JPS619947A - Production of thin amorphous alloy strip - Google Patents

Production of thin amorphous alloy strip

Info

Publication number
JPS619947A
JPS619947A JP12914184A JP12914184A JPS619947A JP S619947 A JPS619947 A JP S619947A JP 12914184 A JP12914184 A JP 12914184A JP 12914184 A JP12914184 A JP 12914184A JP S619947 A JPS619947 A JP S619947A
Authority
JP
Japan
Prior art keywords
slit
amorphous alloy
molten metal
roll
pouring nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12914184A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Toru Sato
徹 佐藤
Shinji Kobayashi
真司 小林
Hiroshi Anato
穴戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12914184A priority Critical patent/JPS619947A/en
Publication of JPS619947A publication Critical patent/JPS619947A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain stably and continuously a thin amorphous alloy strip by controlling supply pressure and roll peripheral speed in accordance with the slit space of a pouring nozzle in such a manner that the specific weight of a molten metal satisfies the specific equation. CONSTITUTION:The molten metal which forms an amorphous compsn. is supplied from a slit-shaped pouring nozzle onto the surface of a cooling roll under high speed rotation, by which the molten metal is quickly solidified and the thin amorphous alloy strip is continuously obtd. The slit space W of the pouring nozzle is specified in a range of 0.04-0.12cm, the supply pressure P of 0.15- 0.75kgf/cm<2>, the peripheral speed V of the cooling roll of 3,000-4,500cm/s, respectively. The supply pressure and roll peripheral speed are controlled in accordance with the slit space of the pouring nozzle so as to satisfy the relation expressed by the equation where the specific weight of the molten alloy is designated as zetakgf/cm<2>.

Description

【発明の詳細な説明】 (技術分野) 非晶質組成の溶融合金をスリット状の注湯ノズルから高
速回転する冷却ロール表面に向けて供給し、その急速凝
固によって非晶質合金薄帯を安定に、かつ連続的に得る
非晶質合金の製造に関してこの明細書で述べる技術内容
は、冷却ロール表面での急冷凝固を支配する諸要因の適
合についての開発成果を提案するところにある。
[Detailed description of the invention] (Technical field) A molten alloy having an amorphous composition is supplied from a slit-shaped pouring nozzle toward the surface of a cooling roll rotating at high speed, and its rapid solidification stabilizes the amorphous alloy ribbon. The technical content described in this specification regarding the production of an amorphous alloy that can be obtained continuously and continuously consists in proposing the development results for the adaptation of various factors governing rapid solidification on the surface of a cooling roll.

(背景技術) 非晶質合金のストリップを単ロール法で裏作する技術が
1970年代初頭に見出された。その後多くの非晶質合
金薄帯が相次いで作られ、′機械的磁気的および化学的
性質などが測定されるに及び、工学的に興味深い性質も
数多く見出された。殊にFe−B系、Fe−B−3i系
合金などの磁気的性質において、優れた軟磁性および低
鉄損による著しい省エネルギー効果が確認されたことか
ら、これまでトランス材料として一般的に使用されてき
た方向性けい素鋼板に代替する次世代の電磁材料として
注目を集めている。
BACKGROUND ART A technique for fabricating strips of amorphous alloys using a single roll process was discovered in the early 1970s. After that, many amorphous alloy ribbons were produced one after another, and their mechanical, magnetic, and chemical properties were measured, and many properties of engineering interest were discovered. In particular, in the magnetic properties of Fe-B and Fe-B-3i alloys, remarkable energy-saving effects due to their excellent soft magnetism and low core loss have been confirmed. It is attracting attention as a next-generation electromagnetic material that can replace grain-oriented silicon steel sheets.

