JPS6199206A - Material for electric conduction - Google Patents

Material for electric conduction

Info

Publication number
JPS6199206A
JPS6199206A JP22094584A JP22094584A JPS6199206A JP S6199206 A JPS6199206 A JP S6199206A JP 22094584 A JP22094584 A JP 22094584A JP 22094584 A JP22094584 A JP 22094584A JP S6199206 A JPS6199206 A JP S6199206A
Authority
JP
Japan
Prior art keywords
copper
extrusion
based alloy
alloy powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22094584A
Other languages
Japanese (ja)
Other versions
JPH0523002B2 (en
Inventor
健史 宮崎
澤田 和夫
吉田 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22094584A priority Critical patent/JPS6199206A/en
Publication of JPS6199206A publication Critical patent/JPS6199206A/en
Publication of JPH0523002B2 publication Critical patent/JPH0523002B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種機械、器具に使用される導電用材料に関
するもので、特に導電性、耐軟化性、高温強度、耐摩耗
性等の特性に優れた導電用材料に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to electrically conductive materials used in various machines and appliances, particularly those with properties such as electrical conductivity, softening resistance, high-temperature strength, and abrasion resistance. The present invention relates to conductive materials with excellent conductivity.

(背景技術) 銅および銅合金は導電性、強度、耐食性等に優れ、広範
な用途に使用されているが、耐軟化性、高温強度、耐摩
耗性等の点で、さらに一層のI:’+l特nが要求され
るような場合には、無機物質なとからなる粒子や繊維で
補強した強化型鋼基合金が使用されたりしている。
(Background Art) Copper and copper alloys have excellent conductivity, strength, corrosion resistance, etc., and are used in a wide range of applications, but they have even higher I:' in terms of softening resistance, high temperature strength, wear resistance, etc. In cases where +1 characteristics are required, reinforced steel-based alloys reinforced with particles or fibers made of inorganic substances are used.

従来、+11に導電t’lと耐軟化性が必要な用途には
、Cu−Δg金合金Cu−Cr系合金′5・のa4合金
か使用される場合もあったか、これらの銅合金では自1
軟化性が十分でなく、又高温強度の点でも不十分であっ
たO そのため、例えば溶接用電極などの導電性の他、耐軟化
性、lr+1温強度などの必要な用途には、Cu−AQ
203分散強化型合金が時として用いられたりした。し
かし、従来このような合金は主として内部酸化法によっ
て製造されたので、生産性も優れず、価格的にもIQI
価なものとなってしまっていた。
Conventionally, for applications requiring +11 conductivity t'l and softening resistance, A4 alloys such as Cu-Δg gold alloys Cu-Cr alloys'5 and
Therefore, Cu-AQ is used for applications that require conductivity, softening resistance, lr+1 temperature strength, etc., such as welding electrodes.
203 dispersion strengthened alloys have sometimes been used. However, conventionally, such alloys have been mainly manufactured by internal oxidation methods, so they have poor productivity and low IQI in terms of price.
It had become valuable.

(発明の開示) 本発明は、上述の問題点を解決するため成されたもので
、製造容易かつ生産性の晶い押出法により製造され、か
つ導電性、耐軟化性、高温強度、h1摩耗性等の特性に
優れた心電材料を提供せんとするものである。
(Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems. The purpose of this invention is to provide electrocardiographic materials with excellent characteristics such as performance.

本発明は、銅基合金粉末90重量%(以下、%と記す)
以上と、AQ 203+ S i C,S i 3N4
およびCよりなるグループから選ばれた物質から成る粒
子および短繊維よりなるグループから選ばれた1種以上
の松科、合、11で0.1〜10%から成り、押出しに
より製造されたことを特徴とする導電用桐科である。
The present invention has a copper-based alloy powder of 90% by weight (hereinafter referred to as %).
Above, AQ 203+ S i C, S i 3N4
and one or more types of Pinaceae selected from the group consisting of particles and short fibers selected from the group consisting of It is a paulownia family that is characterized by conductivity.

