JPS6197932A - Compression bonded semiconductor package - Google Patents

Compression bonded semiconductor package

Info

Publication number
JPS6197932A
JPS6197932A JP59218411A JP21841184A JPS6197932A JP S6197932 A JPS6197932 A JP S6197932A JP 59218411 A JP59218411 A JP 59218411A JP 21841184 A JP21841184 A JP 21841184A JP S6197932 A JPS6197932 A JP S6197932A
Authority
JP
Japan
Prior art keywords
solder
silicon chip
crimp
alumina ceramic
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59218411A
Other languages
Japanese (ja)
Other versions
JPH0572751B2 (en
Inventor
Koichi Inoue
井上 広一
Yasutoshi Kurihara
保敏 栗原
Komei Yatsuno
八野 耕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59218411A priority Critical patent/JPS6197932A/en
Publication of JPS6197932A publication Critical patent/JPS6197932A/en
Publication of JPH0572751B2 publication Critical patent/JPH0572751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1405Shape
    • H01L2224/14051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To apply pressure for compression bonding and to do precise alignment of compression bonded terminals automatically, by employing together a plural of the compression bonded terminals and terminals connected by a minute solder group. CONSTITUTION:A compression bonded semiconductor package is comprised of an alumina ceramic substrate (dielectric substrate) 5 and a silicon chip (semiconductor substrate) 1, which are coupled electrically and mechanically, by employing together a plural of compression bonded terminals 2 on a silicon chip side and compression bonded terminals 3 on an alumina ceramic substrate side contacted with each other, and a plural of solders 4 connected. For the purpose of solder-connecting 4, on the silicon chip 1 and alumina ceramic substrate 5, silicon chip side solder electrodes 6 and alumina ceramic substrate side solder electrodes 7 are formed respectively.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体基体と誘電体基板間を電気的に結合した
圧着型半導体パンケージに係り、特に圧着のだめの加圧
及び圧着端子の正確な位置合せを必要としない圧着型半
導体パッケージに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a crimp-type semiconductor pancage that electrically connects a semiconductor substrate and a dielectric substrate, and particularly relates to pressurization of a crimp receptacle and accurate positioning of crimp terminals. This invention relates to a crimp-type semiconductor package that does not require.

〔発明の背景〕[Background of the invention]

半導体集積回路は近年ますます高密度化、高集積化に拍
車がかかり、LSIチップ(半導体基体)は大型化の傾
向が著しい。従来はLSIチップと誘電体基板間ははん
だで接続されていたが、LSIチップの大型化によりL
SIチップと誘電体基板の熱膨張係数の差に基づく熱疲
労破壊がクローズアップされるようにな!17、LSI
チップと誘電体基板の熱膨張係数の差に基づく熱疲労破
壊が原理的に発生しないパンケージ構造の一つとして圧
着型パッケージ構造が提案されはじめている。
In recent years, semiconductor integrated circuits have become increasingly dense and highly integrated, and LSI chips (semiconductor substrates) are becoming larger. Conventionally, LSI chips and dielectric substrates were connected by solder, but as LSI chips became larger, LSI
Thermal fatigue failure due to the difference in thermal expansion coefficient between SI chips and dielectric substrates has come under close scrutiny! 17.LSI
A crimp-type package structure has begun to be proposed as a type of package structure that, in principle, does not cause thermal fatigue failure due to the difference in coefficient of thermal expansion between the chip and the dielectric substrate.

圧着型パンケージ構造は大電力を扱う電力用半導体装置
ではよく用いられる構造であるが、LSIチップと誘電
体基板の結合に適用する考えはまだ一般的でなく、わず
かに特開昭56−142660号公報に示されているに
すぎない。
The crimp-type pancage structure is a structure that is often used in power semiconductor devices that handle large amounts of power, but the idea of applying it to the connection between an LSI chip and a dielectric substrate is still not common, and the idea of applying it to the connection between an LSI chip and a dielectric substrate is still not common, and the idea is that it is only used in Japanese Patent Application Laid-Open No. 56-142660. It is only indicated in the official gazette.

