JPS6199838A - Instrument for measuring inside of tank - Google Patents

Instrument for measuring inside of tank

Info

Publication number
JPS6199838A
JPS6199838A JP22184284A JP22184284A JPS6199838A JP S6199838 A JPS6199838 A JP S6199838A JP 22184284 A JP22184284 A JP 22184284A JP 22184284 A JP22184284 A JP 22184284A JP S6199838 A JPS6199838 A JP S6199838A
Authority
JP
Japan
Prior art keywords
tank
density
probe
liquid
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22184284A
Other languages
Japanese (ja)
Other versions
JPH0450965B2 (en
Inventor
Shinichi Tanaka
伸一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP22184284A priority Critical patent/JPS6199838A/en
Publication of JPS6199838A publication Critical patent/JPS6199838A/en
Publication of JPH0450965B2 publication Critical patent/JPH0450965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enable the safe measurement with high accuracy of the density variation in vertical direction and liquid level by moving vertically the measuring probe for liquid density from the bottom face inside a tank upto around the ceiling and by detecting the liquid level from the maximum position of the density variation factor. CONSTITUTION:A density meter incorporating probe 4 is provided inside a tank 1 containing the LNG of L-L liquid level. The probe 4 is suspended via the guide cable 3 penetrating the ceiling face of the tank 1 and moved with being connected to the signal cable 5 being rotatively driven with the cable 3 as a guide on the vertical line of the anchor 2 fixed on the bottom face of the tank 1. The cable 5 is wound via a sheave 8, the terminal is connected to an arithmetic unit 13 via a slip ring 15 and the position of the probe 4 is calculated as the distance from the bottom face with calculating the output signal of the rotary detector 12 of the sheave 8. Due to the resonance frequency being largely varied in the cases of the probe being in the liquid of the inside of the tank 1 and out of the liquid, the liquid level inside the tank is detected from the maximum position of the density variation factors.

Description

【発明の詳細な説明】 挟権防」 本発明は、タンク内の物理量を測定する測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for measuring physical quantities inside a tank.

丈米投権 、  液体天然ガス(以下LNGという)のような極低
沸点液体がタンクに貯蔵されたとき、LNG着地による
組成の相違、熱授受等によって相を形成することがある
が、このような多成分素においては、上層密度が下層密
度よりも大きい場合に層反転するロールオーバ現象がお
こる。このロールオーバ現象がおことる相混合が生じ、
そのエネルギー消費によって急激な蒸気ガスが発生し、
大きい災禍をもたらすという危険があり、そのため、ロ
ールオーバ現象の未然の防止が必要である。このために
、タンク貯蔵液の密度又は密度と関連する温度等の物理
量を定期的に測定し、測定量を処理検討して管′理する
必要がある。測定の具体的な方法は、信号ケーブルの一
端に接続された物理量を検出するプローブを、タンク底
部の定点に降ろされたアンカーに固着している案内ケー
ブルを案内としてタンク底部から天井に向って昇降する
ことによって求めている。その際のプローブの現在位置
は、タンク底部を基準として信号ケーブルの捲き上げ長
さによって求めている。
When an extremely low boiling point liquid such as liquid natural gas (hereinafter referred to as LNG) is stored in a tank, phases may be formed due to differences in composition due to the LNG landing, heat exchange, etc. In a multi-component element, when the upper layer density is higher than the lower layer density, a rollover phenomenon occurs in which the layers are inverted. This rollover phenomenon causes phase mixing,
The energy consumption generates a rapid amount of steam gas,
There is a risk of causing a major disaster, and therefore it is necessary to prevent the rollover phenomenon. For this purpose, it is necessary to periodically measure physical quantities such as the density of the liquid stored in the tank or the temperature related to the density, and to manage the measured quantities by considering their processing. The specific measurement method is to raise and lower a probe connected to one end of the signal cable that detects physical quantities from the bottom of the tank toward the ceiling using a guide cable fixed to an anchor lowered at a fixed point at the bottom of the tank as a guide. I am asking by doing. The current position of the probe at that time is determined by the length of the signal cable rolled up with the bottom of the tank as a reference.

而して、従来は、プローブによる密度測定において液相
から気相に移行する場合に生ずる密度の急激な変化と液
又は気相分がプローブに混入することによって生ずる密
度測定精度の低下を防ぐため、プローブが液面上に出な
いように別に配設された液面計により測定された液位と
プローブの位置とを比較し、プローブの昇降制御を行っ
ていた。
Therefore, in the past, in density measurement using a probe, in order to prevent a sudden change in density that occurs when transitioning from a liquid phase to a gas phase and a decrease in density measurement accuracy that occurs due to liquid or gas phase components entering the probe, In order to prevent the probe from protruding above the liquid surface, the probe position was compared with the liquid level measured by a separately installed liquid level gauge to control the elevation and descent of the probe.