本発明の導電用材料は各種機械、器具の導電用部品とし
て用いられるもので、その形状は用いられる部品の形状
に応じて種々の形状のもので良い。
The conductive material of the present invention is used as a conductive part of various machines and instruments, and its shape may be various depending on the shape of the part to be used.

本発明に用いられる銅基合金粉末はマトリックスとなる
もので、通常の導電用鋼又は銅合金の他、押出製造時3
00°〜500℃の熱履歴を経るため、耐軟化性に優れ
た合金より成ることがより好ましい。
The copper-based alloy powder used in the present invention serves as a matrix, and in addition to ordinary conductive steel or copper alloy, it
Since it undergoes a thermal history of 00°C to 500°C, it is more preferably made of an alloy with excellent softening resistance.

このためこの合金には、導電性にも、°コー影習を余り
与えることなく、耐軟化性などを向上させるZr+Cr
、 Co、 Fe+ BeおよびNiよりなるグループ
がら選ばれた1種以上の元素を合計で5%以下含ませる
ことは好ましい結果をもたらすものである。これらの元
素が5%を超えるといたずらに導電率が低下するのみで
あり、収着効果は余り期待できない。
For this reason, this alloy contains Zr+Cr, which improves conductivity and softening resistance without imparting too much Coke effect.
, Co, Fe+Be, and Ni in a total amount of 5% or less brings about favorable results. If the content of these elements exceeds 5%, the conductivity will simply decrease unnecessarily, and no significant sorption effect can be expected.

銅基合金粉末は通常の電解銅粉末又はウォーターアトマ
イザ−等の製法で作られたものが用いられる。
The copper-based alloy powder used is a normal electrolytic copper powder or one made using a water atomizer or the like.

本発明において、η・4ノ1(合金粉末と混合されるA
Q203. SiC,5iaN、I、 C等の無機物質
は、合金マトリックス中に分散させて導電材料全体の耐
熱性やlt’++ 1!l11強度、耐摩耗を改善する
目的で含イrさせられるものである。
In the present invention, η4-1 (A mixed with alloy powder)
Q203. Inorganic substances such as SiC, 5iaN, I, and C can be dispersed in the alloy matrix to improve the heat resistance of the entire conductive material and improve the heat resistance of the entire conductive material. l11 It is impregnated with iron for the purpose of improving strength and wear resistance.

本発明においては、銅基合金粉末とこれらの物質から成
る粒子および/又は短繊維を混合した後、押出しにより
製造されるため、粒子、短繊維は偏析なく、均一に@紹
1に分散され、押出ダイスの形状を種々変更させること
により、種々の断面形状を持つ導電用材料が長尺又は無
限長で、生産性良く得られる利点がある。これらの粒子
および短繊1([よりなるグループから選ばれた1神以
−にの材料のHllを合計でQ 、 l Vo−10%
と規定したのは、0.1%未満では上述の改み効果が十
分でなく、又10%を超えるといたずらに加工性を害し
たりする恐れが生じるのみで、−に連の改善効果以上の
改;(が余り期待できないためである。
In the present invention, the copper-based alloy powder is mixed with particles and/or short fibers made of these substances, and then manufactured by extrusion, so the particles and short fibers are uniformly dispersed without segregation. By variously changing the shape of the extrusion die, there is an advantage that conductive materials having various cross-sectional shapes can be obtained in long or infinite lengths with good productivity. The total Hll of these particles and short fibers 1 (1 material selected from the group consisting of Q, l Vo-10%
The reason for this is that if it is less than 0.1%, the above-mentioned reforming effect will not be sufficient, and if it exceeds 10%, there is a risk that workability will be unnecessarily impaired. This is because I cannot expect much.

本発明における押出しに使用せられる押出装置としては
通常の押出装置でも良いが、次のような摩擦駆動型押出
装置を用いると、原料の供給か容易で、無限長の押出材
が連続的に得られる。
Although a normal extrusion device may be used as the extrusion device used for extrusion in the present invention, it is possible to use the following friction-driven extrusion device to easily feed raw materials and to continuously obtain an extruded material of infinite length. It will be done.

