JPS62105066A - Optical measuring instrument - Google Patents

Optical measuring instrument

Info

Publication number
JPS62105066A
JPS62105066A JP60244986A JP24498685A JPS62105066A JP S62105066 A JPS62105066 A JP S62105066A JP 60244986 A JP60244986 A JP 60244986A JP 24498685 A JP24498685 A JP 24498685A JP S62105066 A JPS62105066 A JP S62105066A
Authority
JP
Japan
Prior art keywords
light
output
receiving element
light receiving
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60244986A
Other languages
Japanese (ja)
Other versions
JPH0462354B2 (en
Inventor
Katsuhiko Suzuki
勝彦 鈴木
Yoshimasa Taniwaki
谷脇 芳正
Taketo Saito
斎藤 建人
Hideki Yamamoto
英樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP60244986A priority Critical patent/JPS62105066A/en
Publication of JPS62105066A publication Critical patent/JPS62105066A/en
Publication of JPH0462354B2 publication Critical patent/JPH0462354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure a current or voltage without requiring any high-precision equipment by extracting a DC component from the output of a light receiving element, comparing its level with the level of the output of the light receiving element, and imposing pulse width modulation upon the measured signal and thus generating a pulse-width modulated wave. CONSTITUTION:A polarizer 2 and an analyzer 5 are arranged between a light emitting element 1 and the light receiving element 6 so that the plane of polari zation and the plane of analysis are at 45 deg. to each other, and the 1st and the 2nd optical modulating elements (Faraday element) 3 and 4 are further arranged in series between the polarizer 2 and analyzer 5. The measured value is modulat ed optically by the element 3 and a triangular wave or saw-tooth wave carrier signal is modulated optically by the element 4. Then, a DC component extracting circuit 13 extracts the DC component from the output of the light receiving element 6 and a comparing circuit 14 makes a level comparison between the DC component and the output of the light receiving element 6 to generate the pulse-width modulated wave by imposing pulse width modulation upon the measured signal; and this wave is passed through a demodulating circuit 15 to extract a voltage signal proportional to the measured signal.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高電圧または大電流を光を用いて非接触で計
測する光式計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an optical measuring device that measures high voltage or large current using light in a non-contact manner.

従来の技術 従来の光式電流計測装置は、第3図に示すように、発光
ダイオードまたはレーザーダイオードなどの発光素子1
から発する光を偏光子2を通してファラディ素子(磁気
光学効果素子、ファラディローテータ) 3に入射し、
このファラディ素子3から出た光をもう一つのファラデ
ィ素子4に入射し、このファラディ素子4から出た光を
検光子5を通してPINホトダイオードなどの受光素子
6に入射させるようにしである。ファラディ素子3は検
出すべき電流Iが流れる導体7に近接配置し、もう一つ
のファラディ素子4にはコイル8を巻装してあり、パワ
ーアンプ9からコイル8に励磁電流iを流すようになっ
ている。また、受光素子6の出力は、プリアンプ10を
介して最小値検出回路11に入力され、この最小値検出
回路11の出力をパワーアンプ9に入力として加えるよ
うになっている。
2. Description of the Related Art A conventional optical current measuring device uses a light emitting element 1 such as a light emitting diode or a laser diode, as shown in FIG.
The light emitted from the is incident on a Faraday element (magneto-optic effect element, Faraday rotator) 3 through a polarizer 2,
The light emitted from this Faraday element 3 is made incident on another Faraday element 4, and the light emitted from this Faraday element 4 is made incident on a light receiving element 6 such as a PIN photodiode through an analyzer 5. The Faraday element 3 is placed close to the conductor 7 through which the current I to be detected flows, and the other Faraday element 4 is wound with a coil 8, so that the excitation current i flows from the power amplifier 9 to the coil 8. ing. Further, the output of the light receiving element 6 is inputted to a minimum value detection circuit 11 via a preamplifier 10, and the output of this minimum value detection circuit 11 is applied as an input to a power amplifier 9.