(問題点) さて、電カドランス用材料として要求されるのは、基本
的には優れた磁性であるが、実機トランスとしての性能
を考えれば、同時に少くとも5 cmないし29cmの
板巾、均一な板厚、また高い占積率を得るための平滑な
表面性状などが工業材料としては重要な要件となってく
る。
(Problem) Now, what is basically required for materials for electrocadrance is excellent magnetism, but when considering the performance as an actual transformer, it must also have a board width of at least 5 cm to 29 cm, a uniform As an industrial material, important requirements include plate thickness and smooth surface properties to obtain a high space factor.

(従来技術) 非晶質合金ス) IJツブを連続的に製造する方法とし
て、特開昭58−58525号公報には、(1)急冷ロ
ールの周速を100〜2000 m/minとし、(2
)スリット間隙を0.2〜1 m 、同時に(8)/ズ
ル先端とロール表面との間隔を該スリット間隙の0.1
〜1倍とする ことが開示され、これらの要因は非晶質合金ストリップ
を得る上で極めて重要な事項であって概ねこのような範
囲内に設定しなければ、2cWI以上の幅広なストリッ
プを作ることは困難とされている。
(Prior art) As a method for continuously manufacturing IJ tubes, Japanese Patent Application Laid-open No. 58-58525 describes (1) the peripheral speed of the quench roll being 100 to 2000 m/min; 2
) The slit gap is 0.2 to 1 m, and at the same time (8)/the distance between the tip of the roll and the roll surface is 0.1 of the slit gap.
These factors are extremely important in obtaining an amorphous alloy strip, and if they are not set within these ranges, a wide strip of 2 cWI or more will be produced. This is considered difficult.

しかしながら実験室的規模及び工業的規模において非晶
質合金薄帯の装造条件を詳細に検討したところ、急冷ロ
ールの周速をより高速側に設定することが、殊に工業的
規模での製造においては有利になるが、この点の要請は
上記従来技術に依存する限り、明らかに満され得ない。
However, a detailed study of the packaging conditions for amorphous alloy ribbons on a laboratory scale and an industrial scale revealed that setting the peripheral speed of the quench roll to a higher speed is especially important for production on an industrial scale. However, it is clear that this requirement cannot be met as long as the above-mentioned prior art is relied upon.

この場合においてロール周速の範囲100〜20001
1!/minで適合すべき注湯量を確保するためには同
号公報中に記述されているように、溶融金属はQ、08
5〜0.141 kgf/c+Jの圧力下で射出されな
ければならないが、この射出圧力は溶融合金のヘッド高
さに換算すると、約5〜20c11に対応する。
In this case, the range of roll circumferential speed is 100 to 20001
1! As described in the same publication, in order to secure the pouring amount that should meet the requirements of Q, 08
It must be injected under a pressure of 5 to 0.141 kgf/c+J, which corresponds to a head height of about 5 to 20 c11 of the molten alloy.

ここに1チヤージ10(l程度の実験室的規模で非晶質
合金ストリップを炸裂する場合には、ヘッド高さを5〜
10cmに止めても、さらに必要な射出圧力をアルゴン
や窒素等の気体で付加することが可能である。
When exploding an amorphous alloy strip on a laboratory scale with 1 charge of 10 (liters), the head height should be set to 5 to 5.
Even if the distance is limited to 10 cm, it is possible to further apply the necessary injection pressure using gas such as argon or nitrogen.

しかし1チヤージ10(19以上の工業的規模で製造す
る場合、殊に連続操業の場合には、注湯量を一定に維持
するために、ヘッド高さを一定に保、つか或はヘッド高
さの変動を溶湯面上のガス圧力を制御して補償するかの
うち、工業的により簡便なのはヘッド高さの制御である
However, when manufacturing on an industrial scale with a charge of 10 (19 or more), especially in continuous operation, the head height must be kept constant or the head height must be kept constant in order to maintain a constant pouring amount. Of the ways to compensate for fluctuations by controlling the gas pressure on the molten metal surface, controlling the head height is industrially easier.

