JPS6197191A - Process for growing thin film of epitaxial single crystal - Google Patents

Process for growing thin film of epitaxial single crystal

Info

Publication number
JPS6197191A
JPS6197191A JP21663284A JP21663284A JPS6197191A JP S6197191 A JPS6197191 A JP S6197191A JP 21663284 A JP21663284 A JP 21663284A JP 21663284 A JP21663284 A JP 21663284A JP S6197191 A JPS6197191 A JP S6197191A
Authority
JP
Japan
Prior art keywords
thin film
single crystal
solid solution
temperature
epitaxial single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21663284A
Other languages
Japanese (ja)
Other versions
JPH0329757B2 (en
Inventor
Koichi Kugimiya
公一 釘宮
Yuichi Hirofuji
裕一 広藤
Naoto Matsuo
直人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21663284A priority Critical patent/JPS6197191A/en
Publication of JPS6197191A publication Critical patent/JPS6197191A/en
Publication of JPH0329757B2 publication Critical patent/JPH0329757B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled thin film having low degree of defect and contg. different element in high concentration by irradiating a constitutional element of an epitaxial single crystal with a specified element and forming solid solution by heating the surface for a short time by irradiating simultaneously with energy beam intermittently and repeatedly. CONSTITUTION:A wafer of a constitutional element (e.g. Si) of an epitaxial single crystal thin film is inserted to a molecular beam epitaxial growth device, and irradiated with Si beam and beam of an element (e.g. Ga) for forming solid solution, simultaneously to continue epitaxial growth, then irradiated with energy beam (e.g. Ar laser) pulsatorily for a short time to heat the surfacial layer extremely close the surface (e.g. 0.1-0.3mum) alone to form solid solution and to activate. By repeating the procedures, the titled thin film having large thickness and contg. a useful different element in the form of solid solution at high concn. concn. is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜型電子部品の基板として広く活用される
。特に半導体装置においても応用し得る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is widely utilized as a substrate for thin film electronic components. In particular, it can be applied to semiconductor devices.

従来例の構成とその問題点 低温での単結晶薄膜の形成は種々の電子部品材料として
の応用があり、そのため、各種の方式が提案されテイル
。I、PCVD、PECVD、MBEなgがある。
Conventional configurations and problems The formation of single-crystal thin films at low temperatures has applications in various electronic component materials, and various methods have been proposed for this purpose. There are I, PCVD, PECVD, and MBE.

工業的に確立された技術であるLPCVD法によるエピ
成長では、一般的に1060℃以上、望ましくは110
0°C以上の温度が必要であシ、このため、基板構成元
素の相互拡散が顕著であり、この低減が大きな問題点と
なっていた。
In epitaxial growth using the LPCVD method, which is an industrially established technology, the temperature is generally 1060°C or higher, preferably 110°C.
A temperature of 0° C. or higher is required, and as a result, mutual diffusion of the constituent elements of the substrate is significant, and reduction of this has been a major problem.

又、技術的には進展してきたMBE(分子線エピ)法に
おいても、600’C程度の低温で、エピ成長が可能と
なってきたが、高濃度に、Ga 、 Sb等の必須構成
元素を導入し得ない状態にある。これは欠陥を低減し、
析出させない状態にGa 、 Sb等を導入するには基
板を高温にしなければならないが、高温にすると、Ga
、Sbなどの耐着係数が大巾に減少し、(100°Cで
1桁以上変化する。)従って高濃度にし得ないといった
矛盾がある。この改善のため、イオン化法などが試みら
れているが、十分な効果を得ていない。
Furthermore, with the technologically advanced MBE (molecular beam epitaxy) method, it has become possible to perform epitaxial growth at a low temperature of about 600'C. It is in a state where it cannot be introduced. This reduces defects and
In order to introduce Ga, Sb, etc. in a state where they do not precipitate, the substrate must be heated to a high temperature, but if the temperature is raised, Ga
There is a contradiction in that the adhesion resistance coefficients of , Sb, etc. decrease drastically (change by more than one order of magnitude at 100° C.), and therefore cannot be made to a high concentration. Ionization methods have been attempted to improve this problem, but have not been sufficiently effective.

