JPS619960A - Melting and casting device for metal - Google Patents

Melting and casting device for metal

Info

Publication number
JPS619960A
JPS619960A JP13024584A JP13024584A JPS619960A JP S619960 A JPS619960 A JP S619960A JP 13024584 A JP13024584 A JP 13024584A JP 13024584 A JP13024584 A JP 13024584A JP S619960 A JPS619960 A JP S619960A
Authority
JP
Japan
Prior art keywords
raw material
cylindrical body
melting
passage
melting chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13024584A
Other languages
Japanese (ja)
Other versions
JPH0722818B2 (en
Inventor
Susumu Hiratake
平竹 進
Yoichi Nakanishi
洋一 中西
Shinobu Inuzuka
忍 犬塚
Takao Kato
加藤 岳雄
Hiroyuki Yamada
博之 山田
Yasuo Watanabe
渡辺 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59130245A priority Critical patent/JPH0722818B2/en
Priority to GB08430608A priority patent/GB2151761B/en
Priority to US06/680,869 priority patent/US4610296A/en
Priority to FR848419013A priority patent/FR2556253B1/en
Priority to DE3445534A priority patent/DE3445534C2/en
Publication of JPS619960A publication Critical patent/JPS619960A/en
Publication of JPH0722818B2 publication Critical patent/JPH0722818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Screw Conveyors (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a titled device which yields an ingot having good quality by feeding the raw material fed dividedly from a measuring and feeding means into a horizontally provided rotary cylindrical body and moving the material along the spiral raw material passage on the inside peripheral surface thereof thereby supplying the material into a melting chamber. CONSTITUTION:The conveying means of a melting and casting device for a metal which accepts the raw material delivered by each specified quantity from the measuring and feeding means into the conveying means, feeds the same into the next melting chamber and melts the same to form a molten metal for casting is constituted of a drum feeder 15 provided rotatably with a cylindrical body 44 in a hollow casing 41. Spiral block walls 52 are disposed on the inside peripheral surface of the above-mentioned body 44 to form the spiral raw material passages 53 on the inside surface of the body 44. The raw material fed into the casing 41 through a raw material charging port 42 at one end thereof is accepted by each one section into the body 44 through a raw material accepting port 50 and is moved in the passages 53 according to the rotation of said body without being mixed with the raw material in the other section, by which the raw material is delivered through the raw material delivery port 51 at the opened other end of the body 44 in the uniformly mixed state into a connecting port 43 to the chute of the melting chamber.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする。[Detailed description of the invention] The present invention aims to solve the following problems.

(産業上の利用分野) この発明は種々の金属、種々の
形状の原料、例えば粒状のスポンジチタン、粒状の合金
母材あるいは加工過程で層化した裁断片等を原料として
連続的に溶解させ次いで連続的に凝固させて、チタン或
いはチタン合金等の種々の鋳塊を製造する様にした金属
溶解鋳造装置に関するものである。
(Industrial Application Field) This invention uses raw materials of various metals and shapes, such as granular titanium sponge, granular alloy base materials, or cut pieces layered in the processing process, which are continuously melted as raw materials, and then The present invention relates to a metal melting and casting apparatus that continuously solidifies and produces various types of ingots such as titanium or titanium alloys.

(従来の技術) 従来の金属溶解鋳造装置にらってホッ
パーから切出される原料を計量して多数に小分けし、そ
の小分けしたものを第27図に示嘔れる如くベルトコン
ベアω上に次々と乗せ、そのコンベアωを矢印方向へ移
動させて上記多数の小分は姑れた原料61.61・・・
をそのまま連続して溶解室の溶解ルツボに送p込む様に
したものは、ホッパーから切出された始めの方の小分け
の各原料と後の方の小分けの各原料とで原料粒の寸法や
合金成分の割合に偏シがでたり、またベルトコンベアが
移動していく過程での振動等によって小分は嘔れた各原
料61.61・・・が相互に移動し、ある部分では山が
大きくなシ又ある部分では山が小嘔くなったりする欠点
がある。この様になったものを連続的に溶解室に送シ込
む場合、始めの方で送り込まれる原料と後の友で送シ込
まれる原料の内容が変ったシ、第り図に2点鎖線で示さ
れる様に時間の経過に伴って溶解室に送り込まれる原料
の量が大小ランダムに変動する問題点がある。この様に
大きく変動すると溶解室でのそれら原料の溶解に斑が生
じ、その結果溶解逼れた原料を固化して得られる鋳塊に
粗密が生ずる欠点があった。又合金の鋳塊を製造しよう
とする場合においては、上記の様に夫々区分された原料
相互がコンベア上で混じり合うと、場所場所において原
料の配合割合に斑が生じてしまい、その結果それを溶解
凝固して得られる鋳塊においては成分の偏析が生じてし
まう欠点もあった。
(Prior art) Raw materials cut out from a hopper using a conventional metal melting and casting device are weighed and divided into many pieces, and the divided pieces are successively conveyed onto a belt conveyor ω as shown in Fig. 27. The conveyor ω is moved in the direction of the arrow, and the above-mentioned large number of small portions are the waste raw materials 61.61...
In the case where the raw materials are continuously fed as they are to the melting crucible in the melting chamber, the size of the raw material particles and Due to imbalances in the ratio of alloy components, and due to vibrations during the movement of the belt conveyor, the raw materials 61, 61..., which have been broken down into smaller portions, move with respect to each other, and in some areas there are piles. There is a drawback that the mountain may become small in some areas due to large wrinkles. When such a material is continuously fed into the melting chamber, the content of the raw material fed at the beginning and the content of the raw material fed later may change, as indicated by the two-dot chain line in the diagram. As shown, there is a problem in that the amount of raw material fed into the melting chamber fluctuates randomly over time. Such a large fluctuation causes irregularities in the melting of the raw materials in the melting chamber, which has the disadvantage that the ingot obtained by solidifying the melted raw materials becomes coarse and dense. In addition, when trying to manufacture alloy ingots, if the raw materials separated as described above are mixed with each other on the conveyor, unevenness will occur in the mixing ratio of the raw materials at different places, and as a result, it will be difficult to The ingot obtained by melting and solidifying also had the disadvantage of segregation of components.