とくに、連続操業では注湯ノズルのスリット口近傍での
溶湯流に影響を与えることなく、タンディツシュに溶鋼
を追加する必要があるが、ヘッド高さを少くとも29c
n+以上、好ましくは3Qcm以上にするのが望ましい
In particular, in continuous operation, it is necessary to add molten steel to the tundish without affecting the molten metal flow near the slit opening of the pouring nozzle.
It is desirable to set it to n+ or more, preferably 3Qcm or more.

このようにノズルでのヘッド高さを大きくすることは、
タンディツシュ及びノズルの保温のために、極めて好都
合である。すなわちタンディツシュ、ノズルに加熱機構
を備えることによって、長時間にわたる注湯過程におけ
る溶湯温度の低下、すなわちノズル詰りなどのトラブル
を防ぐことができるからである。
Increasing the head height at the nozzle in this way
This is extremely convenient for keeping the tundish and nozzle warm. That is, by providing the tundish and the nozzle with a heating mechanism, it is possible to prevent troubles such as a drop in molten metal temperature during a long pouring process, that is, nozzle clogging.

一方前述の如く、溶湯のヘッド高さが大きく、従って供
給圧力が高くなると、注湯量が当然増加する。ここに成
形ストリップを非晶質にするためには、冷却速度を10
5℃/秒以上にしなければならないから、板厚は少くと
も50μm以下にしなけ−11ればならない。
On the other hand, as described above, if the head height of the molten metal is large and therefore the supply pressure is increased, the amount of poured metal will naturally increase. Here, in order to make the molded strip amorphous, the cooling rate should be increased to 10
Since the speed must be 5° C./sec or more, the plate thickness must be at least 50 μm or less.

すなわち注湯量の増大に対応して、急冷ロールの周速を
高くしなければ、非晶質合金薄帯を作ることができない
のである。この点特開昭58−513525号公報にお
けるロール周速の上限、2000m/minの場合には
、溶湯ヘッド高さを20cm以上にすると、注湯量が過
大となって、非晶質合金薄帯に必要な急冷状態が得られ
ず、薄帯は結晶化して所期の目的を達することができな
くなる。
In other words, an amorphous alloy ribbon cannot be produced unless the peripheral speed of the quench roll is increased in response to an increase in the amount of poured metal. In this regard, when the upper limit of the roll circumferential speed in JP-A-58-513525 is 2000 m/min, if the molten metal head height is set to 20 cm or more, the amount of molten metal poured becomes excessive and the amorphous alloy ribbon is If the necessary quenching conditions are not achieved, the ribbon will crystallize and fail to achieve its intended purpose.

(発明の動機) このような状況のもとで、発明者らは注湯ノズルのスリ
ット間隙と射出圧力の関数である注湯速度とロール周速
の関係を定量的に杷握することが、(発明の目的) 非晶質合金薄帯の工業的な、連続的生産のために必要な
要因相互間の関係を解明して、とくに有利な非晶質合金
薄帯の適切な製造方法を確立することが、この発明の目
的である。
(Motivation for the Invention) Under these circumstances, the inventors have found that it is possible to quantitatively determine the relationship between the pouring speed and the roll circumferential speed, which is a function of the slit gap of the pouring nozzle and the injection pressure. (Objective of the invention) To elucidate the relationship between the factors necessary for the industrial and continuous production of amorphous alloy ribbons, and to establish an appropriate manufacturing method for particularly advantageous amorphous alloy ribbons. It is an object of this invention to do so.

