JPS6199863A - Ultrasonic inspecting device - Google Patents

Ultrasonic inspecting device

Info

Publication number
JPS6199863A
JPS6199863A JP59202379A JP20237984A JPS6199863A JP S6199863 A JPS6199863 A JP S6199863A JP 59202379 A JP59202379 A JP 59202379A JP 20237984 A JP20237984 A JP 20237984A JP S6199863 A JPS6199863 A JP S6199863A
Authority
JP
Japan
Prior art keywords
reflected
sensor
defect
scanning
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59202379A
Other languages
Japanese (ja)
Inventor
Akio Iwata
岩田 明男
Akira Sakano
明 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59202379A priority Critical patent/JPS6199863A/en
Publication of JPS6199863A publication Critical patent/JPS6199863A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To acquire accurately the position and size of a defect by providing many positions where a reflected echo signal is inputted linearly in parallel, scanning a sensor along the input positions, and converting the reflected signal analog to digital and comparing it with a set value. CONSTITUTION:Many positions where the echo signal of an ultrasonic wave reflected by a material 1 to be inspected is inputted by scanning the object material 1 are provided linearly in parallel as shown by marks 8, and the sensor 8 is scanned along the input positions 8. When this sensor 2 makes a scan, a computer 7 receives the reflected echo signal at an input position 8 through an A/D converter 6 with a position signal from a controller 5, and compares it with the preset value. If there is a defect at the position indicated by a mark 9 and it is represented as a peak at three center positions, the position and size are calculated by the computer 7 and it is judged whether it is the peak of the same defect or not. Then when it is judged that three peaks are reflected echoes of the same defect, the total of the echoes is regarded ad a maximum echo and used as a base of quality judgment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製品の欠陥検査を行なうだめの超音波検査装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ultrasonic inspection apparatus for inspecting products for defects.

(従来の技術) 非破壊検査の一つの方法として、超音波を利用するもの
がある。これは、被検材(上記した製品をいう。以下同
じ)に超音波を送信し、その反射エコーの状態を判別す
ることにより、被検材の良否判定を行なうのである。
(Prior Art) One method of non-destructive testing uses ultrasonic waves. This is to determine the quality of the test material by transmitting ultrasonic waves to the test material (referring to the above-mentioned products; the same applies hereinafter) and determining the state of the reflected echo.

従来における超音波検査装置は、被検材の検査部位に、
超音波を送信し反射波を受信するセンサを走査し、その
反射波が被検材の正常な部分と欠陥部分とで異なること
を把え1反射波のレベルがちらふじめ設定されたしきい
値を越えるか否かで被検材の良否判断を行ない、あるい
は全走査範囲に対するしきい値を越えた範囲の割合で良
否判定を行なっていた。
Conventional ultrasonic inspection equipment uses a
A sensor that transmits ultrasonic waves and receives reflected waves is scanned, and by understanding that the reflected waves differ between normal parts and defective parts of the material to be inspected, the level of the reflected waves is set at a threshold. The quality of the test material is determined based on whether it exceeds a threshold value or the ratio of the range that exceeds a threshold value to the entire scanning range.

(発明が解決しようとする間譲点) 上記したような従来の良否判定方法では、欠陥の有無は
正確に判定し得ても、その程度(有害度)、すなわち、
欠陥の位置と大きさがiE確に捕捉できないために、完
全な検査を望む場合には、いま一つ改良の余地があった
。本発明はこの点を改良するものである。
(Considerations to be solved by the invention) In the conventional pass/fail determination method as described above, even if the presence or absence of a defect can be accurately determined, the extent of the defect (degree of harmfulness),
Since the location and size of defects cannot be accurately captured by iE, there is still room for improvement if complete inspection is desired. The present invention improves this point.

(問題点を解決するための手段) 本発明は上記問題点を解決するための手段として、超音
波検査装置の構成を、被検材に対して超音波を送信し、
被検材からの反射波を受信するセンサと、該センサを被
検材上の一次元または二次元平面上に一定間隔で移動さ
せる走査装置と、前記センサに超音波信号を与えると共
に反射波を受信する超音波探傷器と、該超音波探傷器の
出力信号をデジタル信号化するアナログ・デジタル変換
装置と、該アナログ・デジタル変換装置から受けた信号
を一時記憶すると共にこれを演算、処理して前記被検材
の良否およびその程度を判断するコンピュータと、を具
備するものとしたことである。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention has a configuration of an ultrasonic inspection apparatus that transmits ultrasonic waves to a material to be inspected.
A sensor that receives reflected waves from a material to be inspected; a scanning device that moves the sensor at regular intervals on a one-dimensional or two-dimensional plane on the material to be inspected; A receiving ultrasonic flaw detector, an analog-to-digital converter for converting the output signal of the ultrasonic flaw detector into a digital signal, and temporarily storing the signal received from the analog-to-digital converter and calculating and processing it. The present invention further includes a computer that determines the quality and quality of the test material.