圧着型パッケージ構造の特長は、LSIチップと誘電体
基板の各々に設けられた圧着端子が圧着されている接続
部が接着されていないためにLSIチップと誘電体基板
の熱膨張係数の差に基づく熱疲労破壊が原理的に発生し
ない点であるが、その反面圧着端子間の接触を保つため
に何らかの手段で加圧することが必須であり、このこと
がパンケージ構造を複雑にし、実用化の妨げKなってい
る。
The feature of the crimp type package structure is based on the difference in thermal expansion coefficient between the LSI chip and the dielectric substrate because the connection parts where the crimp terminals provided on each of the LSI chip and the dielectric substrate are crimped are not bonded. Although thermal fatigue failure does not occur in principle, it is necessary to apply pressure by some means to maintain contact between crimp terminals, which complicates the pan cage structure and hinders practical application. It has become.

従来はこの点に関する認識があまり充分でなかった。そ
のため上記公知従来例でも加圧をLSIチップの背面か
ら行なう構造を採用しておシ、上記したパッケージ構造
の複雑化への対応は不光分であった。
Until now, there was not enough awareness regarding this point. For this reason, the above-mentioned conventional example also adopts a structure in which pressure is applied from the back side of the LSI chip, and it is difficult to cope with the above-mentioned complexity of the package structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は圧着型半導体パッケージにおいて、圧着
のための加圧及び圧着端子の正確な位置合せを必要とし
ない圧着型半導体パッケージを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a crimp-type semiconductor package that does not require pressurization for crimping and accurate positioning of crimp terminals.

〔発明の概要〕[Summary of the invention]

本発明の圧着型半導体パッケージは、圧着端子に加えて
圧着のための加圧及び圧着端子の正確な位置合せを自動
的に行なうために複数個の微小はんだ群による接続端子
を併用し、半導体基体と誘電体基板間を電気的かつ機械
的に結合していることを特徴とする。
The crimp-type semiconductor package of the present invention uses, in addition to crimp terminals, connection terminals made of a plurality of micro-solder groups in order to automatically apply pressure for crimp bonding and accurately align the crimp terminals. The dielectric substrate is electrically and mechanically coupled to the dielectric substrate.

一般に、はんだ(例えば鉛−錫合金、鉛−インジウム合
金、錫−銀合金等)で代表される低融点金属は圧着端子
用材料として好適な比較的高融点の金′属(金、銅、銀
、アルミニウム等)よりも熱膨張係数が太きい。
In general, low melting point metals represented by solders (e.g. lead-tin alloys, lead-indium alloys, tin-silver alloys, etc.) are metals with relatively high melting points (gold, copper, silver, etc.) that are suitable as materials for crimp terminals. , aluminum, etc.).

本発明者らはこの点に着目し、本発明では比較的高融点
の金属による圧着端子の加圧力をはんだと比較的高融点
の金属との熱膨張係数差によυ得ている。すなわち、は
んだの融点以上で圧着端子を接触させ、そのままの状態
を保ちながら常温まで冷却することによって圧着端子へ
の加圧力がはんだと比較的高融点の圧着端子金属との熱
膨張係数差により発生するのである。
The present inventors have focused on this point, and in the present invention, the pressing force of the crimp terminal made of a metal with a relatively high melting point is obtained by the difference in coefficient of thermal expansion between the solder and the metal with a relatively high melting point. In other words, by bringing the crimp terminal into contact at a temperature above the melting point of the solder and cooling it to room temperature while maintaining that state, the pressure applied to the crimp terminal is generated due to the difference in coefficient of thermal expansion between the solder and the crimp terminal metal, which has a relatively high melting point. That's what I do.

さらに、この構造ではばんだの溶融時にはんだの表面張
力によって自動的に圧着端子の相対位置が正確に合わせ
られるという利点も合わせもっている。
Furthermore, this structure also has the advantage that the relative positions of the crimp terminals are automatically adjusted accurately by the surface tension of the solder when the solder melts.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に従って説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図に示すように、本発明による圧着型半導体パッケ
ージはアルミナセラミック基板(誘電体基板)5とシリ
コンチップ(半導体基板)1とを複数個のシリコンチッ
プ側圧着端子2とアルミナセツミック基板側圧着端子3
の相互接触及び複数個のけんだ4による接続を併用する
ことにより電気的及び機械的に結合した構造体である。
As shown in FIG. 1, the crimp type semiconductor package according to the present invention connects an alumina ceramic substrate (dielectric substrate) 5 and a silicon chip (semiconductor substrate) 1 to a plurality of crimp terminals 2 on the silicon chip side and on the alumina ceramic substrate side. Crimp terminal 3
It is a structure that is electrically and mechanically coupled by using mutual contact between the two and connection by a plurality of solders 4.