(発明の構成) この発明は非晶質組成になる溶融合金をスリット状の注
湯ノズルから、高速回転する冷却ロールに向け供給して
急速凝固させ、非晶質合金薄帯を連続的に製造する方法
において 注湯ノズルのスリット間隙Wを0.04ないし0、’J
−2cm 供給圧力Pを0.15 kgf/c−ないし0.フ5 
ki f /c+J冷却ロ冷却ロール0全速V00なイ
シ4500CI11/、8の各範囲とすること、 溶融合金の比重量をρ(kif/cd )として下記式
の関係を満足するように、注湯ノズルのスリット間隔に
対応して、供給圧力およびロール周速を制御すること の結合を特徴とする非晶質合金薄帯の製造方法その実施
に当っては溶融合金の供給圧力を、注湯ノズルの支持を
司るタンディツシュ内の溶融合金のヘッド高さで制御す
ること、注湯ノズルと冷却ロール表面との間隔を0.2
ないし1.0藤の範囲に制御することが好適である。
(Structure of the Invention) This invention supplies a molten alloy having an amorphous composition from a slit-shaped pouring nozzle to a cooling roll that rotates at high speed, and rapidly solidifies it to continuously produce an amorphous alloy ribbon. In this method, the slit gap W of the pouring nozzle is set to 0.04 to 0.
-2cm Supply pressure P is 0.15 kgf/c- to 0. F5
ki f /c + J cooling roll 0 full speed V00 Ishi 4500CI11/, 8, the specific weight of the molten alloy is ρ (kif/cd), and the pouring nozzle is set so that the relationship of the following formula is satisfied. A method for manufacturing an amorphous alloy ribbon characterized by the combination of controlling the supply pressure and roll circumferential speed in accordance with the slit interval. Control by the head height of the molten alloy in the tundish that controls the support, and set the distance between the pouring nozzle and the cooling roll surface to 0.2
It is preferable to control it within the range of 1.0 to 1.0 w.

さてこの発明においては、工業的生産性を考慮して、溶
融合金(以下溶湯という)のヘッド高さは20C111
以上、より好ましくは80側以上に維持する。
Now, in this invention, in consideration of industrial productivity, the head height of the molten alloy (hereinafter referred to as molten metal) is 20C111.
More preferably, it is maintained at the 80 side or higher.

ここでFe8oB、。Si工。組成の合金を溶製した溶
湯につき、ヘッド高さ4 Q cmに対応する供給圧力
に固定して、銅合金製ロール上に溶湯を供給することと
し、スリット状ノズルのスリット間隙とロール周速の関
数として、2国中の非晶質合金薄帯(以下リボンと略す
)の生成し易さを調べた結果をまとめて第1図に示す。
Here Fe8oB. Si engineering. The molten metal made from an alloy with the same composition was fixed at a supply pressure corresponding to a head height of 4 Q cm, and the molten metal was supplied onto a copper alloy roll. Fig. 1 summarizes the results of investigating the ease with which amorphous alloy ribbons (hereinafter referred to as ribbons) can be produced in the two countries as a function of the amorphous alloy ribbon.

注湯ノズルのスリット間隙が0.4藤未満になると表面
張力のため、溶湯が注湯ノズルから流れに<<、ノズル
詰りを起し易くなる。またx、2wIMをこえると注湯
ノズルからの安定な溶湯流が得られず、美麗なリボンを
形成することができなかった。そこで注湯ノズルのスリ
ット間隙は、’Q、4mから1.2順に限定することが
必要である。
When the slit gap of the pouring nozzle is less than 0.4 mm, the molten metal flows from the pouring nozzle due to surface tension, and the nozzle is likely to become clogged. Moreover, when x exceeds 2wIM, a stable flow of molten metal from the pouring nozzle cannot be obtained, and a beautiful ribbon cannot be formed. Therefore, it is necessary to limit the slit gap of the pouring nozzle to 1.2 m from 'Q' of 4 m.