この先代電流計測装置は、発光素子1から出た光を偏光
子2によって直線偏光し、偏光された光をファラディ素
子3に通すと、このファラデイ素子3は電流■に応じて
、すなわち磁界Hに応じて偏光面を角度θ1だけ回転さ
せることになる。
This predecessor current measuring device linearly polarizes the light emitted from the light emitting element 1 by the polarizer 2, and when the polarized light is passed through the Faraday element 3, the Faraday element 3 responds to the current ■, that is, to the magnetic field H. Accordingly, the plane of polarization is rotated by an angle θ1.

偏光面が角度θ1だけ回転した光をもう一つのファラデ
ィ素子4に通し、このファラディ素子4中で偏光面をコ
イル8に流れる励磁it流iによってもとにもどすよう
に回転させる。
The light whose polarization plane has been rotated by an angle θ1 is passed through another Faraday element 4, and in this Faraday element 4, the polarization plane is rotated back to its original state by the excitation it current i flowing through the coil 8.

そして、ファラディ素子4から出た光を検光子(検光面
が偏光子2の偏光面と直交している)5を通して受光素
子6に入射させ、この受光素子6の出力をプリアンプ1
0で増幅したのち最小値検出回路11に加える。
Then, the light emitted from the Faraday element 4 is made incident on the light receiving element 6 through the analyzer 5 (the analysis plane is perpendicular to the polarization plane of the polarizer 2), and the output of this light receiving element 6 is transmitted to the preamplifier 1.
After the signal is amplified by 0, it is added to the minimum value detection circuit 11.

最小値検出回路11において、プリアンプ10の出力レ
ベルを検出し、プリアンプ10の出力レベルが最小とな
るようにパワーアンプ9への入力端子Vを調整すると、
パワーアンプ9への入力電圧■に比例した励磁電流iが
コイル8に流れ、これによって生じる磁界によるファラ
ディ素子4における偏光面の回転角θ2が1を流りによ
るファラディ素子3の偏光面の回転角θ1の極性を反転
したものに等しくなる(θ2=−01)。このときの電
流i、すなわち電圧■は電流Iに比例することになり、
電圧■を求めれば電流Iを計測したことになる。
When the minimum value detection circuit 11 detects the output level of the preamplifier 10 and adjusts the input terminal V to the power amplifier 9 so that the output level of the preamplifier 10 becomes the minimum,
An excitation current i proportional to the input voltage ■ to the power amplifier 9 flows through the coil 8, and the rotation angle θ2 of the polarization plane in the Faraday element 4 due to the magnetic field generated by this becomes 1. The rotation angle of the polarization plane of the Faraday element 3 due to the flow It is equal to the polarity of θ1 inverted (θ2=-01). At this time, the current i, that is, the voltage ■, is proportional to the current I,
If the voltage ■ is determined, the current I is measured.

ここで、計測原理について数式を用いて説明する。ファ
ラディ素子3における偏光面の回転角θ′は、ファラデ
ィ素子3の長さを2、電流lによる磁界をH1導体7の
ターン数をN、 V H、V ) ’を定数とすれば、 θ1”v!Hjl=v、’Nl で表わされ、またフプラディ素子4における偏光面の回
転角θ2は、コイル8に流れる励磁電流をi、コイル8
0巻数をn5V2を定数とすれば、θ2 ” V 2 
n i となる。今、励磁電流iの調整によってθ1=02 となったとすれば、 v IHj! −V 1’ N I = v 2 n 
iとなり、また、電圧Vと励磁電流iは、kを定数とし
たときに V=k i の関係があるため、電圧Vがわかれば、電流Iまたは磁
界Hがわかることになる。なお、ファラディ素子3に代
えてポッケルス素子(電気光学効果素子)を用いると電
圧または電界を計測できる。
Here, the measurement principle will be explained using mathematical formulas. The rotation angle θ' of the plane of polarization in the Faraday element 3 is given by θ1'', where the length of the Faraday element 3 is 2, the magnetic field due to the current l is H1, the number of turns of the conductor 7 is N, and VH,V)' are constants. v!Hjl=v,'Nl, and the rotation angle θ2 of the plane of polarization in the Hupradi element 4 is expressed as
If the number of turns is 0 and n5V2 is a constant, θ2 ” V 2
n i . Now, if θ1=02 by adjusting the excitation current i, then v IHj! −V 1' N I = v 2 n
Also, since the voltage V and the excitation current i have the relationship V=k i where k is a constant, if the voltage V is known, the current I or the magnetic field H can be found. Note that if a Pockels element (electro-optic effect element) is used in place of the Faraday element 3, the voltage or electric field can be measured.