はんだ4により結合させるためにシリコンチップl及び
アルミナセラミック基板5にはそれぞれシリコンチップ
側はんだ行電極6及びアルミナセラミック基板側はんだ
行電極7が形成されている。
For bonding by solder 4, a silicon chip side solder row electrode 6 and an alumina ceramic substrate side solder row electrode 7 are formed on the silicon chip 1 and the alumina ceramic substrate 5, respectively.

本発明の実施例ではシリコンチップ1の寸法は一辺Lo
zの正方形、シリコンチップ側圧着端子2及びアルミナ
セラミック基板側圧着端子3はシリコンチップlの周辺
にのみ配置し、その数は一辺当920個、合計80個、
はんだ4の数はシリコンチップ中央部に4個、シリコン
チップ側圧着端子2及びアルミナセラミック基板側圧着
端子3はいずれも直径200μm1最小ピッチ400μ
m1高さ50μm1シリコンチツプ側はんだ行電極6及
びアルミナセラミック基板側はんだ行電極7はいずれも
直径200μm1ピツチ400μm、一体化後のシリコ
ンチップ1とアルミナセラミック基板50間隙はシリコ
ンチップ側圧着端子2とアルミナセラミック基板側圧着
端子3の高さの合計に等しく、100μmである。
In the embodiment of the present invention, the size of the silicon chip 1 is Lo on one side.
Z square, silicon chip side crimp terminals 2 and alumina ceramic substrate side crimp terminals 3 are arranged only around the silicon chip l, the number is 920 per side, 80 in total,
The number of solders 4 is 4 at the center of the silicon chip, and the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate side are both 200 μm in diameter and 400 μm in minimum pitch.
m1 height 50 μm1 Silicon chip side solder row electrode 6 and alumina ceramic substrate side solder row electrode 7 both have a diameter of 200 μm and 1 pitch of 400 μm, and the gap between silicon chip 1 and alumina ceramic substrate 50 after integration is between silicon chip side crimp terminal 2 and alumina ceramic substrate 50. It is equal to the total height of the crimp terminals 3 on the ceramic substrate side, which is 100 μm.

ここで、本発明による半導体パッケージの製造工程につ
いて第2図に従って説明する。
Here, the manufacturing process of the semiconductor package according to the present invention will be explained with reference to FIG.

第2図(a)に示すように、内部の回路を形成した後、
金のめつきによシリコンチップ側圧着端子2が形成され
、シリコンチップ側はんだ(鉛95重量%、錫5重量%
)8がシリコンチップ側はんだ行電極6の上に形成され
たシリコンチップ1を、すでに金のめつきによりアルミ
ナセラミック基板側圧着端子3が形成され、グリーンシ
ート法によシアルミナセラミック基板側はんだ行電極7
、その表面には印刷されたはんだの再溶融により鉛95
重量%、錫5重量%のアルミナセラミック基板側はんだ
9が形成されたアルミナセラミック基板5に対向させ、
ハーフミラ−を用いて位置合せする。
As shown in FIG. 2(a), after forming the internal circuit,
The silicon chip side crimp terminal 2 is formed by gold plating, and the silicon chip side solder (lead 95% by weight, tin 5% by weight)
) 8 is a silicon chip 1 formed on a solder row electrode 6 on the silicon chip side, which has already been plated with gold to form a crimp terminal 3 on the alumina ceramic substrate side, and is attached to a solder row on the sialumina ceramic substrate side using the green sheet method. Electrode 7
, the surface is made of lead 95 by remelting the printed solder.
% by weight, facing an alumina ceramic substrate 5 on which an alumina ceramic substrate-side solder 9 containing 5% by weight of tin was formed,
Align using a half mirror.

次に第2図(b)に示すように、シリコンチップ1とア
ルミナセラミック基板5がシリコンチップ側はんだ8と
アルミナセラミック基板側はんだ9とで接触した状態で
は位置合せ精度の関係からシリコンチップ側圧着端子2
とアルミナセラミック基板側圧着端子3は相対的に少し
位置ずれしているのが通例である。ここでシリコンチッ
プ側はんだ8の体積を6〜9XIO−’mm”として、
シリコンチップ側圧着端子2とアルミナセラミック基板
側圧着端子3が接触しないようにする。
Next, as shown in FIG. 2(b), when the silicon chip 1 and the alumina ceramic substrate 5 are in contact with the silicon chip side solder 8 and the alumina ceramic substrate side solder 9, the silicon chip side is crimped due to alignment accuracy. terminal 2
It is normal for the crimp terminals 3 on the alumina ceramic substrate side to be slightly misaligned relative to each other. Here, assuming that the volume of the solder 8 on the silicon chip side is 6 to 9XIO-'mm'',
The crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate side are prevented from coming into contact with each other.

