JPS6199337A - Etching method of semiconductor crystal - Google Patents

Etching method of semiconductor crystal

Info

Publication number
JPS6199337A
JPS6199337A JP22150284A JP22150284A JPS6199337A JP S6199337 A JPS6199337 A JP S6199337A JP 22150284 A JP22150284 A JP 22150284A JP 22150284 A JP22150284 A JP 22150284A JP S6199337 A JPS6199337 A JP S6199337A
Authority
JP
Japan
Prior art keywords
etching
mirror
rie
wafer
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22150284A
Other languages
Japanese (ja)
Inventor
Haruo Kawada
春雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22150284A priority Critical patent/JPS6199337A/en
Publication of JPS6199337A publication Critical patent/JPS6199337A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To enable mirror etching by wet etching after reactive ion etching of the 111A plane of III-V group compound semiconductor using a reactive gas at first. CONSTITUTION:The (111)A plane of a GaAs substrate 1 is etched approx. 5mum by RIE using carbon dichloride difluoride as a reactive gas and the conditions of the RIE are that the degree of vacuum is 5Pa and the power is 50-100W. Polishing damage is removed by the etching and a wafer is maintained mirror surface conditions. In this state, however, the damage due to the RIE exists from the surface of the wafer into approx. several 100Angstrom and the following wet etching is carried out. That is, by wet etching of approx. 2,000Angstrom using an etchant of aqueous ammonia: aqueous hydrogen peroxide: water = 30:1:15 (volume ratio) and the damage due to the RIE is removed and the surface of the wafer is made a mirror.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はm−v族化合物半導体、例えばガリウム砒素(
GaAs)等の(111)A面を鏡面エツチングする方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to m-v group compound semiconductors, such as gallium arsenide (
This invention relates to a method for mirror etching the (111)A plane of materials such as GaAs).

ここで、(111)A面は■族原子が表面に現れる側の
面を云い、(111)8面はその裏側の面に当たり、V
族原子が表面に現れる。
Here, the (111) A plane is the side on which the group II atoms appear on the surface, the (111) 8 plane is the plane on the back side, and the V
Group atoms appear on the surface.

m−v族化合物半導体は珪素(St)に比しキャリアの
易動度が大きいこと、および禁制帯幅が大きいこと等の
利点を利用して高速で紫外線等の外来ノイズに強い大規
模集積回路−(LSI)や、光通信用素子として実用化
されるようになった半導体材料である。
Compared to silicon (St), m-v group compound semiconductors have advantages such as higher carrier mobility and larger forbidden band width, and can be used for large-scale integrated circuits that are high-speed and resistant to external noise such as ultraviolet rays. - (LSI) and semiconductor materials that have come into practical use as optical communication devices.

この材料の製造方法として、ボート成長法、引き上げ法
、エピタキシャル成長法等があるが、LSI用としては
引き上げ法が最も多く採用されている。
Methods for manufacturing this material include a boat growth method, a pulling method, and an epitaxial growth method, but the pulling method is most commonly used for LSI applications.

現在引き上げ法では多くの場合、結晶加工のし易さ、お
よび円形結晶の必要性(LSIの製造装置、例えばアラ
イナの治具等は円形ウェハを扱うようにできている)等
の理由から<100>方向に引き上げて、この方向に垂
直にスライスして(100)面の円形ウェハが得られる
Currently, in most cases, the pulling method uses crystals with crystals of > direction and sliced perpendicular to this direction to obtain a (100)-plane circular wafer.

このようにして得られた(100)面は結晶欠陥数が1
04〜10’ cm−”と多く、半導体素子特性の結晶
面内でのバラツキを大きくしている要因となっている。
The (100) plane obtained in this way has a crystal defect number of 1.
04 to 10'cm-'', and is a factor that increases the variation in semiconductor device characteristics within the crystal plane.

従って現在ではこの結晶欠陥数を減らすために(100
)面を得る引き上げ法のいろいろの改善が行われている
Therefore, in order to reduce the number of crystal defects (100
) Various improvements have been made to the pulling method for obtaining surfaces.

