
JPS62115112A (en) Focus detecting optical system