発明の目的 本発明は、以上の低温、高濃度固溶を両立させ、欠陥の
少ない、良質のエピ単結晶薄膜を提供することにある。
OBJECTS OF THE INVENTION The object of the present invention is to provide a high-quality epitaxial single-crystal thin film that is compatible with the above-mentioned low temperature and high concentration solid solution, and has few defects.

発明の構成 本発明は、エピ単結晶薄膜の構成元素、主たる元素及び
導入すべき元素を低温で高濃度に導入する。この時、間
けつ的に極く短時間のみ表面層にエイ、ルギービーム(
例えばレーザ光、電子線)を照射して吸収せしめ、その
結果、極く表面層のみを高温に短時間熱し、この効果に
よって、高濃度に導入されている元素の固溶化、活性化
を行う。
Structure of the Invention According to the present invention, constituent elements, main elements, and elements to be introduced into an epitaxial single crystal thin film are introduced in high concentration at low temperature. At this time, rays and lugie beams (
For example, laser light, electron beam) is irradiated and absorbed, and as a result, only the very surface layer is heated to a high temperature for a short period of time, and this effect causes the elements introduced at a high concentration to become a solid solution and become activated.

次の瞬間には冷却され、元の基板温度に戻シ、引き続き
高濃度の元素導入を行う。
In the next moment, the substrate is cooled down to return to its original temperature, and elements are subsequently introduced at a high concentration.

以上の操作を繰り返すことにより、厚い、高濃度に有用
な異種元素の固溶したエピ成長単結晶薄膜が形成される
By repeating the above operations, a thick epitaxially grown single crystal thin film in which a useful foreign element is dissolved in a solid solution at a high concentration is formed.

実施例の説明 エピ単結晶薄膜の評価が非常に進んでおシ、その品質を
非常に厳しく評価できるSiのエピ成長を例にとって説
明する。さらにその中でも欠陥が生じ易すい(111)
面を使用する。
DESCRIPTION OF EMBODIMENTS The following describes an example of epitaxial growth of Si, where the evaluation of epitaxial single crystal thin films is very advanced and its quality can be evaluated very strictly. Furthermore, defects are more likely to occur among them (111)
Use the surface.

分子線エピ成長装置にN(111)2−4ΩmのSi 
ウェハーを挿入し、先ず、850’C,2分間Si  
ビームを0.2人/S照射することによって清浄化した
。この後、温度を600〜7oQ′Cに下け、Si  
ビームを3八/Sに増やし、且つ、クヌーセンセルから
Ga ビームを同時に照射せしめた。
N(111) 2-4Ωm Si in molecular beam epitaxial growth equipment
Insert the wafer and first heat the Si at 850'C for 2 minutes.
Cleaning was performed by irradiating the beam at 0.2 persons/S. After this, the temperature was lowered to 600~7oQ'C, and the Si
The beam was increased to 38/S, and a Ga beam was simultaneously irradiated from the Knudsen cell.

セル温度は650〜860°Cに種々変化させた。The cell temperature was varied from 650 to 860°C.

この状態でエピ成長を続け、厚さ約1μmに成長した後
、ジルトールエッチによシ、欠陥を検査した。なお濃度
についてはシート抵抗値から計算した。Gaを共存させ
ない場合には、積層欠陥密度(S、F、D・)及び微小
欠陥密度(E、P、D、)は共に1♂/ crd以下の
非常に小さい観察限界以下であったのに対して、以上の
例では、重大な欠陥であるSFDでも、第1図に示すよ
うに、Ga濃度が高くなるにつれ、1o5/108/c
dと急増している。
Epitaxial growth was continued in this state, and after the film had grown to a thickness of about 1 μm, it was subjected to dilthole etching and inspected for defects. Note that the concentration was calculated from the sheet resistance value. When Ga was not coexisting, both the stacking fault density (S, F, D) and micro defect density (E, P, D,) were below the very small observation limit of 1♂/crd. On the other hand, in the above example, even in SFD, which is a serious defect, as the Ga concentration increases, as shown in Figure 1, 1o5/108/c
d, which is rapidly increasing.