この摩擦駆動型押出装置とは、駆動壁面とそれより面積
の小さい固定壁面とにより形成された管路を金属の加圧
容器とするもので、前記管路の駆動壁面の駆動による摩
擦により、金属が送られ、押出圧力を得るように構成さ
れた押出装置で、具体的には図に例を示すようなフンフ
オーム装置δ(特開昭47−31859号参照)、又は
前記管路が対向する駆動キャタピラと両側面の固定壁に
より構成され、駆動キャタピラによって押出力を得るラ
イネノクス装置(Wire Journal、1976
.4月号、P、64参照)である。
This friction-driven extrusion device uses a pipe line formed by a driving wall surface and a fixed wall surface with a smaller area as a pressurized metal container. An extrusion device configured to obtain an extrusion pressure by feeding the water, specifically, a Hunform device δ (see Japanese Patent Application Laid-Open No. 47-31859) as shown in the figure, or a drive in which the pipes face each other. The Reinenox device consists of a caterpillar and fixed walls on both sides, and the pushing force is obtained by the driving caterpillar (Wire Journal, 1976).
.. (See April issue, p. 64).

図は本発明の実施例の製造に用いられる摩擦駆動型押出
装置の例(フンフオーム装置)を示す断面図である。図
において、外周面に溝2をffする駆動ホイール1の溝
面3と、ホイール1の外周の一部と係合されている固定
ンユーブロノク4の内壁面5とにより管路6が形成され
、管路6の駆動方向の後&iJ 8が閉じられている。
The figure is a cross-sectional view showing an example of a friction-driven extrusion device (Hunform device) used for manufacturing an embodiment of the present invention. In the figure, a conduit 6 is formed by a groove surface 3 of a drive wheel 1 having a groove 2 ff on its outer circumference and an inner wall surface 5 of a fixed tube knob 4 that is engaged with a part of the outer circumference of the wheel 1. After the drive direction of path 6 &iJ 8 is closed.

押出ダイス9は7′1・路6のt&端8付近に設けられ
ている。管路6の前端開口部には粉末を供給するための
粉末供給具7が設けられている。
The extrusion die 9 is provided near the t&end 8 of the 7'1 path 6. A powder supply tool 7 for supplying powder is provided at the front end opening of the conduit 6.

このように構成されたコンフォーム装置の粉末供給具7
に銅基合金粉末と前述の物質の粒子および/又は短繊維
との混合物10を連続的に供給すると、混合物lOは駆
動溝面3の摩擦により管路6の後端8に向って送り込ま
れ、圧力をかけられ、押出し力を付与される。圧力を付
与された混合物1゜は押出ダイス9より押出材IIとし
て押出される。
Powder supply tool 7 of the conform device configured in this way
When a mixture 10 of copper-based alloy powder and particles and/or short fibers of the above-mentioned substances is continuously supplied to the , the mixture 10 is fed toward the rear end 8 of the conduit 6 by the friction of the drive groove surface 3. Pressure is applied and extrusion force is applied. The pressured mixture 1° is extruded from the extrusion die 9 as extruded material II.

この際混合物IOは固定内壁面5と゛のIql擦による
発熱および圧縮熱により温度が上昇し、かつ圧力を受け
るので、ff4基合金粉末同志を金属結合させると共に
、前記粒子および/又は短繊維を銅マトリツクス中に均
一に微細に分散させる。又この発熱は押出し比、押出速
度などの加工条件に左右され、     るが・必要な
場合は管路6の外部から加熱しても良い。
At this time, the temperature of the mixture IO rises due to heat generation and compression heat due to the Iql friction between the fixed inner wall surface 5 and the fixed inner wall surface 5, and the mixture is subjected to pressure. evenly and finely dispersed in the Also, this heat generation depends on processing conditions such as extrusion ratio and extrusion speed, but if necessary, heating may be applied from outside the conduit 6.

かように摩擦駆動型押出装置を用いれば、原料111合
物をそのまま装入し得、種々の断面形状の導電材料が長
尺又は!11(限長ではられるので、製造が容易でかつ
生産性が+’=’5い利点がある。
If a friction-driven extrusion device is used in this way, the raw material 111 compound can be charged as is, and conductive materials with various cross-sectional shapes can be produced in long lengths or! 11 (Since it can be made with a limited length, it has the advantages of easy manufacturing and high productivity.

