JPS6197543A - Compensation circuit for semiconductor pressure sensor - Google Patents

Compensation circuit for semiconductor pressure sensor

Info

Publication number
JPS6197543A
JPS6197543A JP59219785A JP21978584A JPS6197543A JP S6197543 A JPS6197543 A JP S6197543A JP 59219785 A JP59219785 A JP 59219785A JP 21978584 A JP21978584 A JP 21978584A JP S6197543 A JPS6197543 A JP S6197543A
Authority
JP
Japan
Prior art keywords
temperature
data
compensation
pressure sensor
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59219785A
Other languages
Japanese (ja)
Inventor
Isao Takizawa
功 滝沢
Kenji Nuri
塗 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59219785A priority Critical patent/JPS6197543A/en
Publication of JPS6197543A publication Critical patent/JPS6197543A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • G01L9/065Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices with temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain compensated pressure data excellent in the massproducibility and reproducibility, by converting a voltage signal outputted from a semiconductor pressure sensor and a voltage signal detected from an induction element into a pressure data and a temperature data respectively to perform an arithmetic processing thereof. CONSTITUTION:A voltage signal varying with changes in the pressure to be measured outputted from a semiconductor pressure sensor is converted into a pressure data PD with an A/D converter 10 to be fed into an arithmetic unit 12 while a voltage signal varying with changes in the ambient temperature detected from a thermosensitive element 3 is converted into a temperature data TD with a A/D converter 11 to be fed into an arithmetic unit 12. The arithmetic unit 12 reads out compensation value data corresponding to the temperature data fed from a memory means to perform a compensation arithmetic processing of the pressure data and outputs the results of the computation as compensated pressure data. This can elevate the massproductivity and reproducibility and facilitate the monolithic designing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 との発明は半導体圧力センサの出力に温度補償、非直線
性補償および4点オフセット補償等の補償を施す補償回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The invention relates to a compensation circuit that performs compensation such as temperature compensation, nonlinearity compensation, and four-point offset compensation on the output of a semiconductor pressure sensor.

〔従来技術〕[Prior art]

周知のように、半導体圧力センサは例えばn観シリコ/
からなるダイヤフラム上に、弘個のp”1検出抵抗を拡
牧あるいはイオン打込み技術によって形成し、これらの
検出抵抗をブリッジ接続して被測定圧力に対応する慣出
戒圧を優るようにしtものであるが、演出抵抗の抵抗値
が11A度によって著しく変動するため、すなわち検出
べ圧の!ML度依存性が大であるため、温度補償を施す
ことが不可欠であり、°また、検出精度の向上を図るた
めには非直線性補償や零点オフセット補償を施す必要も
める。この場合、補償方法としては櫨々の方法が提案さ
れているが、大別して、能動素子を用いた方法と、受動
素子を用いた方法の2aりがある。
As is well known, semiconductor pressure sensors are, for example, n-view silicon/
A large number of p"1 detection resistors are formed by expansion or ion implantation technology on a diaphragm consisting of However, since the resistance value of the production resistor varies significantly with 11A degrees, that is, the detection pressure has a large dependence on !ML degrees, it is essential to perform temperature compensation. In order to improve the performance, it is also necessary to perform nonlinearity compensation and zero point offset compensation.In this case, various compensation methods have been proposed, but they can be roughly divided into methods using active elements and methods using passive elements. There are two methods using 2a.