(発明が解決しようとする問題点) この発明は上記従
来の問題点を除き、小分は嘔れた原料をそのまま相互に
入り混じらせることなく溶解室に送り込むことができて
、溶解室において良質の溶湯を作ることができ、その結
果粗密が少なく又成分の偏析も少ない良質の鋳塊を得る
ことができる様にした金属溶解鋳造装置を提供しようと
するものである。
(Problems to be Solved by the Invention) This invention eliminates the above-mentioned conventional problems, and allows small portions of raw materials to be fed into the melting chamber as they are without mixing with each other. An object of the present invention is to provide a metal melting and casting apparatus that can produce a molten metal of 100% and, as a result, obtain a high-quality ingot with less density and segregation of ingredients.

本願発明の構成は次の通シである。The configuration of the present invention is as follows.

(問題点を解決する為の手段) 本願発明は前記請求の
範囲記載の通りの手段を講じたものであってその作用は
次の通シでるる。
(Means for Solving the Problems) The present invention takes the measures as described in the claims above, and its effects are as follows.

(作用) 原料切出手段から切出された原料は筒状体の
中にその原料受入口から入る。筒状体の中に入った原料
は筒状体の回転に伴ない、筒状体の周壁内面に形成場れ
た螺旋状の原料通路に沿って原料送出口へ向は移動し、
その原料送出口から送出きれる。
(Operation) The raw material cut out from the raw material cutting means enters the cylindrical body through its raw material receiving port. As the cylindrical body rotates, the raw material that has entered the cylindrical body moves toward the raw material delivery port along a spiral raw material passage formed on the inner surface of the peripheral wall of the cylindrical body.
The material can be sent out from the raw material delivery port.

(実施例) 以下本願の実施例を示す図面について説明
する。第1図において、溶解鋳造装置は第1図に示され
るように、原料供給設備Aと、1ラズマ溶解装置Bと、
鋳造装置Cとを含む。先ず原料供給設備Aにおいて、バ
ケットコンベアUは18個のバケツ)12を有しておシ
、図示外の秤量装置により秤#、された原料をパケット
νに受取った後それを上方のホッパー13に向けて搬送
する。上記秤量装置は原料の粒度と種類についてそれぞ
れ別々に設けた貯蔵ホッパーと電磁フィーダの組合せか
ら成り、例えばチタンおよび2種類の合金母材を、それ
ぞれの貯蔵ホッパーよりそれぞれの電磁フィーダで切出
し、それぞれのロードセルにて所足の配合率になるよう
1回の合計が20にりの小単位で秤量する。秤量を終っ
た原料は、3銘柄か混合してベルトコンベア上の1箇所
に切出され、フロア面を搬送されて上記バケットコンベ
アUにおける多数のパケットνのうちの1個に導かれる
(Example) Below, drawings showing examples of the present application will be described. In FIG. 1, the melting and casting apparatus includes a raw material supply facility A, a plasma melting device B, and
and a casting device C. First, in the raw material supply equipment A, the bucket conveyor U has 18 buckets) 12, receives raw materials weighed by a weighing device not shown in packets ν, and then transfers them to the upper hopper 13. Transport towards. The above-mentioned weighing device consists of a combination of storage hoppers and electromagnetic feeders that are provided separately for the particle size and type of raw materials. For example, titanium and two types of alloy base materials are cut out from each storage hopper with each electromagnetic feeder, and each Weigh with a load cell in small units of 20 pieces at a time to obtain the desired blending ratio. The weighed raw materials are mixed in three brands and cut out at one location on the belt conveyor, conveyed on the floor and guided to one of the many packets ν on the bucket conveyor U.

パケットの1個に20kfが結った後、再度前述の秤量
を行って次の20に9をバケットコンベア11の前記パ
ケットの次のパケットに導ひく。以下これを繰返して1
3個のパケットのそれぞれに20に9づつ収納させる。
After 20 kf is tied to one of the packets, the above-mentioned weighing is performed again, and the next 20 and 9 are guided to the next packet of the packet on the bucket conveyor 11. Repeat this below 1
Each of the three packets stores 9 out of 20.

尚本件明細書中においては、上記秤を装置、ベルトコン
ベア及びバケットコンベアUから成る部分を計量切出手
段と呼ぶ。上記コンベアの隣に構築されたフレーム14
の上には搬送手段として用いられているドラムフィーダ
δが備えられている。このドラムフィーダ15Fi二つ
が並列状に並べて備えられている(もう一つは第1図に
おいて図示されているものの向こう941に隠されてい
る)。上記各ドラムフィーダ15の一端には装入口16
が備えられ、ホッパーBから原料を受け入れ得るように
なっている。またホッパー13はバケットコンベアの上
方に位置シ、パケットコンヘアが一パケット分駆動した
時に転回するようにしたパケットの転回で落下する原料
全量を受けとるようにしである。またドラムフィーダの
装入口16は原料装入しない場合は扉で閉じられる様に
なっている。又ドラムフィーダ15の他端にはシュート
17が接続されている。
In this specification, the portion consisting of the scale, the belt conveyor, and the bucket conveyor U will be referred to as a measuring and cutting means. Frame 14 built next to the above conveyor
A drum feeder δ used as a conveying means is provided above the drum feeder δ. Two drum feeders 15Fi are provided in parallel (the other is hidden behind 941 of what is shown in FIG. 1). A loading port 16 is provided at one end of each drum feeder 15.
is equipped to receive raw materials from hopper B. The hopper 13 is located above the bucket conveyor and is configured to receive the entire amount of raw material that falls when the packets turn when the packet conveyor drives one packet. Further, the charging port 16 of the drum feeder is closed with a door when raw material is not being charged. Further, a chute 17 is connected to the other end of the drum feeder 15.