さらに結晶欠陥数を減らす方法の1つとして、<111
>方向に結晶の引き上げを行うと、結晶欠陥数を約1桁
下げ得ることは既に知られているが、(111)A面は
鏡面エツチングが困難のために実用化されていない、ま
た(111)8面はAs等蒸気圧の高いV族の原子が表
面に現れるため、これらの原子が結晶から抜は出し易く
なり、従って結晶組成が不安定となりこの面を素子形成
に使用することは好ましくない。
Furthermore, one method to reduce the number of crystal defects is <111
It is already known that the number of crystal defects can be reduced by about one order of magnitude by pulling the crystal in the > direction, but the (111) A plane has not been put to practical use because mirror etching is difficult, and ) Since V group atoms with high vapor pressure, such as As, appear on the surface, these atoms are easily extracted from the crystal, and the crystal composition is therefore unstable, making it preferable to use this surface for device formation. do not have.

上記のように<111>方向に結晶を引き上げて、1 
     結晶欠陥数を減らし、(111)A面を半導
体素子製造に使用できるようにするために、(111)
A面の鏡面エツチングを実現することが望まれる。
As above, pull the crystal in the <111> direction and
In order to reduce the number of crystal defects and make the (111) A plane usable for semiconductor device manufacturing, (111)
It is desirable to achieve mirror etching of the A side.

〔従来の技術〕[Conventional technology]

引き上げ結晶は、通常500μm程度の厚さにスライス
され、その後ケミカルおよびメカニカルに鏡面研磨され
たウェハ状態で入手される。このウェハを使って半導体
素子を製造する場合、鏡面研磨により結晶内に入ったダ
メージを取り除くために数μm程度の鏡面エツチングを
硫酸(HzSO*)と過酸化水素水(H20□)と水(
n2o)の混液を用いたウェットエツチングを行う。
The pulled crystal is usually obtained in the form of a wafer that is sliced to a thickness of about 500 μm and then chemically and mechanically mirror-polished. When manufacturing semiconductor devices using this wafer, mirror etching of several micrometers is performed using sulfuric acid (HzSO*), hydrogen peroxide (H20□), and water (
Wet etching is performed using a mixed solution of n2o).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例によるウェットエツチングでは、(100)面の
鏡面エツチングは可能であるが、(111)A面の場合
は0.5μmもエツチングしないうちに、多数のエッチ
ピットが発生し、ウェハ表面は凸凹になり、素子製造に
は使用できない状態となる。
In conventional wet etching, it is possible to mirror-etch the (100) plane, but in the case of the (111) A plane, many etch pits occur before even 0.5 μm is etched, and the wafer surface becomes uneven. Therefore, it becomes unusable for device manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、m−v族化合物半導体の(111
)A面を、最初反応性ガスを用いてリアクティブイオン
エツチングし、ついでウェットエツチングすることによ
り鏡面エツチングを行う本発明による半導体結晶のエツ
チング方法により達成される。
The solution to the above problem is the (111
) This is achieved by the method of etching a semiconductor crystal according to the present invention, which performs mirror etching by first reactive ion etching the A side using a reactive gas and then wet etching.

なお、前記反応ガスとして二塩化二弗化炭素を用い、前
記ウェットエツチングにアンモニア水と過酸化水素水と
水との混液を用いると一層効果がある。
Further, it is more effective to use carbon dichloride difluoride as the reaction gas and to use a mixed solution of aqueous ammonia, hydrogen peroxide, and water in the wet etching.

〔作用〕[Effect]

本発明者は鏡面エツチング方法として、反応性ガスを用
いたりアクティブイオンエツチング(RIE)により研
磨ダメージを除去し、かつ鏡面を保ち、さらにRIEに
よるダメージをウェットエツチングにより除去すること
により、欠陥数が少なく、表面準位も少ない完全に近い
状態の結晶表面が得られることを見出した。
The present inventor has developed a mirror etching method that uses a reactive gas or active ion etching (RIE) to remove polishing damage, maintains a mirror surface, and further removes RIE damage using wet etching to reduce the number of defects. We found that a nearly perfect crystal surface with few surface states could be obtained.

〔実施例〕〔Example〕

第1図(a)、 (b)は本発明の一実施例を示す結晶
の断面図である。
FIGS. 1(a) and 1(b) are cross-sectional views of a crystal showing one embodiment of the present invention.