発明が解決しようとする問題点 このような従来の光式電流計測装置は、ファラディ素子
3の偏光面の回転角θ1とファラディ素子4の偏光面の
回転角θ2とを正確に合致させる必要があり、必要な計
測精度を得るためには、プリアンプ10.最小値検出回
路11およびパワーアンプ9としてきわめて精度が高く
、雑音の少いものが必要であるという問題があった。
Problems to be Solved by the Invention In such a conventional optical current measuring device, it is necessary to accurately match the rotation angle θ1 of the polarization plane of the Faraday element 3 with the rotation angle θ2 of the polarization plane of the Faraday element 4. , in order to obtain the necessary measurement accuracy, the preamplifier 10. There is a problem in that the minimum value detection circuit 11 and the power amplifier 9 need to be extremely accurate and have little noise.

この発明は、精度の高い機器を必要と廿ずに電流または
電圧を計測することができる先代計測装置を提供するこ
とを目的とする。
An object of the present invention is to provide a predecessor measuring device that can measure current or voltage without requiring highly accurate equipment.

問題点を解決するための手段 この発明の先代計測装置は、発光素子と、この発光素子
から出た光を受ける受光素子と、前記発光素子から前記
受光素子へ至る光路の発光素子側に配!した偏光子と、
前記光路の受光素子側に検光面が前記偏光子の偏光面と
45度の角度で交差するように配置した検光子と、前記
偏光子および検光子の間において前記光路中に配置され
前記偏光子から出た光の偏光面を前記被計測信号に応じ
て回転させる第1の光変調素子と、前記偏光子および検
光子の間において前記光路中に前記第1の光変調素子と
直列に配rされた第2の光変調素子と、前記第2の光変
調素子に三角波または鋸歯状のキャリア信号を与え前記
偏光面を前記キャリア信号に応じて高速回転させるキャ
リア信号発生器と、前記受光素子の出力の直流分を抽出
する直流分抽出回路と、この直流分抽出回路の出力と前
記受光素子の出力とのレベル比較を行う比較回路と、こ
の比較回路の出力を復調する復調回路とを備える構成に
したことを特徴とする。
Means for Solving the Problems The predecessor measuring device of the present invention includes a light emitting element, a light receiving element that receives light emitted from the light emitting element, and a light emitting element disposed on the light emitting element side of the optical path from the light emitting element to the light receiving element. polarizer and
an analyzer disposed on the light-receiving element side of the optical path so that its analysis plane intersects the polarization plane of the polarizer at an angle of 45 degrees, and an analyzer disposed in the optical path between the polarizer and the analyzer to detect the polarized light a first light modulation element that rotates a polarization plane of light emitted from the light according to the signal to be measured; and a first light modulation element arranged in series with the first light modulation element in the optical path between the polarizer and the analyzer. a carrier signal generator that applies a triangular wave or sawtooth carrier signal to the second optical modulator and rotates the plane of polarization at high speed according to the carrier signal; and the light receiving element. a DC component extracting circuit that extracts a DC component of the output of the DC component, a comparison circuit that compares the level of the output of the DC component extraction circuit and the output of the light receiving element, and a demodulation circuit that demodulates the output of the comparison circuit. It is characterized by its structure.