なお、前述の粉末供給具7への供給に先たち、胴入(合
金粉末をあらかしめ溶体化等の[1的て熱処理しておい
ても良いし、押出しの後に時効硬化等の目的で熱処理し
ても良い。
In addition, prior to supplying the powder to the powder supply tool 7 described above, the alloy powder may be subjected to a heat treatment such as roughening and solution treatment, or may be heat treated for the purpose of age hardening after extrusion. You may do so.

以下、本発明を実施例によりさらに説明する。The present invention will be further explained below with reference to Examples.

(実施例 l) ウォーターアトマイズ法により表1に示す組成の銅基合
金粉末を作成した。
(Example 1) Copper-based alloy powders having the compositions shown in Table 1 were prepared by a water atomization method.

これらの銅基合金粉末と直径約1μmのAQ 203粒
子、直径約2μmの5iaN4の粒子、直径約5μmの
SiCの短繊維を表1に示す配合で混合した。
These copper-based alloy powders, AQ 203 particles with a diameter of about 1 μm, 5iaN4 particles with a diameter of about 2 μm, and short SiC fibers with a diameter of about 5 μm were mixed in the composition shown in Table 1.

これらの混合物を図に示すようなフンフオーム装置の粉
末供給具7に連続的に供給し、押出ダイ;・ ス9より押出速度11m 7分で直径6s−の線材を押
出した。押出温度は約350℃前後であった。    
     、i比較のため、表1に示す組成の従来例、
比較例による直径611嘗の材料を作成した。製造は、
Nα6は内部酸化法により行ない、比較例Nα7は扮末
焼J’+’+法によったか船上困難であり、Nα8は溶
湯混合l去によったがうまく混合できなかった。
These mixtures were continuously supplied to the powder feeder 7 of the Funform apparatus as shown in the figure, and a wire rod with a diameter of 6 seconds was extruded from the extrusion die 9 at an extrusion speed of 11 m for 7 minutes. The extrusion temperature was around 350°C.
, iFor comparison, the conventional example with the composition shown in Table 1,
A material with a diameter of 611 mm according to a comparative example was prepared. The production is
Nα6 was carried out by the internal oxidation method, comparative example Nα7 was carried out by the J'+'+ method, which was difficult to carry out on board, and Nα8 was carried out by the molten metal mixing method, but it could not be mixed well.

得られた導電用材料の特性は表1に示す通りである。な
お、摩耗r11は直径6m■の丸棒試片を荷重5 kg
で回転鋼板に当て、1時間後の摩耗量を測定L″・  
           :・表1より本発明によるNa
 1〜4は従来、例、比較例に比べ、高温強度、耐摩耗
性に優れ1.7GOA以上の導電率を「しており、工業
的に優れた導電用材料であることが分った。
The properties of the obtained conductive material are shown in Table 1. For wear r11, a round bar specimen with a diameter of 6 m was loaded with a load of 5 kg.
Measure the amount of wear after 1 hour by applying it to a rotating steel plate L''・
:・From Table 1, Na according to the present invention
It was found that Samples Nos. 1 to 4 had superior high-temperature strength and abrasion resistance, and had a conductivity of 1.7 GOA or more compared to the conventional, examples, and comparative examples, and were industrially excellent conductive materials.

表     1 (実施例 2) 実施例1で作成した材料を溶接用電極チップに加工し、
実用テストを行なった。
Table 1 (Example 2) The material created in Example 1 was processed into a welding electrode tip,
We conducted a practical test.