次にフ゛ラズマ溶解装置Bにおいて、上記フレーム14
には上記ドラムフィーダ15の下方の位置において溶解
室20が固定されている。この溶解室加の上部の中央部
には原料の装入部4が備わっており、そこには前記シュ
ート17が連通している。上記溶解室美には上記装入部
乙の周囲において6本のプラズマトーチ潤が取付けてお
る。
Next, in the plasma melting apparatus B, the frame 14 is
A melting chamber 20 is fixed at a position below the drum feeder 15. A raw material charging section 4 is provided in the upper center of the melting chamber, and the chute 17 communicates therewith. Six plasma torches are installed in the melting chamber around the charging section B.

次に鋳造装置Cは鋳塊室Xを有する。鋳塊室あの上部に
はるつぼaが備えられており、そのるつぼ田は前記溶解
室加の下部に形成された透孔に嵌合する。るつぼlは周
知の如くその内部に溶湯フ゛−ルを形成する。鋳塊室部
の内部にはインゴット引下装置羽が備えられている。こ
の引下装置蕊は多段シリンダをもって構成されている。
Next, the casting apparatus C has an ingot chamber X. A crucible a is provided in the upper part of the ingot chamber, and the crucible fits into a through hole formed in the lower part of the melting chamber. As is well known, a crucible forms a molten metal file therein. An ingot pulling device blade is provided inside the ingot chamber. This pull-down device is constructed with multi-stage cylinders.

引下装置あの上端にはスタブクランプ39が備わってお
り、そこにはるつぼaの内側においてるつぼ底を構成す
るスタブ荀が取付けである。
The upper end of the pulling device is equipped with a stub clamp 39, to which is attached a stub that constitutes the crucible bottom inside the crucible a.

上記構成のものにあっては、計量切出手段からドラムフ
ィーダ15に次々と原料が供給されると、その供給賂れ
た原料はフィーダbによって順次シュー) 17の側に
送られ、シュート17を通して溶解室美に送り込まれる
。溶解室加において上記原料は装入部21を通してるつ
ぼaの内部に落とされる。
In the structure described above, when raw materials are supplied one after another from the metering/cutting means to the drum feeder 15, the supplied raw materials are sequentially sent to the side of the chute 17 by the feeder b, and then passed through the chute 17. Sent to the dissolution room beauty. In addition to the melting chamber, the raw material is dropped into the crucible a through the charging section 21.

そしてその原料はプラズマトーチ潤から放出妊れるプラ
ズマアークによって加熱され溶解し溶湯となる。上記の
様なるつぼへの原料の供給とトーチUによるその原料の
溶解は連続的に行なわれる。
The raw material is then heated and melted by the plasma arc emitted from the plasma torch, becoming molten metal. The above-mentioned supply of raw materials to the crucible and melting of the raw materials by the torch U are performed continuously.

そして溶湯の量が増すに従い引下装置あによってスタブ
荀が下方へ引下げられ、るつ?’I’37の内部におけ
る下方に位置する溶湯から順次固化して鋳塊となシ、そ
れがるつぼaから順次下方に引出される。
Then, as the amount of molten metal increases, the stub shaft is pulled down by the pulling device, and the stub is pulled down. The molten metal located at the lower part of the inside of 'I' 37 is sequentially solidified into an ingot, which is sequentially drawn downward from the crucible a.

次に上記ドラムフィーダ15について第2図乃至第7図
に基づいて詳細に説明する。中空のケーシング41は内
部を密閉して外気と遮断できる様に構成してアシ、その
一端には原料の装入口酸が、他端には前記シュート17
との接続口招が備えである。
Next, the drum feeder 15 will be explained in detail based on FIGS. 2 to 7. The hollow casing 41 is constructed so that the inside can be sealed and isolated from the outside air, and one end of the hollow casing 41 is configured to contain the raw material charging port acid, and the other end of the chute 17.
Be prepared for a connection with.

ケーシングdの内部には円筒状の筒状体材が回動自在に
備えさせである。この筒状体材は符号柘。
A cylindrical member is rotatably provided inside the casing d. This cylindrical body material has the symbol 柘.

菊で示される2箇所において夫々三つの支持ローラ47
によって支えられている。尚筒状体材の周囲には当板絽
が周設してあり、その当板超に支持ローラ47が当接し
ている。上記筒状体材においてケーシング川の装入口側
には内鍔状の鍔のが備えてあシ、その内側が原料受入口
■となっている。一方筒状体劇の他端は開放でれており
そこが原料送出口51となっている。上記筒状体材の周
壁の内面には区画壁52が螺旋状に取付けておシ、隣シ
合う区画壁52の開に筒状体材の内面に沿った螺旋状の
原料通路おが形成されている。上記区画壁52は一例と
して13ピッチ備わっている。尚その数は、受入口艶か
ら入れられた一区分の原料が、筒状体材の回動により原
料通路53によって送出口51まで至る間において十分
にミキシングされ得るピッチ数だけあればよく、上記1
3よりも少なくてもよい。又区画壁52の高さは、原料
通路&に入れられた各区分の原料が壁52を乗シ越えて
他に移ることがなくなる様な高さにするのがよく、その
寸法は一区分の原料の量、筒状体材の直径等に応じて決
められるべきものである。−例を示せば、筒状体材の直
径が約1100fl、−区分の原料が約20kq、1ピ
ツチの寸法が225Mの場合、区内壁52の高さは例え
ば300ff程度である。この寸法の場合80jEI立
方の太き場のスフフッ1片まで円滑に搬送ができる。壕
だ上記筒状体病は本例では略水平状態に配設されている
が、送出口51の側が高くなるよう5°程度までの範囲
で傾斜させてもよい。
Three support rollers 47 at two locations indicated by chrysanthemums, respectively.
is supported by A backing plate is provided around the periphery of the cylindrical member, and a support roller 47 is in contact with the backing plate. In the above-mentioned cylindrical body material, an inner flange-like flange is provided on the side of the charging port of the casing, and the inner side of the flange serves as a raw material receiving port (2). On the other hand, the other end of the cylindrical body is open and serves as a raw material delivery port 51. A partition wall 52 is spirally attached to the inner surface of the peripheral wall of the cylindrical body material, and a spiral raw material passage along the inner surface of the cylindrical body material is formed at the opening of the adjacent partition wall 52. ing. The partition wall 52 has, for example, 13 pitches. The number of pitches is sufficient as long as the number of pitches is such that one section of the raw material introduced from the receiving port can be sufficiently mixed while reaching the outlet port 51 through the raw material passage 53 due to the rotation of the cylindrical body material. 1
It may be less than 3. In addition, the height of the partition wall 52 is preferably set to such a height that the raw materials in each section placed in the raw material passageway will not cross over the wall 52 and transfer to other sections, and its dimensions should be set to the height of each section. It should be determined depending on the amount of raw materials, the diameter of the cylindrical material, etc. For example, if the diameter of the cylindrical material is about 1100 fl, the raw material of the section is about 20 kq, and the size of one pitch is 225 M, the height of the inner wall 52 is, for example, about 300 ff. With this size, it is possible to smoothly transport up to a single piece of 80JEI cubic thickness. In this example, the trench-like cylindrical body is arranged substantially horizontally, but it may be tilted within a range of up to about 5° so that the side facing the outlet 51 is higher.