作用 この発明の光式計測装置は、発光素子と受光素子の間に
偏光面と検光面とが45度の角度をなすように偏光子と
検光子を配置し、さらに偏光子および検光子の間に第1
および第2の光変調素子を直列に配置し、第1の光変調
素子によって被計測信号を光変調するとともに第2の光
変調素子によって三角波または鋸歯状波キャリア信号を
光変調し、受光素子の出力の直流分を抽出し、この直流
分と受光素子出力とのレベル比較を行うことにより被計
測信号をパルス幅変調してなるパルス幅変調波を作成し
、このパルス幅変調波を復調回路に通すことにより被計
測信号に比例した電圧信号を取出すようにしたものであ
るため、従来例のように高精度かつ低雑音の2機器を必
要とせずに計測を行うことができ、さらに第1の光変調
素子による回転角と第2の光変調素子による回転角の一
致を検出してパルス幅変調を行っているため、発光素子
の光量や光路の減衰量の経時変化に全く影響を受けるこ
とがない。
Function The optical measuring device of the present invention has a polarizer and an analyzer arranged between a light emitting element and a light receiving element so that the polarization plane and the analysis plane form an angle of 45 degrees, and 1st in between
and a second optical modulation element are arranged in series, the first optical modulation element optically modulates the signal to be measured, and the second optical modulation element optically modulates the triangular wave or sawtooth wave carrier signal. By extracting the DC component of the output and comparing the level of this DC component with the output of the light receiving element, the measured signal is pulse width modulated to create a pulse width modulated wave, and this pulse width modulated wave is sent to the demodulation circuit. Since the voltage signal proportional to the signal to be measured is extracted by passing the signal through, measurement can be performed without the need for two high-precision, low-noise devices as in the conventional example. Since pulse width modulation is performed by detecting the coincidence of the rotation angle of the light modulation element and the rotation angle of the second light modulation element, it is completely unaffected by changes over time in the amount of light from the light emitting element or the amount of attenuation in the optical path. do not have.

実施例 この発明の一実施例を第1図および第2図に基づいて説
明する。この先代を流計測装置は、第1図に示すように
、発光ダイオードまたはレーザーダイオードなどの発光
素子lから発する光を偏光子2を通して第1の光変調素
子であるファラディ素子3に入射し、このファラディ素
子3から出た光を第2の光変調素子であるファラディ素
子4に入射し、このファラディ素子4から出た光を検光
子(検光面が偏光子2の偏光面に対して45度傾斜して
いる)5を通してPINホトダイオードt4どの受光素
子6に入射させるように構成しである。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 and 2. As shown in FIG. 1, this predecessor flow measuring device makes light emitted from a light emitting element l such as a light emitting diode or a laser diode pass through a polarizer 2 and enter a Faraday element 3, which is a first light modulating element. The light emitted from the Faraday element 3 is incident on the Faraday element 4, which is a second light modulation element, and the light emitted from the Faraday element 4 is passed through an analyzer (the analysis plane is 45 degrees with respect to the polarization plane of the polarizer 2). The configuration is such that the light is incident on any of the light receiving elements 6 through the PIN photodiode t4 (which is tilted).

ファラディ素子3は検出すべき電流Iが流れる導体7に
近接配置し、もう一つのファラディ素子4にはコイル8
を巻装してあり、このコイル8に三角波キャリア信号発
生器12から出力される三角波キャリア信号を加えるよ
うになっている。この場合、三角波キャリア信号の周波
数は、被計測信号に含まれる最大周波数の10倍以上が
望ましく、例えば被計測信号の周波数範囲がDC〜2K
tlzなら、三角波キャリア信号の周波数20KHz以
上となる。
The Faraday element 3 is placed close to the conductor 7 through which the current I to be detected flows, and the other Faraday element 4 has a coil 8.
A triangular wave carrier signal output from a triangular wave carrier signal generator 12 is applied to this coil 8 . In this case, the frequency of the triangular wave carrier signal is preferably 10 times or more the maximum frequency included in the signal under measurement, for example, the frequency range of the signal under measurement is DC to 2K.
tlz, the frequency of the triangular wave carrier signal is 20 KHz or more.