第3図は受動素子である金属皮膜抵抗を用いて穐哩補償
、感度(スパン)補正、レベル補正を行なう場合の一例
であり、ダイヤフラム上に形成されている噴出抵抗R,
−R,からなるブリッジ回路に金属皮膜抵抗のように温
度係数の小さな抵抗からな□る補償抵抗Rp I+ R
ps + Raを各々付加して温度補償を行ない、ブリ
ッジ回路出力の温度変化、すなわち、温度ドリフトを最
小としている。なお、Aは定電流源である。次に、第を
図は能動素子であるオペアンプ(0perationa
l Amplifier )を用いて温度補償、感度補
正、レベル補正を行なう場合の一例であり、ブリッジ回
路の出力を増・嘔する差gh壇・嶋回路を構成するオペ
アンプ1の出力端子と、次段の反転増幅回路を構成する
オペアンプ2の反転入力端子との間にサーミスタ等の感
温素子3を介在させ、この感温素子3によって温度補償
を行なっている。また、オペアンプ2の反転入力端子と
出力端子との間に接続された可変抵抗2aによって感度
i、i’fを行なっている。また、第5図は能動素子で
あるオペアンプを用いて非直線性補償を行なう場合の一
列であり、差動増櫂器1の出力電圧の一部を抵抗5tl
−介して正4還させることにより、ブリッジ供給電圧t
−増加させ、こnにより、被測定圧力が大となるに従っ
てブリッジ回路の出力電圧が直線的に増加せずに理倫値
よりも低い1直となってしまうというような非直線的な
特性を補償している。
Fig. 3 is an example of a case where a metal film resistor, which is a passive element, is used to perform range compensation, sensitivity (span) correction, and level correction.
−R, and a compensation resistor Rp I+ R made of a resistance with a small temperature coefficient such as a metal film resistor.
ps + Ra is added to perform temperature compensation, thereby minimizing the temperature change in the bridge circuit output, that is, the temperature drift. Note that A is a constant current source. Next, Figure 1 shows an operational amplifier (operationa), which is an active element.
This is an example of temperature compensation, sensitivity correction, and level correction using an Amplifier. A temperature sensing element 3 such as a thermistor is interposed between the inverting input terminal of an operational amplifier 2 constituting an inverting amplifier circuit, and temperature compensation is performed by this temperature sensing element 3. Furthermore, the sensitivities i and i'f are determined by a variable resistor 2a connected between the inverting input terminal and the output terminal of the operational amplifier 2. Moreover, FIG. 5 shows a row in which nonlinearity compensation is performed using an operational amplifier, which is an active element, and a part of the output voltage of the differential booster 1 is connected to a resistor 5tl.
- the bridge supply voltage t
- This increases the non-linear characteristic in which the output voltage of the bridge circuit does not increase linearly as the pressure to be measured increases, but becomes a voltage lower than the theoretical value. Compensated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、哨3図に示したtllL度補償抵抗Rpl。 By the way, the tllL degree compensation resistance Rpl shown in Figure 3.

Rps + Rs r Roのような受wJ素子を用い
た補償回路は高精度かつ高・信頼性が得られる反面、各
抵抗Ru5e Rps e Rs + Roの抵抗値を
周囲の温度および圧力を種々に変化させながら試行錯誤
的に調くして決定しなければならないtめ、このM4整
作業に非常に時間がかかり、を産性に適さない欠点があ
つtoまた、第弘図および第5図に示したオペア/プ1
,2のような能動素子を用いた補償回路は、シリコンプ
ロセス技術を利用して、感PIt、部と一体的に作成す
ることができ、量産性に優でいるという利点かめる反面
、回路定数の再現性に問題があり、そのため、検出精度
や信頼性の低下を招くという欠点があったう この発明は上述した事情に鑑み、壕帷性に優れかつ再現
性にも優れた半導体圧力センナの補償回路t−提供する
ことを目的として−る。
A compensation circuit using a receiving wJ element such as Rps + Rs r Ro can achieve high accuracy and high reliability, but on the other hand, the resistance value of each resistor Ru5e Rps e Rs + Ro can be changed by varying the surrounding temperature and pressure. This M4 adjustment work is very time consuming and has the disadvantage of not being suitable for productivity, as shown in Figures 1 and 5. Au pair/P1
, 2 can be fabricated integrally with the sensor PIt using silicon process technology, and has the advantage of being easy to mass-produce. In view of the above-mentioned circumstances, the present invention provides compensation for a semiconductor pressure sensor that has excellent reproducibility and excellent reproducibility. The purpose of this invention is to provide a circuit.