(作用) このように構成すれば、一定間隔で得られる探傷データ
をあらかじめ設定したしきい値を越え、かつ、データの
取込み位置が隣接するか否かによシ同一の欠陥に起因す
る探傷データ群を分類することができ、また探傷データ
中のピーク値のデータ取込み位置を演算し、ピーク値の
距離により同一の欠陥に起因する探傷データ群に分類し
、欠陥毎に有害度を評価することが可能となる。
(Function) With this configuration, the flaw detection data obtained at regular intervals can exceed a preset threshold, and the flaw detection data caused by the same defect can be detected regardless of whether the data acquisition positions are adjacent to each other. It is possible to classify groups, and also calculate the data acquisition position of the peak value in the flaw detection data, classify it into flaw detection data groups caused by the same defect according to the distance of the peak value, and evaluate the degree of toxicity for each defect. becomes possible.

さらに上記欠陥有害度の評価値としては、■同一欠陥に
起因する探傷データ群中の最大値を用いる。■同一欠陥
に起因する探傷データ群をセンサの走査順序、たとえば
−次元、二次元平面上の走査において、まず−次元平面
の始点から終点までを走査し1次に二次元平面を一定間
隔走査した後、再び一次元平面の走査を繰返す。
Furthermore, as the evaluation value of the degree of harmfulness of the defect, (1) the maximum value in a group of flaw detection data caused by the same defect is used. ■The scanning order of the sensor for a group of flaw detection data caused by the same defect, for example, when scanning on a -dimensional or two-dimensional plane, first the -dimensional plane was scanned from the start point to the end point, and then the two-dimensional plane was scanned at regular intervals. After that, the one-dimensional plane is scanned again.

そして探傷データを取込む場合は、−次元平面の走査線
ごとにピーク値りを演算し、各走査線ごとのピーク値(
hl+h21h3)の総和を用いる(第2図参照)。以
上■、■のいずれかの方法によシ、欠陥ごとの評価値を
演算し、その結果によシ、被検材の良否判定を行なうこ
とができる。
When importing flaw detection data, calculate the peak value for each scanning line on the -dimensional plane, and calculate the peak value for each scanning line (
hl+h21h3) (see Figure 2). The evaluation value for each defect is calculated by either method (1) or (2) above, and the quality of the test material can be determined based on the results.

(実施例) 次に1本発明の一実施例を第1図について説明すると、
1は被検材であシ%2は被検材1の上方に位置するセン
サである。センサ2は走査装置3により被検材lの上方
一定高さを保持しつつ1図中にa、bで示すように一次
元および二次元の平面のいずれか一方を、あるいは両方
を、走査するよりになっている。そして走査中に被検材
1に向けて超音波を送信し、反射波を受信するようにな
っている。超音波の送信と反射波の受信は超音波探傷器
4によって行なわれ、走査装置の制御は制御装置5によ
って行なわれるように接続される。そして超音波探傷器
4と制御装置5の出力側はアナログ[相]′デジタル変
換装置61r介してコンピュータ7に接続されている。
(Example) Next, an example of the present invention will be explained with reference to FIG.
1 is the material to be tested, and %2 is a sensor located above the material 1 to be tested. The sensor 2 uses a scanning device 3 to scan one or both of the one-dimensional and two-dimensional planes as shown by a and b in Fig. 1 while maintaining a constant height above the specimen l. It's getting better. During scanning, ultrasonic waves are transmitted toward the material 1 to be inspected, and reflected waves are received. Transmission of ultrasonic waves and reception of reflected waves are performed by an ultrasonic flaw detector 4, and the scanning device is controlled by a control device 5. The output sides of the ultrasonic flaw detector 4 and the control device 5 are connected to the computer 7 via an analog [phase]' digital converter 61r.