上記構成のものにおっては、原料受入口団に原料を装入
する場合まずバケットコンベアを1パケット分駆動芒せ
て一区分の原料全量を原料通路&において受入日田に最
も近く位置する部分に装入する。次に筒状体病を860
度回動させ、上記の一区分の原料を通路&に沿って送出
口51の側へ一ピツチ前進移動させる。そしてその状態
で再び上記と同様にバケットコンベアを1パケット分駆
動させて次の一区分の原料全量を装入する。以下同様に
して、−ピッチずつ原料を前進移動させることを繰り返
しながら次々と区分原料を区画壁のピッチ数分だけ装入
する。
In the above configuration, when charging raw materials into the raw material receiving port group, the bucket conveyor is first driven for one packet, and the entire amount of raw materials for one section is transferred to the part of the raw material passage & that is located closest to the receiving Hita. Charge. Next, cylindrical body disease is 860
The first section of raw material is moved one pitch forward toward the outlet 51 along the passage &. Then, in this state, the bucket conveyor is again driven for one packet in the same manner as above, and the entire amount of raw material for the next section is charged. Thereafter, in the same manner, while repeating the forward movement of the raw material in increments of -pitch, the divided raw materials are charged one after another by the number of pitches of the compartment walls.

次に原料を前記溶解家々に向けて送出する場合には、装
入口々を密閉しケーシングの内部を非酸化性算囲気例え
ばアルゴンで置換した状態で筒状体病を連続回動させ、
原料送出口51から接続白心に向けて原料を送り出す。
Next, when sending the raw materials to the melting houses, the cylindrical body is continuously rotated while the charging ports are sealed and the inside of the casing is replaced with non-oxidizing air, such as argon.
The raw material is sent out from the raw material delivery port 51 toward the connection center.

一方のドラムフィーダによる溶解が進行中に、計量切出
装置とバケットコンベアを操作し、他方のドラムフィー
ダに原料を装入し、先に使用したドラムフィーダの原料
が全て供給されたら切換えて使用し、これを繰返して溶
解に必要な全ての原料を連続供給する。
While melting using one drum feeder is in progress, operate the weighing/cutting device and bucket conveyor to load the raw material into the other drum feeder, and then switch to the drum feeder when all the raw material has been supplied to the previously used drum feeder. , this is repeated to continuously supply all the raw materials necessary for melting.

次に上記の様にして筒状体病を回動させながら原料を送
り出す時の状態を図面第を図乃至第ざ図に基づいて説明
する。尚これらの図において(8)は筒状体病を送出口
51の側から見た状態を示し、03)は各々の状態での
筒状体病をその最上位置で切断して展開した状態を示す
ものである。原料通路53に入れられている各区分けさ
れた原料量は、筒状体病の矢印で示でれる如き回動によ
り、その筒状体病の内壁面によシ持ち上げられて上方へ
移動しては下方へ向けて崩れ落ちることを繰り返す。こ
の繰り返しにより、各区分原料間は螺旋状の原料通路団
に沿って送出口51の側へ順次移動していく。
Next, the state when the raw material is fed out while rotating the cylindrical body as described above will be explained based on the drawings No. 1 to 3. In these figures, (8) shows the state of the cylindrical body disease seen from the side of the outlet 51, and 03) shows the state in which the cylindrical body disease in each state is cut at its uppermost position and expanded. It shows. The amount of each divided raw material put into the raw material passage 53 is lifted up by the inner wall surface of the cylindrical body and moved upward by the rotation as shown by the arrow of the cylindrical body. repeats falling downwards. By repeating this process, the raw materials in each segment sequentially move toward the outlet 51 along the spiral raw material passage group.

そしてその過程で各区分原料は夫々十分にミキシングさ
れる。尚第を図の)において符号%は原料通路53に入
っている一区分原料団の等高線を示す。
In the process, each classified raw material is thoroughly mixed. In the figure, the symbol % indicates the contour line of one section of raw material group entering the raw material passage 53.

上記の様に筒状体病の回動によシ各区分原料団が送出口
51まで移動してくると、区画壁52の端52aが第弘
図に示される如く最も下の位置を通シ過き゛る時点乃至
はその前後の時点で区分原料間が送出口51から落下し
始め、第7図の状態から筒状体病が略90度回動した状
態即ち第S図の状態となる壕での間に、−2の区分原料
の大部分が送出口51から落下してしまう。そして第6
図に示される様K、第1図の状態から筒状体病が略18
0度回動した時点では、上記−区分の区分原料は殆ど全
て送出口51から落下してしまう。その後第7図に示さ
れる状態を経て第に図に示される状態となる。
When each divided raw material group moves to the delivery port 51 due to the rotation of the cylindrical body as described above, the end 52a of the partition wall 52 passes through the lowest position as shown in Fig. At a certain point in time or before or after that point, the separated raw materials begin to fall from the outlet 51, and the tubular body rotates approximately 90 degrees from the state shown in Fig. 7, that is, the state shown in Fig. S in the trench. During this time, most of the -2 classified raw material falls from the outlet 51. and the sixth
As shown in the figure, the cylindrical body disease is approximately 18 mm from the state shown in Figure 1.
At the time of rotation by 0 degrees, almost all of the raw material classified into the above-mentioned - category falls from the delivery port 51. Thereafter, the state shown in FIG. 7 is passed through to the state shown in FIG.

