JPS6196621A - Manufacture of vacuum breaker contactor - Google Patents

Manufacture of vacuum breaker contactor

Info

Publication number
JPS6196621A
JPS6196621A JP21899885A JP21899885A JPS6196621A JP S6196621 A JPS6196621 A JP S6196621A JP 21899885 A JP21899885 A JP 21899885A JP 21899885 A JP21899885 A JP 21899885A JP S6196621 A JPS6196621 A JP S6196621A
Authority
JP
Japan
Prior art keywords
manufacturing
mixture
approximately
bismuth
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21899885A
Other languages
Japanese (ja)
Inventor
デンジル マルカム アトキンソン
ピーター メルキン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VACUUM INTAARAPUTAAZU Ltd
Original Assignee
VACUUM INTAARAPUTAAZU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VACUUM INTAARAPUTAAZU Ltd filed Critical VACUUM INTAARAPUTAAZU Ltd
Publication of JPS6196621A publication Critical patent/JPS6196621A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacture Of Switches (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は真空式回路しゃ断器、特にこの種の真空式回路
しゃ断器の一部を構成する接触子構造体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vacuum circuit breaker, and more particularly to a method for manufacturing a contact structure forming a part of this type of vacuum circuit breaker.

従来の技術 一般に、真空式回路しゃ断器は内部に分離自在な接触子
を設けた真空絶縁エンペロブからな考 る。接触子が係合する閉位置と、接触子が分離すると共
に、アークギャップが間に生じる開位置との間で接触子
は可動自在である。該しゃ断器を使用した回路を付勢し
ながら、接触子を係脱すると、接触子光面間にアークが
生じ始める。
BACKGROUND OF THE INVENTION In general, a vacuum circuit breaker is a vacuum insulated envelope having a detachable contactor therein. The contacts are movable between a closed position where the contacts are engaged and an open position where the contacts are separated and an arc gap is created therebetween. When the contacts are engaged and disconnected while energizing a circuit using the breaker, an arc begins to occur between the optical surfaces of the contacts.

電流や接触子の誤動作が生じる種々な条件下では、アー
クが生じる結果、接触子材料の一部が溶融・蒸発するこ
とがある。この場合、高圧下において接触子を接触させ
ると、アーク発生時に生成した溶融接触子材料のため、
溶着部が生じることがある。また、接触子が閉じる最初
の数ミリ秒間の間にサージ電流が生じ、これもまた接触
子の溶着な引起す。溶着部を破壊して、接触子を開ける
ために必要な力の大きさは前記誤電流を含む多べのファ
クター、例えば接触面積など、及び接触子の材質に左右
される。分離可能な接触子の容易な動作を妨害する結果
、該真空しゃ断器を開けることができなくなる点で、こ
れらは問題がある。
Under various conditions where electrical current or contact malfunction occurs, arcing may result in the melting and vaporization of a portion of the contact material. In this case, when the contacts are brought into contact under high pressure, due to the melted contact material generated when the arc occurs,
Welds may occur. Additionally, surge currents occur during the first few milliseconds of contact closure, which also causes contact welding. The amount of force required to break the weld and open the contact depends on a number of factors, including the erroneous current, such as the contact area, and the material of the contact. These are problematic in that they interfere with the easy operation of the separable contacts, resulting in the inability to open the vacuum breaker.

この問題に対して提案されている解決法のひとつは接触
子の溶着特性を調節し、これによって生じる溶着部の強
度を十分に低くして、溶着が生じる接触子材料の表面を
過度に歪曲、あるいは変形させずに、溶着部を簡単に破
壊させることである。しかし、接触子材料の基本的特性
、即ち低いチョッピング性や低い耐食性を含む、すぐれ
た電流しゃ断能力、高い耐電圧性及び低い電気抵抗など
が動作時に変化しないようにする必要がある。
One proposed solution to this problem is to adjust the weld properties of the contact so that the strength of the resulting weld is sufficiently low that the surface of the contact material on which the weld occurs is not excessively distorted. Alternatively, it is possible to easily destroy the welded portion without deforming it. However, it is necessary to ensure that the fundamental properties of the contact material, such as good current interrupting ability, high voltage resistance and low electrical resistance, including low chopping and low corrosion resistance, do not change during operation.

ひとつの方法では、主に極めて強靭な材料を利用し1.
この材料の粉末状粒子からなる焼結網状体を形成し、こ
の後少量の別な成分を含浸させて、各成分の特性間に妥
協点を求めている。
One method primarily utilizes extremely strong materials to:1.
A sintered network of powdered particles of this material is formed and then impregnated with small amounts of other components to find a compromise between the properties of each component.