次に供給圧力は、溶湯のヘッド高さQQcmないし10
Qcmに相当する0、15”9f/c−ないし0.75
〜f /cjに限定されこの供給癩処へ沖供給圧力が0
.15 kgflcd未満では、ノズル先端での溶湯流
に影響を与えることなくタンディツシュに溶湯を補給す
ることが困難で、連続生産に不向きであり一方0.75
 kgf10+1をこえるとスリット厚を0.4鴎にし
ても、注湯量が過大となり、リボンの適切な板厚を得る
ことができない。
Next, the supply pressure is set at the head height of the molten metal QQcm to 10
0,15”9f/c- to 0.75 corresponding to Qcm
~f/cj, and the offshore supply pressure to this supply source is 0.
.. Below 15 kg flcd, it is difficult to replenish the molten metal to the tundish without affecting the flow of molten metal at the nozzle tip, making it unsuitable for continuous production.
If it exceeds kgf10+1, even if the slit thickness is set to 0.4 mm, the amount of molten metal poured will be excessive and it will not be possible to obtain an appropriate thickness of the ribbon.

スリット間隔とロール周速の関係において、アモルファ
スリボンの生成し易い領域は第1図に示すように、スリ
ット間隙が大きくなるほどロール周速は高くなる。これ
はリボンが非晶質化するに必要な超急冷を得るには、F
e −B −Si系の場合リボン厚みが大略50μm以
下でなければならない(参照IEICE Trans、
 Magnetics+ WAG−18(1982)P
188g )ことが、スリット部での溶湯流と生成リボ
ンの物質収支から理解される。すなわちスリット部から
の溶湯流がスリット厚とともに多くなる場合は、ロール
周速を高くして生成リボン板厚を小さくしなければ非晶
質合金のリボンを得ることができない。
Regarding the relationship between the slit gap and the roll circumferential speed, the area where amorphous ribbons are likely to be formed is shown in FIG. 1, and as the slit gap becomes larger, the roll circumferential speed becomes higher. This requires F
In the case of e-B-Si system, the ribbon thickness must be approximately 50 μm or less (see IEICE Trans,
Magnetics+ WAG-18 (1982) P
188g) is understood from the molten metal flow at the slit portion and the material balance of the produced ribbon. That is, if the flow of molten metal from the slit increases with the slit thickness, it is not possible to obtain an amorphous alloy ribbon unless the roll circumferential speed is increased to reduce the thickness of the produced ribbon.

非晶質合金のリボンを形成するに好都合な範囲は次式 を満足する場合に限られる。ここでWはノズルスリット
間隙(cm )、Pは供給圧力(kgf/Cl11)、
ρは溶融合金の比重量(kgf/c++f )モしてV
はロール周速(備/S)である。
A convenient range for forming an amorphous alloy ribbon is limited to the case where the following formula is satisfied. Here, W is the nozzle slit gap (cm), P is the supply pressure (kgf/Cl11),
ρ is the specific weight of the molten alloy (kgf/c++f) and V
is the roll circumferential speed (Bi/S).

もしwGア7/Vの値が5 X 10−’以上を越える
と、給湯量が多すぎて、厚いリボンになって非晶質化し
ない。
If the value of wGa7/V exceeds 5 x 10-' or more, the amount of hot water supplied is too large, resulting in a thick ribbon that does not become amorphous.

また2×10 未満ではスダレ状となり、均一なリボン
を作ることができない。
Moreover, if it is less than 2×10 2 , it becomes sagging, making it impossible to make a uniform ribbon.

注湯速度とロール周速に関しては、上記の限定が非晶質
合金のリボンを工業的に製造する場合に、どうしても必
要であった。
Regarding the pouring speed and the roll circumferential speed, the above-mentioned limitations are absolutely necessary when producing ribbons of amorphous alloys industrially.