EPDについてはこの10〜50倍存在している。EPD is present 10 to 50 times more than this.

これに対し、本発明では上記のエピ成長中にアルゴンレ
ーザ(波長的0.5μm)をパルス状に照射せしめた。
In contrast, in the present invention, argon laser (wavelength: 0.5 μm) is irradiated in a pulsed manner during the epitaxial growth.

1パルス当シ約o、sl/cAを30秒に1度照射した
。この結果、SFDはほぼ観察されなくなり第2図に示
すように、E、P、D、においても1〜2桁にのぼるか
なりの改良がみられた。
Approximately 0, sl/cA per pulse was irradiated once every 30 seconds. As a result, SFD was almost no longer observed, and as shown in FIG. 2, significant improvements of 1 to 2 orders of magnitude were observed in E, P, and D.

次にP(111)3〜sΩmのSt ウェハーを用いて
、同様の実験を行った。清浄化は800’C1分30秒
、St  ビーム照射0.3八/Sで行ないエピ成長温
度を600〜700℃、Si  ビーム4八/S 、S
b用のクヌーセンセル温度26o−300’Cの範囲で
種々に変化させたエピ単結晶薄膜の評価結果を第3図に
示す。Gaよシも(第1図)少し減少しているが、SF
Dは非常に多い。
Next, a similar experiment was conducted using a St wafer with P(111)3 to sΩm. Cleaning was performed at 800'C for 1 minute and 30 seconds, St beam irradiation at 0.38/S, epitaxial growth temperature at 600-700°C, Si beam at 48/S, S.
FIG. 3 shows the evaluation results of epitaxial single crystal thin films at various Knudsen cell temperatures ranging from 26o to 300'C. Ga Yoshi (Figure 1) has also decreased slightly, but SF
There are a lot of D's.

これに対し、本発明では、連続発振型アルゴンレーザ照
射(ビーム径100μmφ、走査速度1 m/Sec 
In contrast, in the present invention, continuous wave argon laser irradiation (beam diameter 100 μmφ, scanning speed 1 m/Sec
.

ビーム出力9W、走査ステップ200μmのインターレ
ース方式、走査範囲5crn角)を同時に施こしながら
sb照射を行った所、SFDはほぼ皆無となり、E、P
、D、においても1o/crIi以下に下がるなどの大
巾な改良が認められた。
When sb irradiation was performed while simultaneously applying a beam output of 9 W, an interlace method with a scanning step of 200 μm, and a scanning range of 5 crn angle), there was almost no SFD, and E, P
, D also showed a significant improvement, such as a decrease to 1o/crIi or less.

以上の大巾な改良の原理を次に推測する。前述したよう
に、高濃度に異種元素を導入するには、例えば第5図に
示すように、Ga、Sbのいずれにしても低温にしなく
てはならない。温度が100°C上昇すると耐着係数は
ほぼ1.6桁低下する。ところが、このような高濃度に
低温で異種元素を導入すると、格子間に析出し易すく、
これが大きな否を生じ、欠陥を生ずる。当初微小欠陥で
あったものが、成長と共に大きくなり、積層欠陥として
明白に認められるようになる。欠陥を防止するためには
、高温にすればよいが、高温にすれば、濃度をあげるこ
とができないという矛盾が生じている。
The principle of the above-mentioned drastic improvement is speculated as follows. As mentioned above, in order to introduce a different element at a high concentration, the temperature must be lowered to either Ga or Sb, as shown in FIG. 5, for example. When the temperature increases by 100°C, the adhesion resistance coefficient decreases by approximately 1.6 orders of magnitude. However, when foreign elements are introduced at such high concentrations at low temperatures, they tend to precipitate between the lattices.
This causes major failures and defects. What was initially a microscopic defect becomes larger as it grows, and becomes clearly recognized as a stacking fault. In order to prevent defects, it is sufficient to raise the temperature, but a contradiction arises in that if the temperature is raised, the concentration cannot be increased.