■−−敗 本発明は、上述のごとき従来技術におけるプローブを液
相から気相昇降させる場合、昇降速度を低速にすると、
密度測定精度を低下させることがなく相変化に基づく密
度変化の極大値の位置から液面を算出することが可能と
なることを利用して、液面計を省略することを目的とし
てなされたものである。
■--Failure In the present invention, when the probe in the prior art as described above is raised and lowered from the liquid phase to the gas phase, when the raising and lowering speed is made low,
This was done with the aim of eliminating the need for a liquid level gauge by taking advantage of the fact that it is possible to calculate the liquid level from the position of the maximum value of density change based on phase change without reducing density measurement accuracy. It is.

碧−一一戒2 第1図は、本発明の一実施例を説明するための要部構成
図で、液位L−LのLNGを収納したタンク1と、密度
計を内蔵したプローブ4を有する。
Aoi - Ichiichikai 2 Fig. 1 is a diagram showing the main parts of an embodiment of the present invention, showing a tank 1 containing LNG at a liquid level LL and a probe 4 containing a density meter. have

プローブ4はタンク1の天井面を貫通して案内ケーブル
3を介して垂下されてタンク1の底面に固定されたアン
カー2の鉛直線上を上記案内ケーブル3を案内として、
図示しない駆動源により回転駆動される信号ケーブル5
と接続されて移動する。
The probe 4 penetrates the ceiling of the tank 1 and is suspended via the guide cable 3, and is guided by the guide cable 3 on the vertical line of the anchor 2 fixed to the bottom of the tank 1.
Signal cable 5 rotationally driven by a drive source (not shown)
Connected and moved.

尚、信号ケーブル5はシール機構6によりタンク内のガ
スとシールされ、弁7.シーブ8を介して捲取られるも
ので、端末はスリップリング15を介して演算装置13
に接続されており、捲取長さ即ちプローブの位置はシー
ブ8の回転を検出する検出器12の出力信号を演算して
タンク1の底面からの距離として算出される。
Note that the signal cable 5 is sealed with the gas in the tank by a sealing mechanism 6, and a valve 7. It is wound up via a sheave 8, and the terminal is connected to the arithmetic unit 13 via a slip ring 15.
The winding length, that is, the position of the probe is calculated as the distance from the bottom of the tank 1 by calculating the output signal of the detector 12 that detects the rotation of the sheave 8.

案内ケーブル3も信号ケーブル5と同様にシール機構6
.弁7.シーブ9を介して図示しない駆動源により回転
駆動される回転ドラム11に各々1端を固定されて昇降
される。
The guide cable 3 also has a sealing mechanism 6 like the signal cable 5.
.. Valve 7. One end of each is fixed to a rotating drum 11 which is rotatably driven by a drive source (not shown) via a sheave 9, and is raised and lowered.

第2図は、上記プローブ4内において使用する密度検出
器の一例を示す図で、(イ)は平面図、(ロ)は側面図
で、図中、40は非磁性材円筒で該非磁性材円筒内には
振動管41が内挿されている。
FIG. 2 is a diagram showing an example of the density detector used in the probe 4, in which (a) is a plan view and (b) is a side view. In the figure, 40 is a cylinder made of a non-magnetic material. A vibrating tube 41 is inserted inside the cylinder.

該振動管41は磁性材の薄肉円筒42で、該円筒42の
端面ば流体が流通できるような孔43を貫通したフラン
ジ状をなしている。44は駆動コイル、45は受信コイ
ルで、これらは円筒直径上に対向して配設されている。
The vibrating tube 41 is a thin cylinder 42 made of a magnetic material, and the end surface of the cylinder 42 has a flange shape through which a hole 43 through which fluid can flow is passed. 44 is a driving coil, and 45 is a receiving coil, which are arranged to face each other on the diameter of the cylinder.