また、受光素子6の出力は直流抽出回路13により直流
分が抽出され、この直流分抽出回路13により抽出され
た直流分と受光素子6の出力とを比較回路14で比較す
ることにより計測すべき電>&I(被計測信号)を三角
波キャリア信号でパルス幅変調してなるパルス幅変調信
号に変換し、このパルス幅変調信号中の高周波成分を復
調回路15で除去することにより電流Iに比例した電圧
信号を取り出すようになっている。
Further, the output of the light receiving element 6 should be measured by extracting the DC component by the DC extraction circuit 13 and comparing the DC component extracted by the DC component extraction circuit 13 with the output of the light receiving element 6 by the comparison circuit 14. Electric>& I (signal to be measured) is pulse width modulated with a triangular wave carrier signal to convert it into a pulse width modulated signal, and the high frequency component in this pulse width modulated signal is removed by the demodulation circuit 15 to generate a signal proportional to the current I. It is designed to extract voltage signals.

より詳しく説明すると、この先代電流計測装置は、発光
素子1から出た光を偏光子2によって直線偏光し、偏光
された光をファラディ素子3に通すと、このファラディ
素子3は電流Iに応じて偏光面を第2図の実線A1のよ
うに回転させる。
To explain in more detail, this previous current measuring device linearly polarizes the light emitted from the light emitting element 1 by the polarizer 2, and when the polarized light is passed through the Faraday element 3, the Faraday element 3 The plane of polarization is rotated as shown by the solid line A1 in FIG.

つぎに、ファラディ素子3から出た光はファラディ素子
4に入射するが、このファラディ素子4には三角波キャ
リア信号が加えられているため、ファラディ素子4中で
光は第2図の実線A2で示すように偏光面の回転角が変
化することになる。
Next, the light emitted from the Faraday element 3 enters the Faraday element 4, but since a triangular wave carrier signal is added to the Faraday element 4, the light in the Faraday element 4 is shown by the solid line A2 in FIG. The rotation angle of the plane of polarization changes as follows.

この場合、偏光子2の偏光面と検光子5の検光面とが4
5度の角度で交差しているため、電流■による偏光面の
回転角および三角波キャリア信号による偏光面の回転角
の合成回転角と検光子5を通過する光量との間に第2図
の実線A3で示すような関係(1+cos 2 (θ−
45”))があり、合成回転角が一45度のときに零と
なり、+45度のときに最大となる。したがって、上記
の回転角は±45度の範囲内におさめる必要がある。
In this case, the polarization plane of the polarizer 2 and the analysis plane of the analyzer 5 are 4
Since they intersect at an angle of 5 degrees, the solid line in Figure 2 is between the composite rotation angle of the rotation angle of the polarization plane due to the current ■ and the rotation angle of the polarization plane due to the triangular wave carrier signal and the amount of light passing through the analyzer 5. The relationship shown in A3 (1+cos 2 (θ-
45")), which becomes zero when the combined rotation angle is 145 degrees and reaches a maximum when it is +45 degrees. Therefore, the above rotation angle needs to be within the range of ±45 degrees.

今、電流■による偏光面の回転に対して三角波キャリア
信号による偏光面の回転方向を逆方向となるように設定
しておけば、ファラディ素子4から出た光を検光子5を
通して受ける受光素子6の出力は、第2図の実線A4で
示すように電流■と三角波キャリア信号とを合成した信
号波形となる。
Now, if the rotation direction of the polarization plane by the triangular wave carrier signal is set to be opposite to the rotation of the polarization plane by the current ■, the light receiving element 6 receives the light emitted from the Faraday element 4 through the analyzer 5. The output has a signal waveform that is a combination of the current ■ and the triangular carrier signal, as shown by the solid line A4 in FIG.