この発明に従い非晶質合金のリボンを作製する場合、溶
湯の供給圧力は溶湯のヘッド高さで制御するのがのぞま
しく、それというのは、ノズルスリットからの注湯速度
がこの供給圧力によって制御され、この制御は溶湯のヘ
ッド高さまたは溶湯面へのガス加圧によって行うことが
できるにしても、たとえば特開昭57−17854号公
報に示されているようなエアシリンダーを用いたガス加
圧方式では気密なタンディツシュを必要とすること、ま
たタンディツシュへの連続給湯が容易ではないなどの欠
点を伴うからである。またこの発明の如く、ヘッド高さ
が20cwI以上にあっては、±1 cmのヘッド高さ
変動があっても、供給圧力としては、8チ以下の変動に
しかならず溶湯を補給するにしてもこの範囲内における
制御は比較的容易であり、またこの方式では連続給湯が
簡便という利点がある。
When producing ribbons of amorphous alloy according to the present invention, it is desirable to control the supply pressure of the molten metal by the height of the molten metal head, because the pouring rate from the nozzle slit is controlled by the supply pressure. Although this control can be performed by the head height of the molten metal or by applying gas pressure to the molten metal surface, for example, using an air cylinder as shown in JP-A-57-17854, This is because the gas pressurization method requires an airtight tundish and has drawbacks such as the difficulty of continuously supplying hot water to the tundish. Furthermore, as in this invention, if the head height is 20 cwI or more, even if there is a head height variation of ±1 cm, the supply pressure will only fluctuate by 8 cm or less, and even if molten metal is replenished, this will occur. Control within this range is relatively easy, and this method has the advantage of convenient continuous hot water supply.

さらに、供給圧力8%程度の変動は30μmの板厚にお
いては、1μmはどのバラツキにしが結びつかずほとん
ど問題にならない。なおロールとノズルとの間隔につい
ては実験により詳細に検討したところによると第2図に
示すように、1鵡を越えるときスプラッシュの飛散によ
ってリボンに欠かん孔の個数が多くなり美麗なリボンの
形成の支障となり、一方小規模ロットの場合ロール−ノ
ズル間隔を0.2 W以下にしても非晶質合金のリボン
を形成することはできたが、この発明で目指するような
100に9以上の工業的規模で生産する場合には、ノズ
ルの熱膨張やノズル先端の凹凸を考慮すると、0.2鴎
以下にすることは間隔の安定性の上で問題が生じ易く、
好ましくないことがわかった。
Further, a variation of approximately 8% in supply pressure is hardly a problem when the plate thickness is 30 μm, since 1 μm is not associated with any variation. The spacing between the roll and the nozzle was examined in detail through experiments, as shown in Figure 2, and as shown in Figure 2, when the spacing exceeds 1, the number of holes in the ribbon increases due to the scattering of the splash, resulting in the formation of a beautiful ribbon. On the other hand, in the case of small-scale lots, it was possible to form an amorphous alloy ribbon even if the roll-nozzle distance was set to 0.2 W or less; When producing on an industrial scale, taking into account the thermal expansion of the nozzle and the unevenness of the nozzle tip, reducing the distance to less than 0.2 tends to cause problems with the stability of the spacing.
I found it undesirable.

次に実施例に基いて、この発明の実際的な効果を説明す
る。
Next, the practical effects of this invention will be explained based on Examples.

(実施例) 実施例1 内部水冷した直径gQcm、巾3Qcmの銅合金ロール
を85扉/Sのロール周速で回転させた。
(Examples) Example 1 An internally water-cooled copper alloy roll having a diameter of gQcm and a width of 3Qcm was rotated at a roll circumferential speed of 85 doors/S.

Fe8oB□。8110合金を溶製して、タンディツシ
ュに給湯した。
Fe8oB□. The 8110 alloy was melted and supplied to the tundish.

タンディツシュに取付けたスリット巾104、スリット
間隙0.7關のセラミックスノズルヲ、ロール直上に間
隔0.51111にて保持し、溶湯のヘッド高さは40
cm+とじた。
A ceramic nozzle with a slit width of 104 and a slit gap of 0.7 was attached to the tundish, and was held directly above the roll with a spacing of 0.51111, and the head height of the molten metal was 40.
cm + closed.

この場合注湯速度は約0.71+pw/sであり、中1
0CI11、厚み約28μmの非晶質合金リボンを連続
的に作製することができた。
In this case, the pouring speed is about 0.71+pw/s,
An amorphous alloy ribbon having a CI of 0CI11 and a thickness of about 28 μm could be continuously produced.