これらのコイルは増幅器46に接続され、受信コイル4
5で検出した微小信号を増幅し、駆動コイル44で振動
管を駆動するよう構成されており、各コイルと増幅器と
で閉回路を構成している。振動管は第2図(ハ)に示す
ように駆動軸上に長短径を有する楕円振動をするが、こ
の振動周波数は振動管の剛性と振動管をとり巻く流体の
密度とにより決められ、O ρ=舶((−)”−1)     ・・・・・・(1)
ただし、 ρ :測定される流体の密度 ρ0:定数 fo=真空中での振動周波数 f :測定される流体中での振動周波数により密度が求
められる。即ち、(1)式に示す通り密度の逆関数の振
動周波数が得られる。この振動数は、密度演算器47に
よって密度に変換され、記録計48にて記録される。
These coils are connected to an amplifier 46 and receive coil 4
The vibration tube is configured to amplify the minute signal detected in step 5 and drive the vibrating tube with a drive coil 44, and each coil and an amplifier constitute a closed circuit. As shown in Figure 2 (C), the vibrating tube vibrates in an ellipse having long and short axes on the drive shaft, and the frequency of this vibration is determined by the rigidity of the vibrating tube and the density of the fluid surrounding the vibrating tube. ρ=ship ((-)”-1) ・・・・・・(1)
However, ρ: Density of the fluid to be measured ρ0: Constant fo = vibration frequency in vacuum f: Density is determined by the vibration frequency in the fluid to be measured. That is, as shown in equation (1), a vibration frequency that is an inverse function of density is obtained. This frequency is converted into density by a density calculator 47 and recorded by a recorder 48.

また、上述のように、共振周波数が密度により変化する
検出器においては、プローブがタンク内液体中にある時
と、液体から出た時では、第3図に示すように、その共
振周波数が大きく異なるので、この共振周波数の変化、
換言すれば、密度変化率の最も大きい位置から、タンク
内液面を検出することができる。
In addition, as mentioned above, in a detector whose resonant frequency changes depending on the density, the resonant frequency increases when the probe is in the liquid in the tank and when it comes out of the liquid, as shown in Figure 3. Since this resonant frequency changes,
In other words, the liquid level in the tank can be detected from the position where the density change rate is greatest.

なお、以上には振動型の密度計を使用する場合について
説明したが、振動型の密度計に限定されるものでないこ
とは言うまでもない。
Although the case where a vibrating density meter is used has been described above, it goes without saying that the present invention is not limited to a vibrating density meter.

紘−一釆 以上の説明から明らかなように、本発明によると、タン
ク内の物理量、特に、タンク内液体の垂直方向における
密度変化及び液面を計測精度よく、かつ、安全に計測す
ることができる。
As is clear from the above explanation, according to the present invention, it is possible to accurately and safely measure the physical quantities inside a tank, especially the density change in the vertical direction and the liquid level of the liquid inside the tank. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例を説明するための要部側面
構成図、第2図は、本発明の実施に使用する密度検出器
の一例を示す図で、(イ)は平断面図、(ロ)は側断面
図、(ハ)は振動状態を示す図、第3図は、液位と密度
との関係を示す図である。 1・・・タンク、2・・・アンカ、3・・・案内ケーブ
ル、4・・・プローブ、6・・・シール機構、7・・・
弁、8,9・・・シーブ、10.11・・・ドラム。 特許出願人  オーバル機器工業株式会社第1図 手続補正書(岐) 昭和59年11月20日 特許庁長官   志 賀  学  殿 2、発明の名称      ナイ  ケイソクソウチタ
ンク内の計測装置 3、補正をする者 事件との関係  特許出願人 シンジュククカミオチアイ 住所  東京都新宿区上落合3丁目10番8号キキコウ
ギョウ 氏名(名称)オーバル機器工業株式会社力シマ   シ
ュン 代表者 加  島   淳 4、代 理 人 住 所     〒231 横浜市中区不老町1−2−
7シヤトレーイン横浜807号
Fig. 1 is a side view of the essential parts for explaining an embodiment of the present invention, Fig. 2 is a diagram showing an example of a density detector used in carrying out the present invention, and (a) is a plan cross-sectional view. In the figure, (B) is a side sectional view, (C) is a diagram showing a vibration state, and FIG. 3 is a diagram showing the relationship between liquid level and density. DESCRIPTION OF SYMBOLS 1... Tank, 2... Anchor, 3... Guide cable, 4... Probe, 6... Seal mechanism, 7...
Valve, 8, 9... Sheave, 10.11... Drum. Patent Applicant Oval Equipment Industry Co., Ltd. Figure 1 Procedural Amendment (Ki) November 20, 1980 Commissioner of the Patent Office Manabu Shiga 2, Title of Invention: Measuring device 3 in the diaphragm hatch tank, amendment Patent applicant Shinjuku Kukamiochiai Address: 3-10-8 Kamiochiai, Shinjuku-ku, Tokyo, Japan Name: Oval Kiki Kogyo Co., Ltd. Representative: Jun Kashima 4, Representative: Address: 3-10-8 Kamiochiai, Shinjuku-ku, Tokyo 1-2- Furocho, Naka-ku, Yokohama 231
7 Seat Train Yokohama 807