この種の材料の代表例についていえば、高い融点をもち
、これによって電極の溶着傾向を最小限に抑制できるこ
とが特徴であるクロムなどの耐火性金属からなるものを
主成分として用いることである。例えば、クロムからな
る純粋な焼結耐火性金属接触子は所要の導電性を付与し
ないし、またチョッピング性かつ高い耐電圧性も付与し
ない。これら特性は焼結母材に導電性がすぐれ、しかも
チョッピング性の低い材料を含浸すれば付与できるが、
これら材料は銅や銀などのように、耐食性が低く、そし
て耐電圧性も低い。
A typical example of this type of material is to use as the main component a refractory metal such as chromium, which has a high melting point and is characterized by the ability to minimize the tendency of electrodes to weld. For example, pure sintered refractory metal contacts made of chromium do not provide the required electrical conductivity, nor do they provide chopping and high voltage resistance. These characteristics can be imparted by impregnating the sintered base material with a material that has excellent conductivity and low chopping properties.
These materials, like copper and silver, have low corrosion resistance and low voltage resistance.

例えば、イギリス特許第1,194,674号明細書、
米国特許第3.960.554号明細書及び同第4.0
48゜117号明細書忙よってクロム/銅接触子はよく
知られている。いずれの場合も、まずクロムをプレスし
て母材にしてから、銅を含浸する。米国特許第4,04
8,117号明細書においては、真空環境下において「
耐溶着」性を示す「耐溶着」性材料である成分を接触子
材料に使用している。
For example, British Patent No. 1,194,674,
U.S. Patent No. 3.960.554 and U.S. Patent No. 4.0
Chromium/copper contacts are well known from US Pat. No. 48,117. In both cases, the chromium is first pressed into the base material and then impregnated with copper. U.S. Patent No. 4,04
In the specification of No. 8,117, in a vacuum environment, "
A component that is a "weld-resistant" material is used in the contact material.

この場合、予め冷間プレスしてから焼結しておいたクロ
ム母材に含浸する前に0.3%〜2%のビスマスを銅に
溶解している。脆弱な金属間相を形成するため、溶着部
の延性を低下させ、従って溶着部の簡単に破壊できる鉛
、テルル、アンチモン、タングステンなどの元素の一例
はビスマスである。
In this case, 0.3% to 2% bismuth is dissolved in the copper before impregnation into the chromium matrix, which has been previously cold pressed and sintered. Bismuth is an example of an element such as lead, tellurium, antimony, tungsten, etc., which forms a brittle intermetallic phase and thus reduces the ductility of the weld, thus making it easier to fracture the weld.

ところが、接触子の成分、すなわち耐火性金属、導電性
のすぐれた金属及び脆化剤をすべて粉末として混合して
から、冷間プレスすると、真空環境下において「耐溶着
」性を付与するために必要な脆化剤の量をかなり減少さ
せることが可能なことが見出された。
However, when the components of the contact, that is, the refractory metal, the highly conductive metal, and the embrittling agent, are all mixed together as powder and then cold pressed, it becomes difficult to provide "welding resistance" in a vacuum environment. It has been found that it is possible to significantly reduce the amount of embrittlement agent required.

発明の要約 すなわち、本発明は導電性の高い、粉末状の金属と、粉
末状の脆化剤及び粉末状の耐火材料を、混合物の全質量
に対して脆化剤0.25質量%未満の割合で混合し、理
論最大値に対して9゜9以上の密度に混合物を冷間プレ
スし、次に理論最大値に対して97%以上の密度に焼結
接触子を冷間コイニングする工程からなる真空しゃ断器
接触子の製造方法を提供するものである。
SUMMARY OF THE INVENTION That is, the present invention combines a highly conductive powdered metal, a powdered embrittlement agent, and a powdered refractory material in an amount of less than 0.25% by weight of the embrittlement agent based on the total weight of the mixture. From the step of mixing in proportions, cold pressing the mixture to a density of 9°9 or more with respect to the theoretical maximum value, and then cold coining the sintered contact to a density of 97% or more with respect to the theoretical maximum value. The present invention provides a method for manufacturing a vacuum breaker contactor.

発明の好適な実施態様 本発明の好適な実施態様においては、導電性の高い金属
は銅で、耐火性金属はクロムである。
Preferred Embodiment of the Invention In a preferred embodiment of the invention, the highly conductive metal is copper and the refractory metal is chromium.