このような構成の本発明に係る超音波検査装置は次のよ
うに使用はれる。被検材lに、走査によシ被検材1から
反射されるエコー信号を取込む位置を符号8で示すよう
に直線状に、かつ平行に多数設けておき、センサ2を、
この取込位置8に沿って走査するようにする。センサ2
がこのように走査すると、コンピュータ7は制御装置5
からの位置信号によシ取込位置8における反射エコー信
号を、アナログ・デジタル変換装置6を介して受け、こ
れをあらかじめ設定されたしきい値と比較することにな
る。
The ultrasonic inspection apparatus according to the present invention having such a configuration is used as follows. A large number of positions for capturing echo signals reflected from the test material 1 during scanning are provided in a straight line and in parallel on the test material 1 as shown by reference numeral 8, and the sensor 2 is
Scanning is performed along this capture position 8. sensor 2
When the computer 7 scans in this way, the control device 5
A reflected echo signal at the capture position 8 is received via the analog-to-digital converter 6 and compared with a preset threshold value.

第2図はこのようにして取ったデータを示すものである
。この図に示すように、取込位置8を5本の巌に沿って
各複数個設定し、その強度Hを各−で示すと%第1図に
符号9で示す位置に欠陥があったとした場合、これが中
央3個所のピークhl*hll!sh3として表われる
ことになる。
FIG. 2 shows the data collected in this way. As shown in this figure, a plurality of intake positions 8 are set along each of the five rocks, and the strength H is indicated by a - mark.% It is assumed that there was a defect at the position indicated by the symbol 9 in Figure 1. In this case, this is the peak of the three central locations hl*hll! It will appear as sh3.

この位置と大きさhl、h2.h3はコンピュータ7に
よって演算され、同一欠陥によるピークか否かの判断が
される。第2図の場合、3個のピークは同一欠陥による
反射エコーと判断され、jl大エコーの総和hl+h2
+h3が欠陥の反射エコーとして良否判定の基礎とされ
る。
This position and size hl, h2. h3 is calculated by the computer 7, and it is determined whether the peak is due to the same defect or not. In the case of Fig. 2, the three peaks are judged to be echoes reflected by the same defect, and the sum of jl large echoes hl + h2
+h3 is used as the basis for determining pass/fail as a reflected echo of a defect.

以上説明した実施例は3個所のエコーの最大値kleh
!!sh3のみを取込んで良否判定の基礎としたが、反
射エコーの積分値81.@2,113を反射エコー面積
として良否判定してもよい。さらには同一欠陥による反
射エコーの酸大値のみを取込み(第2図の場合h2)こ
れに基いて良否判断を行なってもよい。いずれにしても
コンピュータ7が、あらかじめ設定されたしきい値との
比較により、被検材1の良否判断を行なうことになる。
In the embodiment described above, the maximum value of echoes at three locations is kleh.
! ! Although only sh3 was taken in as the basis for pass/fail judgment, the integral value of the reflected echo was 81. Pass/fail determination may be made using @2,113 as the reflected echo area. Furthermore, only the acid maximum value of the reflected echo due to the same defect may be taken (h2 in the case of FIG. 2), and the pass/fail judgment may be made based on this. In any case, the computer 7 will determine the quality of the test material 1 by comparing it with a preset threshold value.

(発明の効果) 本発明は以上説明したように構成したものであるから、
しきい値の設定如何によシ、小さな欠陥から大きな欠陥
まで、直線性高く測定できることになる。第3図は本発
明による探傷結果■を従来装耀による結果■と比較した
ところを示している。この図に示すように、従来のもの
では反射エコー高さが飽和してしまうのに対し、本発明
のものでは1反射エコーの同一欠陥に起因するすべての
反射エコーをもとにエコー高さを求めるので、このよう
なことはない。そして単に欠陥の有無のみでなく、その
有害度が判定できる特徴がある。
(Effect of the invention) Since the present invention is configured as explained above,
Regardless of the threshold setting, it is possible to measure defects from small to large defects with high linearity. FIG. 3 shows a comparison between the flaw detection results (2) according to the present invention and the results (2) using the conventional equipment. As shown in this figure, in the conventional method, the reflected echo height is saturated, whereas in the present invention, the echo height is calculated based on all the reflected echoes caused by the same defect in one reflected echo. Because I ask, this will never happen. Moreover, it has the feature that it is possible to judge not only the presence or absence of a defect, but also its degree of harmfulness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は第1図の
ものによシ得た反射エコーの大きさを示したグラフ、第
3図は本発明のものと従来の装置によるものとの反射エ
コーの程度を示すグラフである。 1・・・被検材     2・・・センサ3・・・走査
装置    4・・・超音波探傷器5・・・制御装置 
      6・・・アナログ・デジタル変換装置7・
・・コンピュータ (ほか1名)
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a graph showing the magnitude of reflected echo obtained from the one in Fig. 1, and Fig. 3 is a graph showing the apparatus of the present invention and the conventional device. 2 is a graph showing the degree of reflected echoes compared to 1... Material to be inspected 2... Sensor 3... Scanning device 4... Ultrasonic flaw detector 5... Control device
6...Analog-to-digital conversion device 7.
...Computer (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)被検材に対して超音波を送信し、被検材からの反
射波を受信するセンサと、該センサを被検材上の一次元
または二次元平面上に一定間隔で移動させる走査装置と
、前記センサに超音波信号を与えると共に反射波を受信
する超音波探傷器と、該超音波探傷器の出力信号をデジ
タル信号化するアナログ・デジタル変換装置と、該アナ
ログ・デジタル変換装置から受けた信号を一時記憶する
と共にこれを演算、処理して前記被検材の良否およびそ
の程度を判断するコンピュータと、を具備することを特
徴とする超音波検査装置。
(1) A sensor that transmits ultrasonic waves to the material to be inspected and receives reflected waves from the material, and scanning that moves the sensor at regular intervals on a one-dimensional or two-dimensional plane on the material to be inspected. an ultrasonic flaw detector that applies an ultrasonic signal to the sensor and receives reflected waves; an analog-to-digital converter that converts an output signal of the ultrasonic flaw detector into a digital signal; An ultrasonic inspection apparatus characterized by comprising a computer that temporarily stores received signals and calculates and processes the received signals to determine the quality and quality of the test material.
JP59202379A 1984-09-27 1984-09-27 Ultrasonic inspecting device Pending JPS6199863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202379A JPS6199863A (en) 1984-09-27 1984-09-27 Ultrasonic inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202379A JPS6199863A (en) 1984-09-27 1984-09-27 Ultrasonic inspecting device