第1図(a)において、(111)A面GaAs基板(
ウェハ)1を、反応性ガスとして二塩化二弗化炭素(C
C18F2)を用いてRIB法により5μm程度エツチ
ングする。
In FIG. 1(a), a (111) A-plane GaAs substrate (
wafer) 1 and carbon dichloride difluoride (C
Etching is performed by about 5 μm using RIB method using C18F2).

RIEの条件は真空度は5Paで、パワーは50〜10
0−である。
The RIE conditions are a vacuum of 5 Pa and a power of 50 to 10
It is 0-.

このエツチングにより研磨ダメージは除去され、かつウ
ェハは鏡面状態を保っている。しかしこのままでは、R
IEによるダメージがウェハ表面から中に数100人存
在するので、つぎのウェットエツチングを行う。
This etching removes polishing damage and keeps the wafer mirror-like. However, as it is, R
Since there are several hundred damage caused by IE on the wafer surface and inside, the next wet etching is performed.

第1図中)において、 アンモニア水(N11.0■):過酸化水素水(H20
□):水(11,0) =3o: 1 :ts (容量比)。
In Figure 1), ammonia water (N11.0■): hydrogen peroxide water (H20
□): Water (11,0) = 3o: 1:ts (capacity ratio).

のエッチャントを用いて、約2000人のウェットエツ
チングを行い、RIBによるダメージを除去し、ウェハ
を鏡面にする。
Approximately 2,000 people wet-etched the wafer using an etchant to remove the RIB damage and make the wafer a mirror surface.

このようにして、RIEとウェットエツチングの組み合
わせにより、鏡面研磨のダメージが除去でき、かつウェ
ハ表面は鏡面の良好なエツチングができる。
In this way, by combining RIE and wet etching, damage caused by mirror polishing can be removed and the wafer surface can be etched to a good mirror finish.

つぎに本発明により鏡面エツチングしたGaAsウェハ
を用いた、電界効果トランジスタCFET)を示す。
Next, a field effect transistor (CFET) using a GaAs wafer mirror-etched according to the present invention will be shown.

第2図は本発明による基板を用いたGaAs −F E
Tの断面図である。
Figure 2 shows GaAs-FE using the substrate according to the present invention.
It is a sectional view of T.

図において、1は(111)A面GaAs基板で、2は
チャネル領域、3.4はソース、ドレイン領域、5はタ
ングステンシリサイド(WSi)よりなるゲート電極、
6,7は金ゲルマニウム/金(AuGe/八U)をへ次
蒸着して形成したソース、ドレイン電極、8は二酸化珪
素(Si(h)よりなる絶縁層である。
In the figure, 1 is a (111) A-plane GaAs substrate, 2 is a channel region, 3.4 is a source and drain region, 5 is a gate electrode made of tungsten silicide (WSi),
Reference numerals 6 and 7 are source and drain electrodes formed by successive vapor deposition of gold germanium/gold (AuGe/8U), and 8 is an insulating layer made of silicon dioxide (Si(h)).

チャネル領域2、およびソース、ドレイン領域3.4は
珪素イオン(Si”)を注入して形成する。
The channel region 2 and the source and drain regions 3.4 are formed by implanting silicon ions (Si'').

以上のようにして(111)A面GaAs基板に対して
も、通常の工程を用いて特性のすぐれたFETが得られ
た。
As described above, an FET with excellent characteristics was obtained using a normal process using a (111) A-plane GaAs substrate.

実施例では、反応性ガスとしてCC1zhを使用したが
、他の反応性ガスを使用しても発明の要旨は変わらな゛
い。
In the examples, CC1zh was used as the reactive gas, but the gist of the invention does not change even if other reactive gases are used.

またウェットエツチングも他のエッチャントを使用して
も、エツチング量が5000人程度以下であれば、本発
明の効果は損なわれない。
Further, even if wet etching or other etchants are used, the effects of the present invention will not be impaired as long as the amount of etching is about 5,000 or less.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、■−■族化
合物半導体の(111)A面に対して鏡面エツチングは
可能となり、半導体素子製造に使用できるようになる。
As described above in detail, according to the present invention, it becomes possible to perform mirror etching on the (111)A plane of a ■-■ group compound semiconductor, and it becomes possible to use it for manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Il) 、 (b)は本発明の一実施例を示す
結晶の断面図、 第2図は本発明による基板を用いたGaAs −F E
Tの断面図である。 図において、 1は(111)A@GaAs基板、 2はチャネル領域
、3.4はソース、ドレイン領域、 5はゲート電極、 6.7はソース、ドレイン電極、 8は絶縁層 を示す。
FIGS. 1(Il) and (b) are cross-sectional views of a crystal showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view of a crystal of GaAs-FE using a substrate according to the present invention.
It is a sectional view of T. In the figure, 1 is a (111)A@GaAs substrate, 2 is a channel region, 3.4 is a source and drain region, 5 is a gate electrode, 6.7 is a source and drain electrode, and 8 is an insulating layer.