一方、上述のような短時間のごく表面層の加熱を考える
。レーザのエネルギーは極く表面層のみに吸収され、表
面の0.1〜0.3μm位までの厚さで顕著な温度上昇
が生ずると推定される。この温度上昇は、第6図に一例
を示すように、基板温度600°Cから0.2m5eC
位で1000′C程度に上昇し、5m5eC位でほぼ元
のe o O”Cに戻ると推定される。
On the other hand, consider heating the very surface layer for a short time as described above. It is estimated that the laser energy is absorbed only in the surface layer, and a significant temperature increase occurs in the thickness of about 0.1 to 0.3 μm on the surface. This temperature rise is 0.2m5eC from the substrate temperature of 600°C, as shown in Fig. 6.
It is estimated that the temperature rises to about 1000'C at about 5m5eC and returns to almost the original e o O'C at about 5m5eC.

この高温になっている時間、約1 m5ecは、−周期
の基板温度にある時間、約30秒に対しては1/30.
000の短時間である。即ち、低温の基板温度で高濃度
に異種元素が導入されるが、高温では逆にほとんど陰暦
しない。このため、原理的には濃度が幾分低下すること
になるが、その量は全く無視できる量である。所が、こ
の短時間の高温処理の効果は、欠陥からみると大きな効
果がある。
The time during which the temperature is at this high temperature, approximately 1 m5ec, is 1/30 of the time during which the substrate temperature is at a -period, approximately 30 seconds.
000 for a short time. That is, a foreign element is introduced at a high concentration at a low substrate temperature, but on the contrary, there is almost no lunar calendar at a high temperature. Therefore, in principle, the concentration will decrease somewhat, but the amount is completely negligible. However, the effect of this short-time high-temperature treatment is significant in terms of defects.

即ち、高温になシ、瞬時に格子振動が大きくなると同時
に、異種元素を格子内に取り込んで固溶してしまい、又
、微小欠陥核を焼鈍してしまう。
That is, if the temperature is not high, the lattice vibration becomes large instantaneously, and at the same time, foreign elements are incorporated into the lattice and form a solid solution, and micro defect nuclei are annealed.

以上の操作により、異種元素の析出や微小欠陥核が成長
しない点ですべて消去することができる。
The above operations can completely eliminate the precipitation of foreign elements and the growth of microdefect nuclei.

そのため、優れたエピ単結晶薄膜が形成されると考えら
れる。
Therefore, it is considered that an excellent epitaxial single crystal thin film is formed.

なお、以上の説明で明らかになったように、エネルギー
ビームとしては電子線でもよい。
Note that, as has been made clear from the above explanation, the energy beam may be an electron beam.

発明の効果 以上の説明で明らかなように、本発明の方法によシ、高
濃度に異種元素を含有し、且つ低欠陥であるエピ成長単
結晶薄膜を形成することができた。
Effects of the Invention As is clear from the above explanation, the method of the present invention was able to form an epitaxially grown single crystal thin film containing a high concentration of a different element and having a low number of defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図にそれぞれGa、Sbを異種元素として
導した場合の、従来例2本発明例における欠陥密度を示
す図、第5図は耐着係数の温度依存性を、第6図はレー
ザ照射後の試料表面の温度変化を示す図である。 第1図 一一−i濃友 第2図 一一φら係度 第 3 rM −5b J浅 Sb yk度 第 5 因 第6図 □う】Vノl <、0cノ
Figures 1 to 4 are diagrams showing the defect density in the conventional example and the present invention example when Ga and Sb are introduced as different elements, Figure 5 shows the temperature dependence of the adhesion resistance coefficient, and Figure 6 shows the temperature dependence of the adhesion resistance coefficient. FIG. 2 is a diagram showing temperature changes on the sample surface after laser irradiation. Fig. 1 1-i No. 2 Fig. 11 φ et coefficient 3rd rM -5b J shallow Sb yk degree 5th factor Fig. 6 □ U] V nol <, 0c no

Claims (1)