〔問題点t−解決するための手段〕[Problem t-Means for solving]

この発明は半纏体圧力センサから出力されるアナログ信
号を1亘次デジタルの圧力データに変換する第1の変換
手段と、前記半導体圧力センサに近接して設けらnた測
温手段と、前記測温手段から出力されるアナログ信号を
順次デジタルの温度データに変換する第二の一&僕手段
と、前記11度データの容置に各々対応した各補償値デ
ータが予め記憶されている記憶手段と、前記記憶手段か
ら前記温度データに対応した補償値データを読み出し、
この視み出された補償値データに基づいて前記圧力デー
タに補償演算処理t−症す演算手段とを具備することを
42としている。
The present invention includes a first converting means for converting an analog signal output from a semi-integrated pressure sensor into first-order digital pressure data, a temperature measuring means provided adjacent to the semiconductor pressure sensor, and a second first and second means for sequentially converting analog signals output from the temperature means into digital temperature data; and a storage means in which compensation value data corresponding to the storage of the 11 degree data is stored in advance. , reading compensation value data corresponding to the temperature data from the storage means;
A computation means 42 is provided which performs compensation computation processing on the pressure data based on the determined compensation value data.

〔作用〕[Effect]

半導体圧力センサから出力さする被測定圧力に応じて変
化するアーナロ・グ信号が第1の変換手段べよって幀次
デジタルの圧力データに変換さnると共に、測温手段か
ら出力される半導体圧力センサの温度に応じて変化する
アナログ信号が第ツの変換手段によって順次デジタルの
温度データに変換され、これらの圧力データおよび温1
更データが演算手段に供給されると、演算手段が供給さ
れた温度データに対応する補償値データを記憶手段から
読み出して圧力データに補償演算処理を会し、その演算
結果を補償済圧力データとして出力する。
The semiconductor pressure sensor outputs an analog signal that changes according to the pressure to be measured outputted from the semiconductor pressure sensor and converts it into digital pressure data by the first conversion means, and outputs it from the temperature measurement means. The analog signal that changes according to the temperature of
When the updated data is supplied to the calculation means, the calculation means reads compensation value data corresponding to the supplied temperature data from the storage means, performs compensation calculation processing on the pressure data, and uses the calculation result as compensated pressure data. Output.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成を示すブロック図で
ある。この図において、10はダイヤフラム上に形成さ
n7’C検出抵抗R1〜R4をブリッジ接続してなる半
導体圧力センサから出力されるアナログ電圧信号を順次
デジタルの圧力データPDに変換して出力するA/Dコ
ンバータ、11は半導体圧力センサに近接配唆されたサ
ーミスタ等の感温素子3から出力されるアナログ地圧信
号を式次デジタルの温度データTDVCK4して出力す
るA/Dコンバータである。また、12は?寅4摸7纜
であり、記憶1ff13に予め格納されている温度補償
用演痺処理プログラム、および、非直線性補償用演算処
理プログラムに従ってA/Dコンバータ10から供給さ
れる圧力データPDに補償演算処理を施し、その演算結
果を補償済圧力データLPDとして出力する。記憶装f
13には上述した各演算処理プログラムの他に、第一図
(イ)および(ロ)に示す温度補相リニアライズテーブ
ル13aおよび非直線性補償用リニアライズテーブル1
3bが各々格納されている。温度補償用IJ =アライ
ズテーブル13aにはぎ温素子3によって検出される被
測定温度に対応した温度データTDに基づいて温度補償
済データを行なう際に用いられる各温度補償値c、 、
 c、 、 Cs・・・が各々記憶されており、また、
非直線性補償用リニアライズテーブル13bには、温度
補償済圧力データPD’に基づいて非直線性補償演算処
理を行なう際に用いられる各非直線性補償’IiD、 
、 pm 、 pm・・・が各々記憶されている。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In this figure, reference numeral 10 denotes an A/R that sequentially converts an analog voltage signal output from a semiconductor pressure sensor formed on a diaphragm and has n7'C detection resistors R1 to R4 connected in a bridge to digital pressure data PD and outputs the digital pressure data PD. A D converter 11 is an A/D converter that converts an analog ground pressure signal outputted from a temperature sensing element 3 such as a thermistor placed in close proximity to a semiconductor pressure sensor into digital temperature data TDVCK4 and outputs it. Also, what about 12? Compensation calculations are performed on the pressure data PD supplied from the A/D converter 10 in accordance with the temperature compensation numbing processing program stored in advance in the memory 1ff13 and the nonlinearity compensation calculation processing program. The processing is performed and the calculation results are output as compensated pressure data LPD. Memory device f
13 includes, in addition to the above-mentioned arithmetic processing programs, a temperature complementary linearization table 13a and a nonlinearity compensation linearization table 1 shown in FIG. 1 (a) and (b).
3b are stored respectively. Temperature compensation IJ = each temperature compensation value c used when performing temperature compensated data based on the temperature data TD corresponding to the measured temperature detected by the temperature element 3 in the rise table 13a,
c, , Cs... are stored respectively, and
The linearization table 13b for nonlinearity compensation includes each nonlinearity compensation 'IiD,
, pm, pm... are stored respectively.