脆化剤としてはビスマスが好ましいが、鉛、テルル、タ
リウム、アンチモンまたはタングステンのいずれも使用
でき、場合によってはこれらの混合物も使用できる。
Bismuth is preferred as the embrittlement agent, but any of lead, tellurium, thallium, antimony or tungsten can be used, and in some cases mixtures thereof can also be used.

粒度が好ましくはほぼ100μ以下の銅粉をまず粒度が
ほぼ40μ以下のビスマスと混合する。
Copper powder, preferably having a particle size of approximately 100 microns or less, is first mixed with bismuth having a particle size of approximately 40 microns or less.

次に、この基本的な混合物を粒度が好ましくは2.2μ
以下のクロム粉と混合する。上記母材混合物のクロムに
対する比率は好ましくは母材混合物40〜90質量%に
対してクロム60〜10%の範囲にあり、最も好ましく
は母材混合物ほぼ75%に対してクロム25%である。
This basic mixture is then mixed with a particle size of preferably 2.2μ
Mix with chrome powder below. The ratio of the matrix mixture to chromium is preferably in the range 60-10% chromium to 40-90% matrix mixture, most preferably 25% chromium to approximately 75% matrix mixture.

好ましくはまた、最大理論値に対してほぼ93%の密度
にまで混合物をまず冷間プレスし、約950〜1050
℃の範囲内にある温度で真空焼結してから、最大理論値
に対してほぼ98%の密度に冷間コイニングする。
Preferably also, the mixture is first cold pressed to a density of approximately 93% of the maximum theoretical value, with a density of approximately 950 to 1050
Vacuum sintering at a temperature in the range of 0.degree. C. followed by cold coining to a density of approximately 98% of maximum theoretical value.

以下、添付図面について本発明による真空しゃ断器接触
子の製造方法の一例を説明す°る。
An example of a method for manufacturing a vacuum breaker contactor according to the present invention will be described below with reference to the accompanying drawings.

この実施例では1粒度が100μ未満の銅粉1をまず粒
度が40μ未満のビスマス粉3と完全に混合する。次に
、母材混合物475質量%に対して残部ビスマスという
比率で粒度がほぼ200μ以下のクロム粉2とこの母材
混合物4を完全に混合する。この混合物中のビスマス3
の量は0.15質量%である。
In this example, copper powder 1 having a grain size of less than 100 microns is first thoroughly mixed with bismuth powder 3 having a grain size of less than 40 microns. Next, the base material mixture 4 is completely mixed with chromium powder 2 having a particle size of approximately 200 μm or less at a ratio of 475% by mass of the base material mixture and the balance being bismuth. Bismuth 3 in this mixture
The amount of is 0.15% by mass.

次に、最大理論値に対してほぼ93%の密度11’iぼ
45 ドア/ イア7−2(70X1 o6kg/m2
)cl)圧力で冷間プレス(6)する。次に、約102
5℃の温度で4時間真空下において焼結(7)シて、銅
/銅及び銅/クロムを部分的に結合させると共に、成形
体(compact material)を焼鈍する。
Next, the density of 11'i 45 door/ear 7-2 (70X1 o6kg/m2) is approximately 93% of the maximum theoretical value.
)cl) Cold press (6) at pressure. Next, about 102
Sintering (7) under vacuum at a temperature of 5° C. for 4 hours to partially bond the copper/copper and copper/chromium and to anneal the compact material.

次に、理論最大値に対してほぼ98%の密度までほぼ7
2t/インチ” (113X 10’klil/m”)
で冷間コイニング(8)する。それから最後に機械加工
して、真空しゃ断器の接触子を製造する。
Next, approximately 7
2t/inch” (113X 10’klil/m”)
Perform cold coining (8). It is then finally machined to produce the vacuum breaker contacts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を示すフローチャートである。 FIG. 1 is a flowchart illustrating the method of the present invention.

Claims (13)