この実線A4で示す受光素子6の出力は、電流■による
回転角の変化に応じた出力成分(第2図の破線A5で示
す)と三角波キャリア信号による回転角の変化に応じた
出力成分(第2図の破線A6で示す)とが合成されたも
のである。
The output of the light-receiving element 6 shown by the solid line A4 includes an output component corresponding to the change in the rotation angle due to the current ■ (indicated by the broken line A5 in FIG. 2), an output component corresponding to the change in the rotation angle due to the triangular wave carrier signal (indicated by the (shown by the broken line A6 in FIG. 2).

上記受光素子6の出力を直流分抽出回路13に加えて直
流分(前記の合成回転角が0度に相当する受光素子出力
レベル)を抽出し、この直流分と前記受光素子6の出力
とのレベル比較を比較回路14にて行えば、第2図の実
vAA7に示すようなパルス幅変調波が得られ、このパ
ルス幅変調波を復調回路15で復1!(高周波成分を除
去)すると電流■に比例した電圧信号が得られることに
なり、この電圧を求めれば、電流■を計測したことにな
る。
The output of the light-receiving element 6 is added to the DC component extraction circuit 13 to extract the DC component (the light-receiving element output level corresponding to the composite rotation angle of 0 degrees), and the output of the light-receiving element 6 is combined with the DC component. If the level comparison is performed in the comparator circuit 14, a pulse width modulated wave as shown in the actual vAA7 in FIG. (Remove high frequency components) A voltage signal proportional to the current ■ will be obtained, and if this voltage is determined, the current ■ will be measured.

このように、この実施例は、ii流Iによってファラデ
ィ素子3の回転角を変化させるとともに三角波キャリア
信号によってファラディ素子4の回転角を逆方向に変化
させ、かつ検光子5の検光面と偏光子2の偏光面とが4
5度の角度で交差するように両者を配置し、ファラディ
素子3.4の合成回転角と受光素子6の出力がほぼ比例
関係にある領域で検光を行うことにより電流Iと三角波
キャリア信号との合成信号を受光素子6から取り出し、
この合成信号をその中に含まれる直流分とレベル比較す
ることにより、パルス幅変調波を作り、これを復調する
ようにしたため、従来例のような零調整は不要で精度が
高く低雑音の機器は不要となる。また、パルス幅変調を
行っているため、ファラディ素子3.4における偏光面
の回転角が一致するタイミングを検出するだけであって
、発光素子lの光量の大小は計測値に無関係であるため
、発光素子1の光量や光路の減衰量の経時変化に全く影
響を受けることはない。
In this way, in this embodiment, the rotation angle of the Faraday element 3 is changed by the flow I, and the rotation angle of the Faraday element 4 is changed in the opposite direction by the triangular wave carrier signal, and the analysis plane of the analyzer 5 and the polarization The polarization plane of child 2 is 4
By arranging them so that they intersect at an angle of 5 degrees, and performing analysis in a region where the combined rotation angle of the Faraday element 3.4 and the output of the light receiving element 6 are approximately proportional, the current I and the triangular wave carrier signal can be determined. Take out the composite signal from the light receiving element 6,
By comparing the level of this composite signal with the DC component contained in it, a pulse width modulated wave is created and demodulated, so zero adjustment as in conventional systems is not required, resulting in high precision and low noise equipment. becomes unnecessary. In addition, since pulse width modulation is performed, only the timing at which the rotation angles of the polarization planes in the Faraday elements 3 and 4 match is detected, and the amount of light from the light emitting element l is irrelevant to the measured value. It is completely unaffected by changes over time in the amount of light from the light emitting element 1 or the amount of attenuation of the optical path.

なお、上記実施例では三角波キャリア信号を用いてパル
ス幅変調を行づたが、鋸歯状波をキャリア信号として用
いてもパルス幅変調を行うことができ、鋸歯状波でパル
ス幅変調を行う実施例についてもこの発明範囲に含まれ
るものである。
In the above embodiment, pulse width modulation was performed using a triangular wave carrier signal, but pulse width modulation can also be performed using a sawtooth wave as a carrier signal. Examples are also included within the scope of this invention.