即ち前記第q図と同様な状態となって次の区分原料の送
出が開始される状態となる。この様な動作を次々と繰り
返すことKより、各区分原料は相互に入り混じることな
く送出口51から順次溶解室に向けて供給される。この
様子をグラフに示せば第7図に実線で水爆れる如き状態
となる。即ち時間の経過に伴い一定時間毎に一定量ずつ
原料の送出が行なわれる。その結果、溶解室においては
溶解の始めの方と終シの方で原料の供給量が変ることが
ないため原料の量が過多になったり過少になったりする
ことが少ない。従って前記鋳造装置Cにおいて得られる
鋳塊においても大きな粗密ができる様なことはない。
That is, the state is similar to that shown in FIG. q above, and the delivery of the next classified raw material is started. By repeating such operations one after another, the raw materials are sequentially supplied from the outlet 51 to the melting chamber without mixing with each other. If this situation is shown in a graph, the solid line in Fig. 7 shows a situation similar to a water explosion. That is, as time passes, a fixed amount of raw material is delivered at fixed intervals. As a result, in the melting chamber, the amount of raw material supplied does not change between the beginning and the end of melting, so that the amount of raw material is less likely to be too much or too little. Therefore, there is no possibility that the ingot obtained in the casting apparatus C will have large density differences.

尚上記の場合、筒状体病をその送出口51の側が高くな
るように傾斜させると、筒状体病の回転に伴なう送出口
51からの一区分の原料の送り出しを、筒状体病の1回
転の時間のうちの比較的長い時間の範囲にわたって少し
ずつ行なわせることができる。その結果、溶解室での原
料の量の変動をより小嘔くすることができて上記鋳塊の
粗密をよシ小さくすることができる。
In the above case, if the cylindrical body is tilted so that the side of the outlet 51 is higher, the delivery of one section of raw material from the outlet 51 due to the rotation of the cylindrical body is reduced. It can be performed little by little over a relatively long period of time during one rotation of the disease. As a result, fluctuations in the amount of raw material in the melting chamber can be made smaller, and the density of the ingot can be further reduced.

次に第70図乃至第11図には区画壁の配役状態の異な
る例が示されている。ここに示された例においては、原
料送出口516付近において区画壁52eの螺旋の進み
をやや大キくシて、送出口51e付近において原料通路
53eの幅が順次広くなる様にしである。この様に原料
通路53eの幅を順次広く形成することKより、原料送
出口付近の筒状体祠の回動による原料灘の急激な崩れ落
ちが防止でき第70図乃至第14(図に示される様に、
−区分の原料556を筒状体44eの1回転全過程にわ
たって絶え間なく少しずつ送出することかでき、それを
多数の区分原料にわたって継続することができる。却ち
第75図に示きれる様に時間の経過に対して常圧一定量
ずつ原料を溶解室に向は供給することができる。その結
果溶解室においては常に原料の供給量が一足となシ、鋳
造装置においてでき上がる鋳塊はその全体が均一な密度
に形成される。
Next, FIGS. 70 to 11 show examples of different placement states of partition walls. In the example shown here, the progression of the spiral of the partition wall 52e is slightly increased in the vicinity of the raw material outlet 516, so that the width of the raw material passage 53e gradually becomes wider in the vicinity of the raw material outlet 51e. By gradually increasing the width of the raw material passage 53e in this way, it is possible to prevent the raw material layer from suddenly collapsing due to the rotation of the cylindrical body near the raw material delivery port. As,
- The raw material 556 of the section can be continuously delivered in small portions over one revolution of the tube 44e, and this can be continued over a large number of raw materials. Rather, as shown in FIG. 75, the raw material can be supplied to the melting chamber in a constant amount at normal pressure over time. As a result, the amount of raw material supplied to the melting chamber is always constant, and the ingot produced in the casting device is formed to have uniform density throughout.

即ち偏析のない鋳塊を得ることができる。尚上記区画壁
526の螺旋の進みを大きくする区間Wは一例を示せば
筒状体44eの4分の1回転分の範囲にでれ、又その点
での区画壁52eの螺旋の進みの度合いは他の場所に比
べて2倍程度となる様にされる。しかし上記の範囲W或
いはその場所での螺旋の進みを大きくする度合いは、−
区分の原料の量、筒状体44eの寸法、区画壁52eの
高さやピッチ及び筒状体44eの回動速度等に応じて実
験的に決めるのが好ましい。即ち前述の如く筒状体44
eの1回転の全過程にわたって一区分の原料が少しずつ
連続的に送出口51eから送り出される様な状態となる
様に決めるのがよい。
That is, an ingot without segregation can be obtained. In addition, the section W in which the helical advance of the partition wall 526 is increased is, for example, a range corresponding to one-quarter rotation of the cylindrical body 44e, and the degree of helical advance of the partition wall 52e at that point is is set to be about twice as large as in other locations. However, the degree of increasing the progress of the spiral in the above range W or at that location is -
It is preferable to determine it experimentally depending on the amount of raw material in the section, the dimensions of the cylindrical body 44e, the height and pitch of the partition wall 52e, the rotational speed of the cylindrical body 44e, and the like. That is, as described above, the cylindrical body 44
It is preferable to set the condition so that one section of the raw material is continuously sent out little by little from the delivery port 51e over the entire process of one rotation of e.