以上の構成において、半導体圧力センサから出力される
被測定圧力の変化に伴って変化する出力電圧信号がA/
Dコンバータ10によって圧力データPDに変換されて
演算装′t12に供給さnると共に、感温素子3から検
出される周囲@度の変化に伴って変化する電圧信号がA
/Dコンノく一タ11によって温度データTDに変換さ
れて演痺装置12に供給されると、演算装置12は次の
手順で補償演算処理を実行する。まず、温度補償用リニ
アライズテーブル13&から温度データTDに対応する
温度補償値Cx (CxはC,、C,、C,・・・の内
の何れか)をw!1.み出し、この温度補償値Cxを圧
力データPDに加算して温度補償済圧力データPD’を
得る。次に、非直線性補償用リニアライズテーブル13
bから温度補償済データPD’に対応する非直線性補償
値DX (DXはpt 、 D、 、 pm・・・の内
の何れか)を読み出し、この温度補償値Dxを温度補償
済圧力データPD’に加゛庫し、これにより得られた加
算演算結果を補償済圧力データPLDとして外部装置へ
出力する。この結束、半導体圧力センサの出力に温度補
償と非直線性補償が崗されたデジタルの補償済圧力デー
タLPDが外部裟電へ供給される。
In the above configuration, the output voltage signal that changes with the change in the pressure to be measured output from the semiconductor pressure sensor is A/
The D converter 10 converts the pressure data PD into pressure data PD and supplies it to the arithmetic unit 't12. At the same time, a voltage signal that changes with changes in the ambient temperature detected from the temperature sensing element 3 is converted into pressure data PD.
When the temperature data TD is converted into temperature data TD by the /D controller 11 and supplied to the numbing device 12, the arithmetic device 12 executes compensation arithmetic processing according to the following procedure. First, the temperature compensation value Cx (Cx is any one of C, , C, , C, . . . ) corresponding to the temperature data TD is obtained from the temperature compensation linearization table 13&. 1. The temperature compensated value Cx is added to the pressure data PD to obtain temperature compensated pressure data PD'. Next, the linearization table 13 for nonlinearity compensation
The nonlinearity compensation value DX (DX is any one of pt, D, pm...) corresponding to the temperature compensated data PD' is read from b, and this temperature compensation value Dx is used as the temperature compensated pressure data PD. ', and outputs the resulting addition calculation result to an external device as compensated pressure data PLD. Digital compensated pressure data LPD, in which temperature compensation and nonlinearity compensation are applied to the output of this bundled semiconductor pressure sensor, is supplied to an external power source.