また、上記実施例では、ファラディ素子3を用いて電流
を計測するようにしたが、ポッケルス素子(電気光学効
果素子)を使用すれば、電圧を計測することができる。
Further, in the above embodiment, the Faraday element 3 is used to measure the current, but a Pockels element (electro-optic effect element) can be used to measure the voltage.

また、ファラディ素子4によって変調を行うようにした
が、ポッケルス素子う用いて変調を行うこともできる。
Furthermore, although the Faraday element 4 is used for modulation, a Pockels element may also be used for modulation.

また、キャリアとして、正弦波を用いて位相変調を行う
ことによって電流または電圧を計測することもできる。
Further, current or voltage can also be measured by performing phase modulation using a sine wave as a carrier.

この場合の受光素子出力Qは、X。In this case, the light receiving element output Q is X.

Yを定数、ω。を搬送波周波数、ω、を信号周波数とす
れば、 Q=Xcns (sin ω(t −Ysin ω3 
t)で表わされることになる。
Y is a constant, ω. If is the carrier frequency and ω is the signal frequency, then Q=Xcns (sin ω(t −Ysin ω3
t).

発明の効果 この発明の光式計測装置は、発光素子と受光素子の間に
偏光面と検光面が45度の角度をなすように偏光子と検
光子を配置し、さらに偏光子および検光子の間に第1お
よび第2の光変調素子を直列に配置し、第1の光変調素
子によって被計測信号を光変調するとともに第2の光変
調素子によって三角波または鋸歯状波キャリア信号を光
変調し、受光素子の出力の直流分を抽出し、この直流分
と受光素子出力とのレベル比較を行うことにより被計測
信号をパルス幅変調してなるパルス幅変調波を作成し、
このパルス幅変調波を復調回路に通すことにより被計測
信号に比例した電圧信号を取出すようにしたものである
ため、従来例のように高精度かつ低雑音の機器を必要と
せずに計測を行うことができ、さらに第1の光変調素子
による回転角と第2の光変調素子による回転角の一致を
検出してパルス幅変調を行っているため、発光素子の光
量や光路の減衰量の経時変化に全く影響を受けることが
ない。
Effects of the Invention The optical measurement device of the present invention has a polarizer and an analyzer arranged between a light emitting element and a light receiving element so that the polarization plane and the analysis plane form an angle of 45 degrees, and further includes a polarizer and an analyzer. A first and a second optical modulation element are arranged in series between the two, and the first optical modulation element optically modulates the signal to be measured, and the second optical modulation element optically modulates the triangular wave or sawtooth wave carrier signal. Then, by extracting the DC component of the output of the light receiving element and comparing the levels of this DC component and the output of the light receiving element, a pulse width modulated wave is created by pulse width modulating the signal to be measured,
By passing this pulse width modulated wave through a demodulation circuit, a voltage signal proportional to the signal being measured is extracted, so measurements can be performed without the need for high-precision, low-noise equipment as in conventional methods. Furthermore, since pulse width modulation is performed by detecting the coincidence of the rotation angle of the first light modulation element and the rotation angle of the second light modulation element, the amount of light of the light emitting element and the amount of attenuation of the optical path change over time. Not affected by change at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
はその動作説明図、第3図は従来例のブロック図である
。 ■・・・発光素子、2・・・偏光子、3・・・ファラデ
ィ素子(第1の光変調素子)、4・・・ファラディ素子
(第2の光変調素子)、5・・・検光子、6・・・受光
素子、13・・・直流分抽出回路、14・・・比較回路
、15・・・復調回路
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a block diagram of a conventional example. ■... Light emitting element, 2... Polarizer, 3... Faraday element (first light modulation element), 4... Faraday element (second light modulation element), 5... Analyzer , 6... Light receiving element, 13... DC component extraction circuit, 14... Comparison circuit, 15... Demodulation circuit

Claims (1)