尚、機能上前図のものと同−又は均等構成と考えられる
部分には、前回と同一の符号にアルファベットのeを付
して重複する説明を省略した。(次回以降のものにおい
ても順次同様の考えでアルファベットのf、g、hを順
に付して重複する説明を省略する。) 次に第1乙図乃至第1g図には送出口付近における筒状
体の形状を前述のものとは異ならしめて、そこでの原料
通路の幅が広くなる様にした例が示されている。即ち区
画壁52fの端部52afの部分において筒状体44f
の長さを稍長く形成し、上記端部52afから更に張り
出す張出部分泌を備えさせである。この様にすることに
よって、前記実施例と同様に筒状体44fの1回転の全
過程にわたp、少しずつ連続して原料を送出することか
できる。
It should be noted that parts that are functionally the same or equivalent to those in the previous figure are given the same reference numerals and the letter e, and redundant explanations are omitted. (The same idea will be used in the next edition as well, and the letters f, g, and h will be added in order to omit redundant explanations.) Next, Figures 1-2 to 1-g show the cylindrical shape near the outlet. An example is shown in which the shape of the body is different from that described above so that the width of the material passage therein is increased. That is, at the end 52af of the partition wall 52f, the cylindrical body 44f
It is formed to have a slightly longer length, and is provided with a protruding part secretion that further protrudes from the end part 52af. By doing so, the raw material can be continuously delivered little by little over the entire process of one rotation of the cylindrical body 44f, as in the previous embodiment.

尚上記張出部分%の張出寸法は、区画壁52fの螺旋ピ
ッチの半分程度にしであるが、その大きさは前記実施例
の場合と同様に実験的に足めるのがよい。
The overhanging dimension of the above-mentioned overhanging portion % is about half the helical pitch of the partition wall 52f, but it is preferable that the size can be determined experimentally as in the case of the previous embodiment.

次に第1り図には送出口51g付近において区画壁52
gの高石を順次低くした例が示されている。
Next, in the first diagram, there is a partition wall 52 near the outlet 51g.
An example is shown in which the height of g is gradually lowered.

この様にすることによっても、前記の場合と同様にWL
料を少しずつ連続して送出することかできる。
By doing this, WL
It is possible to send out a small amount continuously.

尚区画壁52gの端部52agの高さは他の部分の高石
に比べて例えば4分の1程度に形成され、又区画壁52
gの高石を順次低くする範囲W′は例えば180度乃至
270度の範囲で定められる。しかし上記の様に区画壁
の高さを順次低くする度合い及びその範囲は前記の場合
と同様実験的に足めるのがよく、例えば第1り図(5)
においてW′で示されるほぼ90度の範囲において区分
原料がその範囲の区画壁52gを乗り越える様に足める
のがよい。
The height of the end portion 52ag of the partition wall 52g is, for example, approximately one-fourth of the height of the high stones in other parts, and the height of the end portion 52ag of the partition wall 52g
The range W' in which the height of g is successively lowered is determined, for example, in the range of 180 degrees to 270 degrees. However, as mentioned above, it is best to determine the degree and range of successive reductions in the height of the partition wall, as in the case described above, for example, as shown in Figure 1 (5).
It is preferable that the raw material be added so that it can overcome the partition wall 52g in the approximately 90 degree range indicated by W'.

次に第20図には送出口付近の構造の更に異なる例が示
されている。この例においては、区画壁の端部52ah
よりも−ピッチ前の場所に押板57を備えさせてめる。
Next, FIG. 20 shows a further different example of the structure near the outlet. In this example, the end 52ah of the partition wall
A push plate 57 is provided at a position in front of the pitch.

尚その押板57の傾斜の度合(回動方向への傾斜の度合
)は、区画壁52hにおいて傾斜(螺旋の進み)が大き
くなっている部分52′hとその他の部分との中間程度
にしておる。
The degree of inclination of the push plate 57 (the degree of inclination in the direction of rotation) is set to be approximately halfway between the part 52'h where the inclination (advancement of the spiral) is large and the other parts of the partition wall 52h. is.

この様に構成することにより、送出口51h付近におい
て一区分の原料の山が崩れて広がり過ぎることを防止で
き、これにより筒状体44hの1回転毎における原料送
出量のピークを一段と小さくすることができる。
With this configuration, it is possible to prevent one section of the pile of raw material from collapsing and spreading too much near the delivery port 51h, thereby further reducing the peak of the raw material delivery amount per rotation of the cylindrical body 44h. I can do it.

原料送出口付近の原料Iの急激な崩れの防止にはまた、
送出口51の側を高くして、筒状体劇を約5゜傾斜した
場合にも効果を発揮する。従って第70図〜第2018
1Iのいずれの方法においても筒状体劇を傾斜すれば原
料送出量のピークをさらに一般車でくすることができる
To prevent sudden collapse of raw material I near the raw material outlet,
The effect is also exhibited when the side of the outlet 51 is made higher and the cylindrical body is inclined by about 5 degrees. Therefore, Figures 70 to 2018
In either method of 1I, by tilting the cylindrical body height, the peak of the raw material delivery amount can be further reduced compared to ordinary vehicles.

(発明の効果) 以上のように本発明においては、計量
切出千〇で原料を小分けに秤量し、秤量された小分けの
原料5をその!2ま筒状体劇に送出し、筒状体劇の内周
壁に対して螺旋状に設けた原料通路を通して溶解室頷に
向かわす構成でろるから、第1点としては一旦秤量芒れ
原料通路内に入った一区分の#料は他の区分#料と混じ
ることなく、筒状体44においては簡・U方向に縦列状
に進行する特長かめる。このことは各区分原料の原料性
質(複数の素材原料の混合比)が他の区分原料と一部混
合して原料゛性質を変えるようなことはなく、溶解室に
そのまま至らしめて、そこで良質の溶湯が造れる効果が
ろる。
(Effects of the Invention) As described above, in the present invention, the raw material is weighed into small portions using a measuring cutter, and the weighed raw material 5 is divided into small portions. The structure is such that the raw material is fed into the cylindrical body and directed to the melting chamber through a spiral passage provided on the inner peripheral wall of the cylindrical body. The material of one section that has entered the tube does not mix with the other materials of the other sections, and in the cylindrical body 44, the material advances in a vertical direction in the U direction. This means that the raw material properties (mixing ratio of multiple raw materials) of each raw material are not mixed with other raw materials to change the raw material properties, and the raw materials can be directly delivered to the melting chamber, where they can be of high quality. The effect of creating molten metal is great.

第2点として各区分原料は、夫々原料通路&においては
部上に交叉する方向に向けて筒状体躬の内面(凹曲面)
を進むことになるので、各区分原料に対するミキシンク
効果は大きく、次段における湯の均質化に優れた効果を
もたらす。
The second point is that each raw material is divided into raw material passages and the inner surface (concave curved surface) of the cylindrical body in a direction that intersects with the upper part of the raw material passage.
The mixing effect on each section of raw materials is large, resulting in an excellent homogenization of the hot water in the next stage.