Claims (2)

【特許請求の範囲】[Claims] (1)、タンク内に貯蔵される液体の密度を計測するプ
ローブをタンク外に配設された昇降装置によつてタンク
内底面および天井附近迄昇降し、該タンク内液体の鉛直
上の密度変化を計測するとともに密度の変化率の極大位
置から液面を検知することを特徴とするタンク内の計測
装置。
(1) A probe that measures the density of the liquid stored in the tank is raised and lowered to the bottom and ceiling of the tank by a lifting device installed outside the tank, and the density of the liquid in the tank changes vertically. A measuring device in a tank characterized by measuring the liquid level and detecting the liquid level from the maximum position of the rate of change in density.
(2)、上記密度の計測は共振周波数が密度の関数とし
て変化する弾性体を用いた密度計を用いることを特徴と
する特許請求の範囲第(1)項に記載のタンク内の計測
装置。
(2) The in-tank measurement device according to claim (1), wherein the density measurement uses a densitometer using an elastic body whose resonance frequency changes as a function of density.
JP22184284A 1984-10-22 1984-10-22 Instrument for measuring inside of tank Granted JPS6199838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22184284A JPS6199838A (en) 1984-10-22 1984-10-22 Instrument for measuring inside of tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22184284A JPS6199838A (en) 1984-10-22 1984-10-22 Instrument for measuring inside of tank

Publications (2)

Publication Number Publication Date
JPS6199838A true JPS6199838A (en) 1986-05-17
JPH0450965B2 JPH0450965B2 (en) 1992-08-17

Family

ID=16773043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22184284A Granted JPS6199838A (en) 1984-10-22 1984-10-22 Instrument for measuring inside of tank

Country Status (1)

Country Link
JP (1) JPS6199838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047323U (en) * 1990-05-07 1992-01-23
WO1994007122A1 (en) * 1992-09-11 1994-03-31 Whessoe Plc Density measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446364U (en) * 1977-09-06 1979-03-30
JPS55118108U (en) * 1979-02-16 1980-08-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446364U (en) * 1977-09-06 1979-03-30
JPS55118108U (en) * 1979-02-16 1980-08-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047323U (en) * 1990-05-07 1992-01-23
WO1994007122A1 (en) * 1992-09-11 1994-03-31 Whessoe Plc Density measurement

Also Published As

Publication number Publication date
JPH0450965B2 (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US4744240A (en) Method for determining the bubble point or the largest pore of membranes or of filter materials
US4741200A (en) Method and apparatus for measuring viscosity in a liquid utilizing a piezoelectric sensor
JPS62500646A (en) Slag detection method and device
JP2002365201A (en) Method and apparatus for automatic permeability test
JPS6199838A (en) Instrument for measuring inside of tank
US20170350865A1 (en) Flow Measuring Device
JPS61129533A (en) Measuring instrument for mass of liquid within tank
US4320340A (en) Apparatus for measuring magnetic flux density resulting from galvanic current flow in subsurface casing using a plurality of flux gates
US4388827A (en) Method for measuring the depth of a liquid body
US3738164A (en) Measurements pertaining to ocean currents by geomagnetic induction
US4389898A (en) Electromagnetic velocity transducer
JPH10111363A (en) Metal detector
JP2000121611A (en) Corrosion damage detecting device
RU2557680C2 (en) Method for determining parameters of liquid in tank and device for its implementation
US3572094A (en) Gas density measuring apparatus
EP0104153A1 (en) Apparatus for measuring the swelling or shrinkage of a specimen in a fluid
JP2003090749A (en) Electromagnetic flowmeter
US5577411A (en) Molten metal sensing in a closed opaque vessel
SU1571510A1 (en) Device for measuring parameters of flow
CN103674164B (en) Weighing type detection object, device and method for detecting liquid level position
Osborn et al. Oceanic shear measurements using the airfoil probe
SU725053A1 (en) Device for measuring magnetization of fluidic media
RU2520166C1 (en) Ultrasonic method of monitoring concentration of magnetic suspensions
SU864943A1 (en) Fluid-tightness testing apparatus
RU2316753C1 (en) Device for automatic measurements of density of fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term