〔効果〕〔effect〕

以上、説明したように、この発明によれば、半導体圧力
センサから出力されるアナログ信号を順温手段と、前記
測温手段から出力されるアナログ信号を順欠デジタルの
温度データに変換する第2の変換手段と、前記温度デー
タの各位に各々対応した各補償イ直データが予め記憶さ
れている記憶手段と、前記記憶手段から前記温度データ
に対応した補償値データを読み出し、この読み出された
補償値データに基づいて前記圧力データに補償演算処理
を施すKA手段とを設けたので、従来のアナログ回路に
よって構成された補償回路では困難であったtS性の向
上と再現性の向上の双方を同時達成することができ、さ
らに、モノリシック化も容易に図ることができる効果が
得られる。
As described above, according to the present invention, the analog signal output from the semiconductor pressure sensor is connected to the temperature control means, and the second temperature measurement device converts the analog signal output from the temperature measurement means into sequential digital temperature data. a converting means, a storage means in which compensation value data corresponding to each position of the temperature data are stored in advance, and compensation value data corresponding to the temperature data is read from the storage means, and the compensation value data corresponding to the temperature data is read out from the storage means. Since a KA means for performing compensation calculation processing on the pressure data based on the compensation value data is provided, it is possible to improve both the tS performance and the reproducibility, which were difficult to achieve with a compensation circuit configured by a conventional analog circuit. This can be achieved simultaneously, and furthermore, it is possible to obtain the effect that it can be easily made into a monolithic structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明一実施例の構成を示すブロック図、第
二図(イ)および(ロ)は第1図に示す記憶装置13内
に格納されている温度補償用リニアライズテーブルおよ
び非直線性補償用リニアライズテーブルを説明する几め
の図、第3図は従来の温度補償抵抗(受動素子)を付加
した半導体圧力センナの構成を示す回路図、第弘図は従
来の能1j!h素子等によって(成され北温度補償回路
を付加し定半導体圧カセンサの構成を示す回路図、第5
図は従来の能動素子等によって構成された非直線性補償
回路を付加した半導体圧力センサの構成を示す回路図で
ある。 R,−R−・・・・・・検出抵抗、3・・・・・・感温
素子、10゜11・・・・・・A/Dコンバータ、12
・・・・・・演算@電、13・・・・・・記憶装置う 第3図
FIG. 1 is a block diagram showing the configuration of an embodiment of this invention, and FIGS. 2(a) and 2(b) show a linearization table for temperature compensation stored in the storage device 13 shown in FIG. Fig. 3 is a circuit diagram showing the configuration of a semiconductor pressure sensor to which a conventional temperature compensation resistor (passive element) is added, and Fig. 3 is a schematic diagram explaining the linearization table for temperature compensation. Circuit diagram illustrating the configuration of a constant semiconductor pressure sensor with a temperature compensation circuit added (constructed by h elements etc.), No. 5
The figure is a circuit diagram showing the configuration of a semiconductor pressure sensor to which a non-linearity compensation circuit made up of conventional active elements and the like is added. R, -R-...Detection resistor, 3...Temperature sensing element, 10°11...A/D converter, 12
・・・・・・Calculation@Electronic, 13・・・・・・Storage device Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 半導体圧力センサから出力される被測定圧力に応じて変
化するアナログ信号を順次デジタルの圧力データに変換
する第1の変換手段と、前記半導体圧力センサに近接し
て設けられた測温手段と、前記測温手段から出力される
前記半導体圧力センサの温度に応じて変化するアナログ
信号を順次デジタルの温度データに変換する第2の変換
手段と、前記温度データの各値に各々対応した各補償値
データが予め記憶されている記憶手段と、前記記憶手段
から前記温度データに対応した補償値データを読み出し
、この読み出された補償値データに基づいて前記圧力デ
ータに補償演算処理を施す演算手段とを具備することを
特徴とする半導体圧力センサの補償回路。
a first converting means that sequentially converts an analog signal that changes according to the measured pressure output from the semiconductor pressure sensor into digital pressure data; a temperature measuring means provided close to the semiconductor pressure sensor; a second conversion means that sequentially converts an analog signal that changes according to the temperature of the semiconductor pressure sensor output from the temperature measurement means into digital temperature data; and compensation value data corresponding to each value of the temperature data. storage means in which is stored in advance, and calculation means for reading compensation value data corresponding to the temperature data from the storage means and performing compensation calculation processing on the pressure data based on the read compensation value data. A compensation circuit for a semiconductor pressure sensor, comprising:
JP59219785A 1984-10-19 1984-10-19 Compensation circuit for semiconductor pressure sensor Pending JPS6197543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219785A JPS6197543A (en) 1984-10-19 1984-10-19 Compensation circuit for semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219785A JPS6197543A (en) 1984-10-19 1984-10-19 Compensation circuit for semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS6197543A true JPS6197543A (en) 1986-05-16