でらに本発明においては、上記筒状体446における原
料通路53eを、原料送出口51eにおいて筒状体内の
原料通路53eを通過して送出口51111に現われた
一区分の原料55eが原料送出口においては筒状体44
eの回転によって少しづつ送出されるように原料送出口
51eの原料通路53eの巾を広く形成し、又は上記原
料通路を構成する区画壁52gの高づを低く形成するこ
とにより、上記−区分宛の原料は一度にまとまって溶解
室(イ)に向うことなく、筒状体の1回転の時間の範囲
内における比較的長い時間に渡ってバラバラと少量宛注
出でれ、溶解室加での溶解を容易化するに優れた効果を
発揮する。
Furthermore, in the present invention, a section of the raw material 55e that passes through the raw material passage 53e in the cylindrical body 446 and the raw material passage 53e inside the cylindrical body at the raw material outlet 51e and appears at the outlet 51111 is the raw material outlet. In the case, the cylindrical body 44
By widening the width of the raw material passage 53e of the raw material outlet 51e so that the raw material passage 53e of the raw material outlet 51e is fed out little by little by the rotation of The raw materials do not go to the melting chamber (A) all at once, but are poured out in small quantities over a relatively long period of time within the time range of one rotation of the cylindrical body, and are poured out in small quantities in the melting chamber. It exhibits an excellent effect in facilitating dissolution.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図は溶解鋳造装
置の略示縦断面図、第2図はドラムフィーダの一部破断
圧面図、第3図はドラムフィーダにおけるケーシングの
みを1−量線位置で破断して示す図、第7図乃至第5図
は動作説明図、第り図は時間の経過と原料送出量との関
係を示すグラフ、第70図乃至第1を図は異なる実施例
の動作説明図(夫々第グ図乃至第に図と対応する図)、
第75図は第70図乃至第11図に示されたものにおけ
る時間の経過と原料送出量の関係とを示すグラフ、第1
乙図は筒状体の更に異なる実施例を示す図、第77図及
び第1g図は第1乙図に示されたものの夫々平面図及び
右II面図、第1デ図及び第、20図は夫々筒状体の更
に異なる実施例を示す図、第27図は従来の搬送手段の
略示図。 利・・・筒状体、加・・・原料受入口、51・・・原料
送出口、52・・・区画壁、お・・・原料通路、55・
・・原料。
The drawings show an embodiment of the present application, and FIG. 1 is a schematic longitudinal sectional view of a melting and casting apparatus, FIG. 2 is a partially broken pressure surface view of a drum feeder, and FIG. Figures shown broken at the dose line position, Figures 7 to 5 are operation explanatory diagrams, Figure 7 is a graph showing the relationship between the passage of time and the amount of raw material delivered, and Figures 70 to 1 are different. Operation explanatory diagrams of the embodiment (diagrams corresponding to Figures 1 to 2),
FIG. 75 is a graph showing the relationship between the passage of time and the amount of raw material delivered in the cases shown in FIGS. 70 to 11;
Figure O is a diagram showing a further different embodiment of the cylindrical body, and Figures 77 and 1g are a plan view and a right side view of the same as shown in Figure 1, Figure 1D, Figure 20, respectively. 27 are diagrams showing further different embodiments of the cylindrical body, and FIG. 27 is a schematic diagram of a conventional conveying means. Utilization: cylindrical body, processing: raw material receiving port, 51: raw material delivery port, 52: partition wall, oh: raw material passage, 55:
··material.

Claims (4)