実用テストとしては、厚さl mmの磨鋼板(JISQ
 3308規格、SPMB)のスポット溶接テストを行
なった。溶接の条件は、溶接電流1G、GOOA 、溶
接加圧力250 k、にて連続的に行なった。耐久回数
は次のいずれかの現象が表われるまで100回毎にチェ
ックして、その回数で示した。
As a practical test, a polished steel plate (JISQ
3308 standard, SPMB) spot welding tests were conducted. Welding was performed continuously under the following conditions: a welding current of 1 G, GOOA, and a welding force of 250 k. The durability was checked every 100 times until any of the following phenomena appeared, and the number of durability tests was expressed as the number of times.

a)溶接部の外観や溶接強度に不良が生じた時。a) When a defect occurs in the appearance or welding strength of the welded part.

b)溶接チップの先端径が初期の1.5倍に達した11
ν。
b) The tip diameter of the welding tip reached 1.5 times the initial size 11
ν.

c)ih極チップにクラックなどが発生した1111゜
溶接テスト結果は表2に示す通りである。
c) The results of the 1111° welding test in which cracks occurred on the IH electrode tip are shown in Table 2.

表    2 ノく2より本発明による溶接チップは、従来例、比較例
に比べ耐久回数が格段に多く、溶接部の外観や溶接強度
も良好であり、溶接電極用チップ材料として優れた特性
を佇することが分った。
Table 2 No. 2 shows that the welding tip according to the present invention has a much higher durability than the conventional examples and comparative examples, has good appearance of the welded part and good welding strength, and has excellent properties as a welding electrode tip material. I found out that I can.

(発明の効果) 以1述べたように、本発明の導電用材料は、銅ノ1(合
金粉末90%以1−と、111を述のような物質粒子お
よび1υ繊維よりなるグループから選ばれた1秤量1の
材料、合計で0.1〜10%から成り、押出しにより製
造されて成るため、押出しにより銅基合金マトリックス
中L li’l uL! $11. rlりυ繊Xイ(
h(均ニR1lllに分散されるので、導電性、耐軟化
性、1:’:+ 7!4強匹、耐摩耗H等の特性に優れ
、又押出により製造り易かつ生産性高く製造し得る利点
がある。
(Effects of the Invention) As described above, the conductive material of the present invention is selected from the group consisting of Copper No. 1 (90% or more of alloy powder), material particles such as 111, and 1υ fibers. It consists of 0.1 to 10% of materials with a total basis weight of 1, and is manufactured by extrusion.
h (Since it is uniformly dispersed in R1lll, it has excellent properties such as conductivity, softening resistance, 1:': + 7!4 strength, wear resistance H, etc., and is easy to manufacture and can be manufactured with high productivity by extrusion. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例の製造に用いられる摩擦駆動型押出
装置の例を示す断面図である。 1・・・駆動ホイール、2・・・溝、3・・・溝面、4
・・・固定/ニーブロック、5・・・内壁面、6・・・
管路、7・・・粉末供給具、8・・・後端、9・・・押
出ダイス、 10・・・混合物、11・・・押出材。 代理人 弁理士 青木秀IT・6¥へ 5誹:′f
The figure is a sectional view showing an example of a friction-driven extrusion device used for manufacturing an embodiment of the present invention. 1... Drive wheel, 2... Groove, 3... Groove surface, 4
...Fixed/knee block, 5...Inner wall surface, 6...
Pipe line, 7... Powder feeder, 8... Rear end, 9... Extrusion die, 10... Mixture, 11... Extruded material. Agent: Patent attorney Hide Aoki IT・5 complaints to 6 yen:'f

Claims (4)