このリボンは、1000曲げしても割れることは無く、
X線回折により非晶質であることを確認したO 実施例2 実施例1と同じ鋼合金製ロールを用い、4011L/s
のg−ル周速で回転させ、溶融Fe8oB□。5i1o
合金をタンディツシュに給湯し、スリット巾10c++
11スリット間隙1鴎のノズルをロール直上に間隔0.
7謔にて保持し、溶湯のヘッド高さは3Qcmとした。
This ribbon will not break even after 1000 bends.
O confirmed to be amorphous by X-ray diffraction Example 2 Using the same steel alloy roll as in Example 1, 4011 L/s
molten Fe8oB□. 5i1o
Pour the alloy into the tanditshu and make the slit width 10c++
11 slit gap 1 Kagome nozzle is placed directly above the roll with an interval of 0.
The molten metal was held at a height of 3 Qcm.

この場合、注湯速度は約04に9vr/sであり、巾l
Qcm、板厚的25μmの均一な非晶質合金リボンを連
続的に製造することができた。
In this case, the pouring speed is about 04 to 9vr/s, and the width is 1
It was possible to continuously produce a uniform amorphous alloy ribbon with a thickness of Qcm and a thickness of 25 μm.

このリボンは、1000曲げしても割れることは無く、
X線回折によっても非晶質であることを確認した。
This ribbon will not break even after 1000 bends.
It was also confirmed by X-ray diffraction that it was amorphous.

比較例1 0一ル周速を2 o m/sとし他は実施例2と同じ条
件で処理した。この場合、巾xocm、厚み50μmの
リボンを連続的に作製することができたが、部分的に結
晶化しており、1000曲げに耐えなかった。
Comparative Example 1 Processing was carried out under the same conditions as in Example 2 except that the circumferential speed was 2 0 m/s. In this case, a ribbon with a width of xocm and a thickness of 50 μm could be continuously produced, but it was partially crystallized and could not withstand 1000 bends.

比較例2 スリット間隙を1.5騙とし、他は実施例1と同じ条件
で処理した。この場合巾IQcm、板厚約65μmのリ
ボンが作製されたが、リボン表面の粗度が大きく、美麗
でなかった。また結晶化しており、1000曲げに耐え
なかった。
Comparative Example 2 The slit gap was set to 1.5 mm, and the other conditions were the same as in Example 1. In this case, a ribbon with a width of IQ cm and a thickness of about 65 μm was produced, but the ribbon surface had a large roughness and was not beautiful. It was also crystallized and could not withstand 1000 bends.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ロール周速とスリット間隙の関数とし°Cの
Fe8oB工。Si工。非晶質合金リボンの形成能を表
わすグラフである。 m 21i1iff ハ、メスルーロール間ギャップの
関数としてのFe8oB□。S1□0非晶質合金リボン
内に生じた、欠かん孔の数の関係を示すグラフである。
Figure 1 shows the Fe8oB process at °C as a function of roll circumferential speed and slit gap. Si engineering. 3 is a graph showing the ability to form an amorphous alloy ribbon. m21i1iff C, Fe8oB□ as a function of the female-to-roll gap. It is a graph showing the relationship between the number of holes generated in the S1□0 amorphous alloy ribbon.