【特許請求の範囲】[Claims] エピ単結晶の構成元素それに固溶すべき元素を照射する
と同時に、間けつ的に繰り返しエネルギービームを照射
し、極く表面を短時間加熱することを特徴としたエピ単
結晶薄膜の形成方法。
A method for forming an epitaxial single crystal thin film characterized by irradiating constituent elements of the epitaxial single crystal with elements to be solid-dissolved and at the same time irradiating an energy beam repeatedly intermittently to heat the surface for a very short period of time.
JP21663284A 1984-10-16 1984-10-16 Process for growing thin film of epitaxial single crystal Granted JPS6197191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21663284A JPS6197191A (en) 1984-10-16 1984-10-16 Process for growing thin film of epitaxial single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21663284A JPS6197191A (en) 1984-10-16 1984-10-16 Process for growing thin film of epitaxial single crystal

Publications (2)

Publication Number Publication Date
JPS6197191A true JPS6197191A (en) 1986-05-15
JPH0329757B2 JPH0329757B2 (en) 1991-04-25

Family

ID=16691473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21663284A Granted JPS6197191A (en) 1984-10-16 1984-10-16 Process for growing thin film of epitaxial single crystal

Country Status (1)

Country Link
JP (1) JPS6197191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312152A2 (en) * 1987-10-16 1989-04-19 Philips Electronics Uk Limited A method of modifying a surface of a body using electromagnetic radiation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814644A (en) * 1981-07-20 1983-01-27 Nec Corp Clock generating circuit
JPS5992997A (en) * 1982-11-18 1984-05-29 Nec Corp Method for forming thin film using molecular beam epitaxial growth method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814644A (en) * 1981-07-20 1983-01-27 Nec Corp Clock generating circuit
JPS5992997A (en) * 1982-11-18 1984-05-29 Nec Corp Method for forming thin film using molecular beam epitaxial growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312152A2 (en) * 1987-10-16 1989-04-19 Philips Electronics Uk Limited A method of modifying a surface of a body using electromagnetic radiation
EP0312152A3 (en) * 1987-10-16 1991-01-30 Philips Electronics Uk Limited A method of modifying a surface of a body using electromagnetic radiation

Also Published As

Publication number Publication date
JPH0329757B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
US5316615A (en) Surfactant-enhanced epitaxy
US4555301A (en) Formation of heterostructures by pulsed melting of precursor material
US4357183A (en) Heteroepitaxy of germanium silicon on silicon utilizing alloying control
FR2604562A1 (en) SILICON-INSULATING SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
Tiku et al. Chemical vapor deposition of ZnO epitaxial films on sapphire
KR20150033687A (en) Method for producing hybrid substrates, and hybrid substrate
FR2720189A1 (en) Method for producing a structure with a low dislocation rate comprising an oxide layer buried in a semiconductor substrate.
US5453153A (en) Zone-melting recrystallization process
WO2014026292A1 (en) Arbitrarily thin ultra smooth film with built-in separation ability and method of forming the same
JPH09260449A (en) Crystalline defect evaluation of silicon single crystalline substrate
JPS6197191A (en) Process for growing thin film of epitaxial single crystal
JPS5821818B2 (en) Method for manufacturing semiconductor single crystal film
JPH01108379A (en) Production of large particle polycrystalline film
JPS5821824B2 (en) Manufacturing method of semiconductor device
JPS6326541B2 (en)
JP2003068744A (en) Silicon wafer manufacturing method, silicon wafer, and soi wafer
JP2742854B2 (en) Semiconductor thin film manufacturing method
JPS6185815A (en) Method for formation of polycrystalline silicon film
JP2742855B2 (en) Semiconductor thin film manufacturing method
RU2032242C1 (en) Process of manufacture of laser target of cathode-ray tube on base of monocrystal of semiconductor of a 002b - 006 type
Leamy Laser annealing and epitaxy
Hardeman et al. Oxide removal from silicon wafers studied by transient mass spectrometry and X-ray photoelectron spectroscopy
Cho et al. Solid phase epitaxial growth of GaAs on Si substrates
JPS5892227A (en) Gettering for crystal defect