【特許請求の範囲】[Claims] 発光素子と、この発光素子から出た光を受ける受光素子
と、前記発光素子から前記受光素子へ至る光路の発光素
子側に配置した偏光子と、前記光路の受光素子側に検光
面が前記偏光子の偏光面と45度の角度で交差するよう
に配置した検光子と、前記偏光子および検光子の間にお
いて前記光路中に配置され前記偏光子から出た光の偏光
面を被計測信号に応じて回転させる第1の光変調素子と
、前記偏光子および検光子の間において前記光路中に前
記第1の光変調素子と直列に配置された第2の光変調素
子と、前記第2の光変調素子に三角波または鋸歯状のキ
ャリア信号を与え前記偏光面を前記キャリア信号に応じ
て高速回転させるキャリア信号発生器と、前記受光素子
の出力の直流分を抽出する直流分抽出回路と、この直流
分抽出回路の出力と前記受光素子の出力とのレベル比較
を行う比較回路と、この比較回路の出力を復調する復調
回路とを備えた光式計測装置。
a light-emitting element, a light-receiving element that receives light emitted from the light-emitting element, a polarizer disposed on the light-emitting element side of an optical path from the light-emitting element to the light-receiving element, and an analysis surface on the light-receiving element side of the optical path. An analyzer arranged to intersect the polarization plane of the polarizer at an angle of 45 degrees, and an analyzer arranged in the optical path between the polarizer and the analyzer, and detect the polarization plane of the light emitted from the polarizer as a signal to be measured. a first light modulation element that is rotated according to a carrier signal generator that applies a triangular wave or sawtooth carrier signal to an optical modulation element and rotates the polarization plane at high speed according to the carrier signal; a DC component extraction circuit that extracts a DC component of the output of the light receiving element; An optical measuring device comprising: a comparison circuit that compares the levels of the output of the DC component extraction circuit and the output of the light receiving element; and a demodulation circuit that demodulates the output of the comparison circuit.
JP60244986A 1985-10-31 1985-10-31 Optical measuring instrument Granted JPS62105066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60244986A JPS62105066A (en) 1985-10-31 1985-10-31 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244986A JPS62105066A (en) 1985-10-31 1985-10-31 Optical measuring instrument

Publications (2)

Publication Number Publication Date
JPS62105066A true JPS62105066A (en) 1987-05-15
JPH0462354B2 JPH0462354B2 (en) 1992-10-06

Family

ID=17126882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244986A Granted JPS62105066A (en) 1985-10-31 1985-10-31 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JPS62105066A (en)

Also Published As

Publication number Publication date
JPH0462354B2 (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US4539521A (en) Magnetic field measuring device
JP4046243B2 (en) Optical fiber apparatus and method for precision current sensing
US6122415A (en) In-line electro-optic voltage sensor
JPH0670651B2 (en) Method and device for measuring electric and magnetic quantities by light
KR100376139B1 (en) Light sensor
US4956607A (en) Method and apparatus for optically measuring electric current and/or magnetic field
JPS62105066A (en) Optical measuring instrument
EP0537288B1 (en) Single stage demodulator with reference signal phase dither
KR970029393A (en) Magneto-optical characteristic measuring device
JP2004279380A (en) Angle of rotation measuring instrument
JPS62105065A (en) Optical measuring instrument
JP3179316B2 (en) Optical sensor
JPS62105068A (en) Optical measuring instrument
KR100228416B1 (en) Complete current-voltage measuring apparatus using light
RU1775040C (en) Method of examining sun atmosphere and device therefor
JPH0462355B2 (en)
SU682758A1 (en) Method of automatically measuring angle of twist
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
SU1674024A1 (en) Method for measuring parameters of solar plasma
SU789758A1 (en) Magneto-optic measuring transducer
JPS61153576A (en) Measuring instrument for magnetic field
RU2158428C2 (en) Fiber-optical device to register shape of pulses of superheavy currents
SU853592A1 (en) Light flux comparator
RU1817028C (en) Method for testing polarization-optical transducers of alternating and pulse electric and magnetic values
SU757990A1 (en) Optronic current meter