Claims (1)

【特許請求の範囲】 1、非晶質組成になる溶融合金をスリット状の注湯ノズ
ルから、高速回転する冷却ロール表面に向け供給して急
速凝固させ、非晶質合金薄帯を連続的に製造する方法に
おいて、 注湯ノズルのスリット間隔Wを0.04ないし0.12
cm 供給圧力Pを0.15kgf/cm^2ないし0.75
kgf/cm^2、冷却ロールの周速Vを3000ない
し4500cm/sの各範囲とすること、 溶融合金の比重量をρ(kgf/cm^2)として下記
式の関係を満足するように、注湯ノズルのスリット関隔
に対応して、供給圧力およびロール周速を制御すること の結合を特徴とする非晶質合金薄帯の製造方法。 (記) 2×10^−^3<[W√(P/ρ)]/V<5×10
^−^3
[Claims] 1. A molten alloy having an amorphous composition is supplied from a slit-shaped pouring nozzle toward the surface of a cooling roll rotating at high speed, and is rapidly solidified to continuously form an amorphous alloy ribbon. In the manufacturing method, the slit interval W of the pouring nozzle is 0.04 to 0.12.
cm Supply pressure P from 0.15 kgf/cm^2 to 0.75
kgf/cm^2, the circumferential speed V of the cooling roll should be in the range of 3000 to 4500cm/s, and the specific weight of the molten alloy should be ρ (kgf/cm^2), so as to satisfy the relationship of the following formula: A method for producing an amorphous alloy ribbon, characterized by the combination of controlling supply pressure and roll circumferential speed in accordance with the slit distance of a pouring nozzle. (Note) 2×10^-^3<[W√(P/ρ)]/V<5×10
^-^3
JP12914184A 1984-06-25 1984-06-25 Production of thin amorphous alloy strip Pending JPS619947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12914184A JPS619947A (en) 1984-06-25 1984-06-25 Production of thin amorphous alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12914184A JPS619947A (en) 1984-06-25 1984-06-25 Production of thin amorphous alloy strip

Publications (1)

Publication Number Publication Date
JPS619947A true JPS619947A (en) 1986-01-17

Family

ID=15002133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12914184A Pending JPS619947A (en) 1984-06-25 1984-06-25 Production of thin amorphous alloy strip

Country Status (1)

Country Link
JP (1) JPS619947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334262A (en) * 1989-09-01 1994-08-02 Kabushiki Kaisha Toshiba Method of production of very thin soft magnetic alloy strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334262A (en) * 1989-09-01 1994-08-02 Kabushiki Kaisha Toshiba Method of production of very thin soft magnetic alloy strip

Similar Documents

Publication Publication Date Title
US5301742A (en) Amorphous alloy strip having a large thickness
US20060102315A1 (en) Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
CN102069167A (en) Method for preparing oriented silicon steel isometric crystal thin strip blank by twin-roll thin strip continuous casting
JP2018507110A (en) Hot rolled lightweight martensitic steel sheet and method for producing the same
US4353408A (en) Electromagnetic thin strip casting apparatus
JP5509222B2 (en) Hot rolled thin cast strip product and manufacturing method thereof
CN109825781B (en) Method for continuously preparing iron-based amorphous thin strip
US5318642A (en) High-strength rolled sheet of aluminum alloy and process for producing the same
JP3199382B2 (en) Manufacturing method and apparatus for semi-finished products
JPS63195253A (en) Manufacture of phosphor bronze sheet metal
JPS619947A (en) Production of thin amorphous alloy strip
JPS60257950A (en) Production of thin amorphous alloy strip having large sheet thickness
JPH03243250A (en) Production of aluminum series metal strip having flat surface characteristic
JP2937707B2 (en) Steel continuous casting method
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
US4375234A (en) Electromagnetic thin strip casting process
US3845811A (en) Apparatus for float continuous casting of metal
KR101193065B1 (en) Method for fabricating plate of amorphous metal by using Strip Casting process and the device thereof
JPS60108144A (en) Production of thin metallic strip
JPS6340628B2 (en)
JPH10113752A (en) Molten alloy supplying method for producing amorphous alloy, and long nozzle for supplying the alloy
JP3575600B2 (en) Method and apparatus for manufacturing thin metal products
KR100586870B1 (en) A continuous casting method of bulk solidifying amorphous alloy and its strip
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
WO2020071488A1 (en) Method for manufacturing thin cast slab