更に第2図(C)に示すようにこの状態で炉中で鉛95
重量%、錫5重量−のはんだの液相温度よシ少し高い温
度(350C)まで加熱するとはんだの表面張力によシ
少しずれていたシリコンチップ側圧着端子2とアルミナ
セラミック基板側圧着端子3との相対位置が正確に合う
(自己整合)。その時点で図に示すようにシリコンチッ
プ1の裏面からばね11による加圧力を加圧部材10.
12を介して加える。このままではんだ4の融点以下ま
で冷却すると、熱膨張係数の差によシリコンチップ側圧
着端子2とアルミナセラミック基板側圧着端子3の間に
加圧力が働き、第1図に示すようなパンケージ構造が完
成する。
Furthermore, as shown in Figure 2 (C), 95% lead is added in the furnace in this state.
When heated to a temperature slightly higher than the liquidus temperature (350C) of the solder containing 5% by weight of tin, the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate side were slightly misaligned due to the surface tension of the solder. The relative positions of the two match exactly (self-alignment). At that point, as shown in the figure, the pressure applied by the spring 11 is applied from the back surface of the silicon chip 1 to the pressure member 10.
Add via 12. If the solder 4 is cooled down to below its melting point, pressure will be applied between the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate due to the difference in thermal expansion coefficients, resulting in a pan cage structure as shown in Fig. 1. Complete.

この構造ではシリコンチップ1とアルミナセラミック基
板5の熱膨張係数の差にもとづく熱疲労が懸念されるシ
リコンチップ1周辺部ではシリコンチップ1とアルミナ
セラミック基板5が自由に伸縮でき、熱応力が発生しな
い圧着構造(シリコンチップ側圧着端子2とアルミナセ
ラミック基板側圧着端子3は接触しているだけで接着は
していない)をとっているため、熱疲労は問題にならな
い。しかも、シリコンチップ1とアルミナセラミック基
板5の熱膨張係数の差によシ熱疲労が発生する可能性の
ある接着構造はシリコンチップ1の中央部のシリコンチ
ップ1とアルミナセラミック基板5の相対的な変位の少
ない領域に限られており、はんだ4による接着部も電気
的な接続点として充分の信頼性を確保している。はんだ
4を配置する領域はシリコンテップ1の中央を中心とす
る直径5簡の円内であれば光分な信頼性を確保できる。
In this structure, the silicon chip 1 and the alumina ceramic substrate 5 can freely expand and contract in the area around the silicon chip 1, where thermal fatigue due to the difference in thermal expansion coefficient between the silicon chip 1 and the alumina ceramic substrate 5 is a concern, and no thermal stress is generated. Since the crimp structure is adopted (the crimp terminal 2 on the silicon chip side and the crimp terminal 3 on the alumina ceramic substrate side are only in contact but not bonded), thermal fatigue is not a problem. Moreover, the bonding structure that may cause thermal fatigue due to the difference in thermal expansion coefficient between the silicon chip 1 and the alumina ceramic substrate 5 is due to the relative difference between the silicon chip 1 and the alumina ceramic substrate 5 in the center of the silicon chip 1. It is limited to a region with little displacement, and the bonded portion by the solder 4 also ensures sufficient reliability as an electrical connection point. Optical reliability can be ensured as long as the area where the solder 4 is placed is within a circle with a diameter of 5 squares centered on the center of the silicon tip 1.

本発明の他の実施例を第3図に従って説明する。Another embodiment of the present invention will be described with reference to FIG.

第3図に示すように、本実施例では第1図に示した実施
例と異なシ、シリコンチップ1の周辺部(正確には四隅
の4個所)にはんだ4を配置した。
As shown in FIG. 3, this embodiment differs from the embodiment shown in FIG. 1 in that solder 4 is placed around the periphery of the silicon chip 1 (more precisely, at four corners).