Family

ID=16740969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219785A Pending JPS6197543A (en) 1984-10-19 1984-10-19 Compensation circuit for semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS6197543A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218813A (en) * 1986-03-20 1987-09-26 Hokoku Kikai Kk Pressure detector
JPS6372538U (en) * 1986-10-29 1988-05-14
JPS6388733U (en) * 1986-11-29 1988-06-09
EP0290574A1 (en) * 1986-11-24 1988-11-17 Bourns Instruments, Inc. Pressure transducer with integral digital temperature compensation
JPH02170013A (en) * 1988-12-23 1990-06-29 Azusa Denshi Kk Method and device for temperature correction of electronic measuring instrument
US5111690A (en) * 1990-07-09 1992-05-12 Westinghouse Electric Corp. Valve stem load monitoring system with means for monitoring changes in the valve yoke elongation
JPH06331647A (en) * 1993-05-25 1994-12-02 Nec Corp Semiconductor acceleration sensor and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965742A (en) * 1982-10-08 1984-04-14 Fuji Electric Co Ltd Digital manometer
JPS59122924A (en) * 1982-12-28 1984-07-16 Toshiba Corp Pressure measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965742A (en) * 1982-10-08 1984-04-14 Fuji Electric Co Ltd Digital manometer
JPS59122924A (en) * 1982-12-28 1984-07-16 Toshiba Corp Pressure measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218813A (en) * 1986-03-20 1987-09-26 Hokoku Kikai Kk Pressure detector
JPS6372538U (en) * 1986-10-29 1988-05-14
EP0290574A1 (en) * 1986-11-24 1988-11-17 Bourns Instruments, Inc. Pressure transducer with integral digital temperature compensation
JPS6388733U (en) * 1986-11-29 1988-06-09
JPH02170013A (en) * 1988-12-23 1990-06-29 Azusa Denshi Kk Method and device for temperature correction of electronic measuring instrument
US5111690A (en) * 1990-07-09 1992-05-12 Westinghouse Electric Corp. Valve stem load monitoring system with means for monitoring changes in the valve yoke elongation
JPH06331647A (en) * 1993-05-25 1994-12-02 Nec Corp Semiconductor acceleration sensor and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH0546488B2 (en)
JPH0697169B2 (en) Sensor signal temperature compensation method
JPS645360B2 (en)
JP2579143B2 (en) Method of digital correction of process variable sensor and process variable transmitter therefor
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPH02269912A (en) Semiconductor composite sensor and signal processing method
JP3292182B2 (en) Low frequency noise removal method and CMOS sensor circuit
JPH0664678B2 (en) Analog input device
JP2898500B2 (en) Pressure sensor with temperature characteristic correction
JP2572783Y2 (en) Gas detector
JPH05110350A (en) Input offset voltage correcting device
JPS6147371B2 (en)
JP2948958B2 (en) Transducer circuit
JPS61209331A (en) Input apparatus of temperature measuring resistor
JPH1164135A (en) Sensor
KR100213941B1 (en) Digital-type thermo couple signal converter amplifying error compensating method
JPH0511479Y2 (en)
JP2000214030A (en) Pressure sensor circuit
JPH0631390Y2 (en) Digital thermometer
JPH0843208A (en) Infrared detection circuit
JPS6111837Y2 (en)
JP2000146620A (en) Sensor device
JPH06265424A (en) Compensating device for semiconductor pressure convertor
JPH06109677A (en) Humidity detection circuit
JPH0476047B2 (en)