【特許請求の範囲】[Claims] (1)原料を次段に向けて定量宛送出するようにしてあ
る計量切出手段と、上記計量切出手段から原料を受け入
れて次段の溶解室に向けて原料を移送するようにしてあ
る搬送手段と、上記搬送手段から送り込まれる原料を鋳
造用溶湯にするための溶解室とを備える金属溶解鋳造装
置において、上記の搬送手段は、横設された中空の筒状
体で、かつ回転自在に設置され、その上、その筒状体の
周壁内面には、一端の原料受入口から入った原料が上記
筒状体の回転に伴って移動して他端の原料送出口から送
出されるように、螺旋状に区画壁を配設して筒状体内面
に螺旋状の原料通路が形成されていることを特徴とする
金属溶解鋳造装置。
(1) A metering and cutting means configured to send a fixed amount of raw material to the next stage, and a metering and cutting means configured to receive the raw material from the metering and cutting means and transfer the raw material to the next stage melting chamber. In a metal melting and casting apparatus comprising a conveyance means and a melting chamber for converting the raw material fed from the conveyance means into molten metal for casting, the conveyance means is a horizontally installed hollow cylindrical body and is rotatable. Moreover, on the inner surface of the circumferential wall of the cylindrical body, there is a mechanism so that the raw material entering from the raw material receiving port at one end moves as the cylindrical body rotates and is sent out from the raw material delivery port at the other end. A metal melting and casting apparatus characterized in that a partition wall is arranged in a spiral manner to form a spiral raw material passage on the inner surface of the cylindrical body.
(2)原料を次段に向けて定量宛送出するようにしてあ
る計量切出手段と、上記計量切出手段から原料を受け入
れて次段の溶解室に向けて原料を移送するようにしてあ
る搬送手段と、上記搬送手段から送り込まれる原料を鋳
造用溶湯にするための溶解室とを備える金属溶解鋳造装
置において、上記の搬送手段は、横設された中空の筒状
体で、かつ回転自在に設置され、その上、その筒状体の
周壁内面には、一端の原料受入口から入った原料が上記
筒状体の回転に伴って移動して他端の原料送出口から送
出されるように、螺旋状に区画壁を配設して筒状体内面
に螺旋状の原料通路が形成されていて、その上、上記筒
状体における原料通路は、原料送出口において、筒状体
内の原料通路を通過して送出口に現われた一区分の原料
が原料送出口においては筒状体の回転によって少しづつ
送出されるように原料送出口の原料通路巾を広く形成し
、又は上記原料通路を構成する区画壁の高さを低く形成
してあることを特徴とする金属溶解鋳造装置。
(2) A metering and cutting means configured to send the raw material to the next stage in a fixed amount, and a metering and cutting means configured to receive the raw material from the metering and cutting means and transfer the raw material to the next stage melting chamber. In a metal melting and casting apparatus comprising a conveyance means and a melting chamber for converting the raw material fed from the conveyance means into molten metal for casting, the conveyance means is a horizontally installed hollow cylindrical body and is rotatable. Moreover, on the inner surface of the circumferential wall of the cylindrical body, there is a mechanism so that the raw material entering from the raw material receiving port at one end moves as the cylindrical body rotates and is sent out from the raw material delivery port at the other end. A helical raw material passage is formed on the inner surface of the cylindrical body by disposing a partition wall in a spiral shape, and furthermore, the raw material passage in the cylindrical body allows the raw material inside the cylindrical body to pass through the raw material at the raw material delivery port. The width of the raw material passage at the raw material outlet is made wide so that a section of the raw material that has passed through the passage and appears at the outlet is delivered little by little at the raw material outlet by the rotation of the cylindrical body, or the raw material passage is A metal melting and casting apparatus characterized in that the height of the constituent partition walls is formed to be low.
(3)計量切出手段が秤量装置とベルトコンベアとバケ
ットコンベアとから成る特許請求の範囲第1項又は第2
項記載の金属溶解鋳造装置。
(3) Claim 1 or 2, wherein the measuring and cutting means comprises a weighing device, a belt conveyor, and a bucket conveyor.
Metal melting and casting equipment as described in .
(4)筒状体が原料送出口の側を高くして傾斜している
特許請求の範囲第1項又は第2項記載の金属溶解鋳造装
置。
(4) The metal melting and casting apparatus according to claim 1 or 2, wherein the cylindrical body is inclined with the raw material delivery port side elevated.
JP59130245A 1983-12-13 1984-06-25 Metal melting and casting equipment Expired - Lifetime JPH0722818B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59130245A JPH0722818B2 (en) 1984-06-25 1984-06-25 Metal melting and casting equipment
GB08430608A GB2151761B (en) 1983-12-13 1984-12-04 A melting and casting installation
US06/680,869 US4610296A (en) 1983-12-13 1984-12-12 Melting cast installation
FR848419013A FR2556253B1 (en) 1983-12-13 1984-12-12 INSTALLATION AND PROCESS FOR MELTING AND CASTING
DE3445534A DE3445534C2 (en) 1983-12-13 1984-12-13 Melting plant for metallic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130245A JPH0722818B2 (en) 1984-06-25 1984-06-25 Metal melting and casting equipment

Publications (2)

Publication Number Publication Date
JPS619960A true JPS619960A (en) 1986-01-17
JPH0722818B2 JPH0722818B2 (en) 1995-03-15

Family

ID=15029605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130245A Expired - Lifetime JPH0722818B2 (en) 1983-12-13 1984-06-25 Metal melting and casting equipment

Country Status (1)

Country Link
JP (1) JPH0722818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287478A (en) * 2022-08-05 2022-11-04 太仓市王秀有色金属铸件厂 Nickel-phosphorus alloy forming equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797863A (en) * 1980-12-11 1982-06-17 Kanto Tokushu Seikou Kk Melting method for metal using consumable electrode
JPS5817006A (en) * 1981-07-22 1983-02-01 Agency Of Ind Science & Technol Screw feeder
JPS58187526U (en) * 1982-06-09 1983-12-13 三菱鉱業セメント株式会社 Powder quantitative supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797863A (en) * 1980-12-11 1982-06-17 Kanto Tokushu Seikou Kk Melting method for metal using consumable electrode
JPS5817006A (en) * 1981-07-22 1983-02-01 Agency Of Ind Science & Technol Screw feeder
JPS58187526U (en) * 1982-06-09 1983-12-13 三菱鉱業セメント株式会社 Powder quantitative supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287478A (en) * 2022-08-05 2022-11-04 太仓市王秀有色金属铸件厂 Nickel-phosphorus alloy forming equipment
CN115287478B (en) * 2022-08-05 2023-03-28 太仓市王秀有色金属铸件厂 Nickel-phosphorus alloy forming equipment

Also Published As

Publication number Publication date
JPH0722818B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
NO149615B (en) CONNECTOR FOR THE END PART OF A WIRE OR A FLEXIBLE RUER AND USE OF THE ELEMENT
US3572524A (en) Mechanical equipment for charging sludge and/or semisolid and fluid waste material into rotary incinerating kilns
JPS619960A (en) Melting and casting device for metal
AU603879B2 (en) Apparatus and method for feeding sintering raw mix
JP5165943B2 (en) Granulated product sizing equipment for metal-containing by-products
JPH06279874A (en) Charging of raw material to pallet of sintering machine via rotating body
CN115232912A (en) Steel slag mixing and eating system of converter and use method thereof
JP2994026B2 (en) Feeding method for bellless blast furnace
JPS6118634A (en) Feeder for powdery particle
JP2008200695A (en) Method for manufacturing high oxygen titanium ingot
KR100507750B1 (en) Apparatus for supplying sinter material
JP3073449B2 (en) Powder storage device
JP3432786B2 (en) Thermite storage device
JPH02296B2 (en)
JP2020015933A (en) Bell-less blast furnace charge method
JPH1086133A (en) Manufacture of concrete and the like
US2606111A (en) Agglomeration of metal bearing materials
CN210786964U (en) Lifting and mixing auger for investment casting shell-making raw materials
JPH0623918Y2 (en) Raw material supply feeder for electron beam melting furnace
JP2001294326A (en) Raw material discharging device
TW396266B (en) Device for charging a rotary hearth furnace
CN214514027U (en) Material conveying device for building construction
CN114226657B (en) Spheroidizing device and process for nodular cast iron production
JPH0790396A (en) Method for charging sintering raw material partially using granulated spare material
JPH10121155A (en) Method for charging sintering raw material