シリコンチップ1の寸法、シリコンチップ側圧着端子2
及びアルミナセラミック基板側圧着端子3の寸法及びピ
ッチ、また、製造プロセスは第1図及び第2図に示した
実施例と同じであるためここでは省略する。
Dimensions of silicon chip 1, crimp terminal 2 on silicon chip side
The dimensions and pitch of the crimp terminals 3 on the alumina ceramic substrate side and the manufacturing process are the same as those in the embodiment shown in FIGS. 1 and 2, and therefore will not be described here.

この構造の先に述べた実施例に対する利点を以下に列挙
する。
The advantages of this structure over the previously described embodiments are listed below.

(I)第2図(b)のプロセスにおいて、シリコンチッ
プ側はんだ8のはんだ量がばらついた場合を想定する。
(I) In the process shown in FIG. 2(b), assume that the amount of solder 8 on the silicon chip side varies.

このプロセスでは(イ)シリコンチップ側圧着端子2と
アルミナセラミック基板側圧着端子3が絶対に接触しな
いこと、(o)シリコンチップ側はんだ8とアルミナセ
ラミック基板側はんだ9が必ず接触すること、の両条件
を同時に満足しなければならないが、第4図(a)に示
すように先に述べた実施例においてシリコンチップ側は
んだ81が5×10−’++m”、シリコンチップ側は
んだ82が9×10″″4削3の場合にはシリコンチッ
プ側圧着端子2とアルミナセラミック基板側圧着端子3
が接触する部分があり、しかもシリコンチップ側はんだ
81がアルミナセラミック基板側はんだ9に接触してい
ないという問題点がある。これに対して、第4図(b)
ではシリコンチップ側まんだ83のはんだ量をシリコン
チップ側はんだ81と同じ5X10−’m’、シリコン
チップ側ばんだ84のはんだ量をシリコンチップ側はん
だ82と同じ9X 10−−’ m” としても(イ)
と(ロ)の条件を同時に満足している。
In this process, (a) the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate never come into contact, and (o) the solder 8 on the silicon chip side always comes into contact with the solder 9 on the alumina ceramic substrate side. The conditions must be satisfied at the same time, but as shown in FIG. 4(a), in the above-mentioned embodiment, the silicon chip side solder 81 is 5 x 10-'++ m'', and the silicon chip side solder 82 is 9 x 10 In the case of ``4 cut 3'', crimp terminal 2 on the silicon chip side and crimp terminal 3 on the alumina ceramic board side.
However, there is a problem in that the solder 81 on the silicon chip side is not in contact with the solder 9 on the alumina ceramic substrate side. On the other hand, Fig. 4(b)
Now, let's assume that the amount of solder on the silicon chip side solder 83 is the same as the silicon chip side solder 81, 5X10-'m'', and the amount of solder on the silicon chip side solder 84 is the same as the silicon chip side solder 82, 9X 10-'m". (stomach)
and (b) are satisfied at the same time.

このように、本実施例ではシリコンチップ側はんだ8の
はんだ量の許容範囲が大きい(4〜9×10″’ mm
” 、先に述べた実施例では6〜9×10−’+m3 
)。
As described above, in this embodiment, the allowable range of the amount of solder 8 on the silicon chip side is large (4 to 9 x 10'' mm
”, in the embodiment described above, 6 to 9×10−′+m3
).

(tl)はんだ4の位置がシリコンチップ1の中心から
離れているだめ、はんだ4による自己整合時に働くモー
メントが大きく、第2図の(2)から第2図の(3)F
−至る過程ではんだ4による自己整合(自動位置合せ)
が先に述べた実施例よりもより確実に行なわれる。
(tl) Since the position of the solder 4 is far from the center of the silicon chip 1, the moment acting during self-alignment by the solder 4 is large, and from (2) in Fig. 2 to (3) F in Fig. 2
- Self-alignment (automatic alignment) by solder 4 in the process
is performed more reliably than in the previously described embodiments.