【特許請求の範囲】[Claims] (1)銅基合金粉末90重量%以上と、Al_2O_3
、SiC、Si_3N_4およびCよりなるグループか
ら選ばれた物質から成る粒子および短繊維よりなるグル
ープから選ばれた1種以上の材料、合計で0.1〜10
重量%から成り、押出しにより製造されて成ることを特
徴とする導電用材料。
(1) 90% by weight or more of copper-based alloy powder and Al_2O_3
, SiC, Si_3N_4, and one or more materials selected from the group consisting of particles and short fibers, in total 0.1 to 10
% by weight, and is manufactured by extrusion.
(2)銅基合金粉末が、Zr、Cr、Co、Fe、Be
およびNiよりなるグループから選ばれた1種以上の元
素を合計で5重量%以下含む銅基合金より成る特許請求
の範囲第1項記載の導電用材料。
(2) Copper-based alloy powder contains Zr, Cr, Co, Fe, Be
2. The conductive material according to claim 1, comprising a copper-based alloy containing a total of 5% by weight or less of one or more elements selected from the group consisting of Ni and Ni.
(3)押出しが、駆動壁面とそれより面積の小さい固定
壁面とにより形成された管路を金属の加圧容器とする摩
擦駆動型押出装置を使用し、前記管路の前端より銅基合
金粉末と粒子および短繊維の一種以上の材料を供給して
行なわれ、該押出しにより前記銅基合金粉末同志を金属
結合させると共に、前記粒子および短繊維を銅中に微細
に分散させた特許請求の範囲第1項又は第2項記載の導
電用材料。
(3) Extrusion is carried out using a friction-driven extrusion device in which a conduit formed by a driving wall surface and a fixed wall surface having a smaller area is used as a pressurized metal container, and the copper-based alloy powder is extruded from the front end of the conduit. and particles and short fibers, and the extrusion causes the copper-based alloy powder to be metallically bonded to each other, and the particles and short fibers are finely dispersed in the copper. The conductive material according to item 1 or 2.
(4)導電用材料が溶接電極用チップ材料である特許請
求の範囲第1項、第2項又は第3項記載の導電用材料。
(4) The conductive material according to claim 1, 2 or 3, wherein the conductive material is a welding electrode tip material.
JP22094584A 1984-10-19 1984-10-19 Material for electric conduction Granted JPS6199206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22094584A JPS6199206A (en) 1984-10-19 1984-10-19 Material for electric conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22094584A JPS6199206A (en) 1984-10-19 1984-10-19 Material for electric conduction

Publications (2)

Publication Number Publication Date
JPS6199206A true JPS6199206A (en) 1986-05-17
JPH0523002B2 JPH0523002B2 (en) 1993-03-31

Family

ID=16759011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22094584A Granted JPS6199206A (en) 1984-10-19 1984-10-19 Material for electric conduction

Country Status (1)

Country Link
JP (1) JPS6199206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279075A (en) * 2002-06-07 2006-10-12 E I Du Pont De Nemours & Co Fibers and ribbons for use in manufacture of solar cells
CN106011700A (en) * 2016-06-27 2016-10-12 山东建筑大学 Preparing method of high-strength copper-based composite toughened by boron carbide and silicon carbide crystal whiskers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279075A (en) * 2002-06-07 2006-10-12 E I Du Pont De Nemours & Co Fibers and ribbons for use in manufacture of solar cells
CN106011700A (en) * 2016-06-27 2016-10-12 山东建筑大学 Preparing method of high-strength copper-based composite toughened by boron carbide and silicon carbide crystal whiskers

Also Published As

Publication number Publication date
JPH0523002B2 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
US2355954A (en) Powder metallurgy
KR20060122766A (en) Process for manufacturing a nanocarbon-metal composite material
JPS5970736A (en) Composite material and its production
CN103469007A (en) Copper alloy for advanced terminal connector and preparation method and application thereof
JPS6199206A (en) Material for electric conduction
CN110788520A (en) High-alloy steel wear-resistant flux-cored wire and preparation method thereof
EP0053301B1 (en) Method of producing aluminium base sintered body containing graphite
US2120562A (en) Refractory material and process of making same
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JPS6139309A (en) Hollow material and manufacture thereof
JPS616242A (en) Fiber reinforced metallic composite material
US2131475A (en) Pressure exerting electrode
US1881257A (en) Wrought metal article
CN100395362C (en) Aluminium alloy for coating underground cable and its wire making process
CN1317591A (en) Cu-C material for electric brush and its preparing process
JPS6199205A (en) Composite material for electric conduction
JPS61188025A (en) Electrode wire for electric discharge machining
US2789065A (en) Aluminum bronze weld rod
Harmukh et al. Effect of CNT-Ni-P composite coating on tribological behaviour for brake pad system
US382198A (en) Purification and alloying of copper
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
CN111101010A (en) High-strength high-conductivity copper-niobium alloy material and preparation method thereof
US3062642A (en) Aluminum bronze alloy containing vanadium and having improved wear resistance
RU2264932C1 (en) Clamp for connecting wires of contact system
JPS61108492A (en) Alumina fiber reinforced copper composite material for electrode