Publications (1)

Publication Number Publication Date
JPS6199863A true JPS6199863A (en) 1986-05-17

Family

ID=16456518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202379A Pending JPS6199863A (en) 1984-09-27 1984-09-27 Ultrasonic inspecting device

Country Status (1)

Country Link
JP (1) JPS6199863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198249A (en) * 2008-02-20 2009-09-03 Toshiba Corp Ultrasonic inspection data evaluation device and ultrasonic inspection data evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108752A (en) * 1980-12-26 1982-07-06 Toshiba Corp Ultrasonic flaw detector
JPS58169054A (en) * 1982-03-31 1983-10-05 Iwatsu Electric Co Ltd Ultrasonic flaw detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108752A (en) * 1980-12-26 1982-07-06 Toshiba Corp Ultrasonic flaw detector
JPS58169054A (en) * 1982-03-31 1983-10-05 Iwatsu Electric Co Ltd Ultrasonic flaw detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198249A (en) * 2008-02-20 2009-09-03 Toshiba Corp Ultrasonic inspection data evaluation device and ultrasonic inspection data evaluation method

Similar Documents

Publication Publication Date Title
US11022584B2 (en) Method and apparatus for scanning a test object and correcting for gain
US20210018473A1 (en) Ultrasonic testing device, method, program, and ultrasonic testing system
JP2531733B2 (en) Ultrasonic measuring method and ultrasonic measuring apparatus
JP2007500340A (en) Method and circuit apparatus for ultrasonic nondestructive testing of an object
KR860001348A (en) Ultrasonic Scanning Methods and Devices
JP2016507060A (en) Method and apparatus for improving analysis by SAFT method during irregular measurement
CN105954359A (en) Distributed ultrasonic nondestructive testing device and method for internal defects of complex-shape part
JPH06500170A (en) Eddy current imaging system
US5390544A (en) Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions
JPS6317184B2 (en)
US20180217099A1 (en) Virtual channels for eddy current array probes
JPS6199863A (en) Ultrasonic inspecting device
CN114397365B (en) Method for detecting defects of steel concrete structure by ultrasonic waves
JPS61184458A (en) Measuring device for depth of crack of surface
JP4738243B2 (en) Ultrasonic flaw detection system
CA2850839C (en) Method and apparatus for scanning a test object
JPS61138160A (en) Ultrasonic flaw detector
JP2002139478A (en) Creep damage detection method and device of structural material
JPH01158348A (en) Ultrasonic flaw detection apparatus
JPS6229023B2 (en)
KR20040099762A (en) System and its method for processing digital ultrasonic image
JPS63295960A (en) Ultrasonic measurement system
JPH03125960A (en) B-scope image processing apparatus in ultrasonic measuring apparatus
RU2141655C1 (en) Multifunctional acoustic-optical system to diagnose structures and diagnostic method based on its employment
CN117783297A (en) Method for detecting microcracks on metal surface by utilizing ultrasonic detector