これらの実施例から、当然のことながら、シリコンチッ
プlの中央部と周辺部にばんだ4を配置した構造あるい
はシリコンチップ1内の中央部、周辺部にかかわらずは
んだ4を均一にあるいは不均一に配置し71c構造もあ
りうることは簡単に類推できる。しかも、はんだ4によ
りシリコンチップ側圧着端子2、アルミナセラミック基
板側圧着端子3の間にGapを与える必要性からはんだ
4の数は1個のシリコンチップ1につき最低3個必要な
ことも明白である。
From these examples, it is obvious that the structure in which the solder 4 is arranged at the center and the periphery of the silicon chip 1 or the structure in which the solder 4 is arranged uniformly or unevenly in the center and the periphery of the silicon chip 1 It can be easily inferred that a 71c structure is also possible. Furthermore, it is clear that the number of solders 4 is at least three per silicon chip 1 because it is necessary to provide a gap between the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate side by the solder 4. .

また、はんだ4はシリコンチップ側圧着端子2、アルミ
ナセラミック基板側圧着端子3の熱膨張係数より大きい
材質であれば鉛95重量%、錫5重量%に限らず、鉛−
錫系、錫−銀系、金−錫系、錫−ビスマス系、鉛−イン
ジウム系等、一般に用いられているはんだ材から適当に
選んでもよい。
In addition, if the solder 4 is made of a material with a coefficient of thermal expansion larger than that of the crimp terminal 2 on the silicon chip side and the crimp terminal 3 on the alumina ceramic substrate side, the solder 4 is not limited to 95% by weight of lead and 5% by weight of tin.
The solder material may be appropriately selected from commonly used solder materials such as tin-based, tin-silver-based, gold-tin-based, tin-bismuth-based, lead-indium-based, etc.

また、シリコンチップ側圧着端子2、アルミナセラミッ
ク基板側圧着端子3は金に限らずはんだ4の熱膨張係数
より小さい材質であれば銀、銅、アルミニウム等、さら
にこれら同志またはこれらと池の材料との複合材料であ
ってもよいことも自明である。
In addition, the crimp terminals 2 on the silicon chip side and the crimp terminals 3 on the alumina ceramic substrate side are not limited to gold, but may be made of silver, copper, aluminum, etc. as long as they have a coefficient of thermal expansion smaller than that of the solder 4. It is also obvious that the material may be a composite material.

次に、アルミナセラミック基板5の材質はアルミナセラ
ミックに限らず、誘電体であれば有機樹脂、無機セラミ
ック(S ic、 SiN、ムライト等1、ガラス等で
もよいことも明らかである。
Next, it is clear that the material of the alumina ceramic substrate 5 is not limited to alumina ceramic, but may be any dielectric material such as organic resin, inorganic ceramic (SiC, SiN, mullite, etc.1), glass, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数個の微小はんだ群による接続端子
を圧着端子と併用することにより、圧着のための加圧及
び圧着端子の正確な位置合せが自動的に行なわれ、半導
体基体と誘電体基板間を電気的かつ機械的に結合した圧
着型半導体パッケージを得ることができる。
According to the present invention, by using a connection terminal made of a plurality of micro solder groups together with a crimp terminal, pressure for crimping and accurate positioning of the crimp terminal are automatically performed, and the semiconductor substrate and dielectric A crimp-type semiconductor package in which the substrates are electrically and mechanically coupled can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す断面図、第2図(
a)〜(C)は第1図に示した本発明による実施例の製
造工程を示す断面図、第3図は本発明による他の実施例
を示す断面図、第4図(a)(b)は、第1図、第3図
に示す実施例におけるはんだによる結合状況を示す図で
ある。 1・・・シリコンチップ、2・・・シリコンチップ側圧
着端子、3・・・アルミナセラミック基板側圧着端子、
4・・・はんだ、5・・・アルミナセラミック基板。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 (
a) to (C) are cross-sectional views showing the manufacturing process of the embodiment according to the present invention shown in FIG. 1, FIG. 3 is a cross-sectional view showing another embodiment according to the present invention, and FIGS. ) is a diagram showing a state of solder connection in the embodiment shown in FIGS. 1 and 3. 1... Silicon chip, 2... Silicon chip side crimp terminal, 3... Alumina ceramic substrate side crimp terminal,
4...Solder, 5...Alumina ceramic board.