Claims (3)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体の(111)A面を、最
初反応性ガスを用いてリアクティブイオンエッチングし
、ついでウェットエッチングすることにより鏡面エッチ
ングを行うことを特徴とする半導体結晶のエッチング方
法。
(1) A semiconductor crystal etching method characterized by performing mirror etching on the (111)A plane of a III-V compound semiconductor by first reactive ion etching using a reactive gas and then wet etching. .
(2)前記反応ガスとして二塩化二弗化炭素を用いるこ
とを特徴とする特許請求の範囲第1項記載の半導体結晶
のエッチング方法。
(2) The method for etching a semiconductor crystal according to claim 1, characterized in that carbon dichloride difluoride is used as the reaction gas.
(3)前記ウェットエッチングにアンモニア水と過酸化
水素水と水との混液を用いることを特徴とする特許請求
の範囲第1項記載の半導体結晶のエッチング方法。
(3) The method of etching a semiconductor crystal according to claim 1, wherein a mixed solution of ammonia water, hydrogen peroxide solution, and water is used in the wet etching.
JP22150284A 1984-10-22 1984-10-22 Etching method of semiconductor crystal Pending JPS6199337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22150284A JPS6199337A (en) 1984-10-22 1984-10-22 Etching method of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22150284A JPS6199337A (en) 1984-10-22 1984-10-22 Etching method of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS6199337A true JPS6199337A (en) 1986-05-17

Family

ID=16767712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22150284A Pending JPS6199337A (en) 1984-10-22 1984-10-22 Etching method of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS6199337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590870A2 (en) * 1992-09-30 1994-04-06 AT&T Corp. Method of making a buried heterostructure laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590870A2 (en) * 1992-09-30 1994-04-06 AT&T Corp. Method of making a buried heterostructure laser
EP0590870A3 (en) * 1992-09-30 1994-07-27 At & T Corp Method of making a buried heterostructure laser

Similar Documents

Publication Publication Date Title
TW200406893A (en) Substrate and manufacturing method therefor
US20050239672A1 (en) Cleaning solution of silicon germanium layer and cleaning method using the same
US6228728B1 (en) Method of fabricating semiconductor device
JPH05217893A (en) Manufacture of semiconductor substrate
US4902635A (en) Method for production of compound semicondutor devices
KR100355691B1 (en) Method for manufacturing III-V group semiconductor structure
JP3450155B2 (en) Field effect transistor and method of manufacturing the same
JPS6199337A (en) Etching method of semiconductor crystal
JPH07105382B2 (en) Fabrication process of semiconductor device including vapor phase etching
JPH0472381B2 (en)
KR20010030328A (en) A method of manufacturing semiconductor device
JP3157030B2 (en) Semiconductor substrate and manufacturing method thereof
JP2879841B2 (en) Manufacturing method of planar diode
US7129184B2 (en) Method of depositing an epitaxial layer of SiGe subsequent to a plasma etch
JP3337735B2 (en) Semiconductor substrate manufacturing method
CN109888014B (en) Nanowire device and method of forming the same
JPH0628259B2 (en) Method for manufacturing semiconductor device
JP3112100B2 (en) Manufacturing method of semiconductor substrate
JP3226666B2 (en) Method for manufacturing semiconductor device
JPS61154177A (en) Manufacture of semiconductor device
JP2000183022A (en) Manufacture of compound semiconductor device
JP3098811B2 (en) Insulated gate field effect transistor and semiconductor device using the same
JPH01107577A (en) Manufacture of field effect transistor
JPH05243277A (en) Manufacture of semiconductor device
JP2000058560A (en) Field effect transistor and its manufacture