Claims (1)

【特許請求の範囲】 1、半導体基体と誘電体基板間を複数個の微小圧着端子
群により電気的に結合する圧着型半導体パッケージにお
いて、該微小圧着端子群に加えて該半導体基体と該誘電
体基板の間に3個以上の微小はんだ群を配置したことを
特徴とする圧着型半導体パッケージ。 2、特許請求の範囲第1項において、該微小はんだ群の
配置される領域が該半導体基体の中央を中心とし、直径
5mmの円内であることを特徴とする圧着型半導体パッ
ケージ。 3、特許請求の範囲第1項において、該微小はんだ群の
配置される領域が該半導体基体の周辺部の四隅であるこ
とを特徴とする圧着型半導体パッケージ。
[Claims] 1. In a crimp-type semiconductor package in which a semiconductor substrate and a dielectric substrate are electrically coupled by a plurality of groups of micro crimp terminals, in addition to the group of micro crimp terminals, the semiconductor substrate and the dielectric substrate are A crimp-type semiconductor package characterized by having three or more micro solder groups arranged between a substrate. 2. The crimp-type semiconductor package according to claim 1, wherein the region in which the solder particles are arranged is within a circle having a diameter of 5 mm centered on the center of the semiconductor substrate. 3. The crimp-type semiconductor package according to claim 1, wherein the regions where the solder micro-groups are arranged are the four corners of the periphery of the semiconductor substrate.
JP59218411A 1984-10-19 1984-10-19 Compression bonded semiconductor package Granted JPS6197932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59218411A JPS6197932A (en) 1984-10-19 1984-10-19 Compression bonded semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59218411A JPS6197932A (en) 1984-10-19 1984-10-19 Compression bonded semiconductor package

Publications (2)

Publication Number Publication Date
JPS6197932A true JPS6197932A (en) 1986-05-16
JPH0572751B2 JPH0572751B2 (en) 1993-10-12

Family

ID=16719489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59218411A Granted JPS6197932A (en) 1984-10-19 1984-10-19 Compression bonded semiconductor package

Country Status (1)

Country Link
JP (1) JPS6197932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700715A (en) * 1994-06-14 1997-12-23 Lsi Logic Corporation Process for mounting a semiconductor device to a circuit substrate
WO2014136241A1 (en) * 2013-03-07 2014-09-12 東北マイクロテック株式会社 Laminate and method of producing same
JP2017028156A (en) * 2015-07-24 2017-02-02 新光電気工業株式会社 Mounting structure and manufacturing method therefor
JP2018195664A (en) * 2017-05-16 2018-12-06 富士通株式会社 Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700715A (en) * 1994-06-14 1997-12-23 Lsi Logic Corporation Process for mounting a semiconductor device to a circuit substrate
WO2014136241A1 (en) * 2013-03-07 2014-09-12 東北マイクロテック株式会社 Laminate and method of producing same
JP2017028156A (en) * 2015-07-24 2017-02-02 新光電気工業株式会社 Mounting structure and manufacturing method therefor
JP2018195664A (en) * 2017-05-16 2018-12-06 富士通株式会社 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0572751B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US6208025B1 (en) Microelectronic component with rigid interposer
JP2999992B2 (en) Multilayer solder seal band for semiconductor substrate and method thereof
EP0532297B1 (en) Process for flip-chip connection of a semiconductor chip
JP3262497B2 (en) Chip mounted circuit card structure
US5057969A (en) Thin film electronic device
US5814890A (en) Thin-type semiconductor package
US5736790A (en) Semiconductor chip, package and semiconductor device
US20170033024A1 (en) Method For Mounting An Electrical Component In Which A Hood Is Used, And A Hood That Is Suitable For Use In This Method
US6396155B1 (en) Semiconductor device and method of producing the same
US5115964A (en) Method for bonding thin film electronic device
KR20080038028A (en) Method for mounting electronic component on substrate and method for forming solder surface
JPS5873127A (en) Solder melting connection for ic chip
JPS6197932A (en) Compression bonded semiconductor package
Zama et al. Flip chip interconnect systems using copper wire stud bump and lead free solder
JPH0258793B2 (en)
US6404063B2 (en) Die-to-insert permanent connection and method of forming
JPH10214919A (en) Manufacture of multi-chip module
EP0191434A2 (en) Improved solder connection between microelectronic chip and substrate and method of manufacture
JPH0888297A (en) Electronic component and electronic component-connecting structure
JPH10209591A (en) Wiring board
JPS63168028A (en) Fine connection structure
JP2741611B2 (en) Substrate for flip chip bonding
JPH10116927A (en) Connecting terminal and method for its formation
JP3024506B2 (en) Connection method between Si chip and package
JPH0437137A (en) Semiconductor chip or semiconductor device and manufacture thereof