【特許請求の範囲】[Claims] (1)導電性の高い、粉末状の金属と、粉末状の脆化剤
及び粉末状の耐火材料を、混合物の全質量に対して脆化
剤0.25質量%未満の割合で混合し、理論最大値に対
して90%以上の密度に混合物を冷間プレスし、次に理
論最大値に対して97%以上の密度に焼結接触子を冷間
コイニングする工程からなる真空しや断器接触子の製造
方法。
(1) Mixing a highly conductive powdered metal, a powdered embrittlement agent, and a powdered refractory material at a ratio of less than 0.25% by mass of the embrittlement agent to the total mass of the mixture, A vacuum shredder comprising the steps of cold pressing a mixture to a density of 90% or more of the theoretical maximum, and then cold coining a sintered contact to a density of 97% or more of the theoretical maximum. Method of manufacturing contacts.
(2)導電性の高い金属が銅である特許請求の範囲第1
項記載の製造方法。
(2) Claim 1 in which the highly conductive metal is copper
Manufacturing method described in section.
(3)耐火性金属がクロムである特許請求の範囲第1項
記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the refractory metal is chromium.
(4)脆化剤がビスマスである特許請求の範囲第1〜3
項のいずれかに記載の製造方法。
(4) Claims 1 to 3 in which the embrittlement agent is bismuth
The manufacturing method described in any of paragraphs.
(5)脆化剤が鉛、テルル、タリウム、アンチモンかタ
ングステンのいずれかである特許請求の範囲第1〜3項
のいずれかに記載の製造方法。
(5) The manufacturing method according to any one of claims 1 to 3, wherein the embrittlement agent is lead, tellurium, thallium, antimony, or tungsten.
(6)脆化剤が鉛、テルル、タリウム、アンチモン、タ
ングステンまたはビスマスの混合物である特許請求の範
囲第1〜3項のいずれかに記載の製造方法。
(6) The manufacturing method according to any one of claims 1 to 3, wherein the embrittlement agent is a mixture of lead, tellurium, thallium, antimony, tungsten, or bismuth.
(7)銅粉の粒度がほぼ100μ以下の範囲内にある特
許請求の範囲第2項記載の製造方法。
(7) The manufacturing method according to claim 2, wherein the particle size of the copper powder is approximately 100 μm or less.
(8)ビスマスの粒度がほぼ40μ以下の範囲内にある
特許請求の範囲第4項記載の製造方法。
(8) The manufacturing method according to claim 4, wherein the particle size of the bismuth is approximately 40 μm or less.
(9)銅粉をまずビスマスと混合して、母材混合物を形
成し、この混合物を次に耐火性金属粉と混合する特許請
求の範囲第7項または第8項記載の製造方法。
(9) A method according to claim 7 or 8, wherein copper powder is first mixed with bismuth to form a matrix mixture, and this mixture is then mixed with refractory metal powder.
(10)銅粉とビスマスからなる母材混合物と、粒度が
ほぼ200μ以下のクロム粉を混合する特許請求の範囲
第9項記載の製造方法。
(10) The manufacturing method according to claim 9, wherein a base material mixture consisting of copper powder and bismuth is mixed with chromium powder having a particle size of approximately 200 μm or less.
(11)母材混合物のクロムに対する割合が、該混合物
40〜90質量%に対してクロム60〜10質量%であ
る特許請求の範囲第10項記載の製造方法。
(11) The manufacturing method according to claim 10, wherein the proportion of chromium in the base material mixture is 60 to 10% by mass of chromium to 40 to 90% by mass of the mixture.
(12)該混合物が、ほぼ75質量%に対してクロムほ
ぼ25質量%を含有すると共に、ほぼ0.15質量%の
ビスマスを含有する特許請求の範囲第11項記載の製造
方法。
12. The method of claim 11, wherein the mixture contains approximately 25% by weight of chromium to approximately 75% by weight and approximately 0.15% by weight of bismuth.
(13)まず理論最大値に対してほぼ93%の密度に該
混合物を冷間プレスし、約950〜1050℃の温度で
真空焼結してから、理論最大値に対してほぼ98%の密
度に冷間コイニングする特許請求の範囲第1〜13項の
いずれかに記載の製造方法。
(13) First, the mixture is cold pressed to a density of approximately 93% of the theoretical maximum value, vacuum sintered at a temperature of approximately 950 to 1050°C, and then the density is approximately 98% of the theoretical maximum value. The manufacturing method according to any one of claims 1 to 13, which comprises cold coining.
JP21899885A 1984-10-15 1985-10-01 Manufacture of vacuum breaker contactor Pending JPS6196621A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB848426009A GB8426009D0 (en) 1984-10-15 1984-10-15 Vacuum interrupter contacts
GB8426009 1984-10-15

Publications (1)

Publication Number Publication Date
JPS6196621A true JPS6196621A (en) 1986-05-15

Family

ID=10568206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21899885A Pending JPS6196621A (en) 1984-10-15 1985-10-01 Manufacture of vacuum breaker contactor

Country Status (5)

Country Link
EP (1) EP0178796B1 (en)
JP (1) JPS6196621A (en)
DE (1) DE3574074D1 (en)
GB (2) GB8426009D0 (en)
IN (1) IN164807B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354352A (en) * 1991-06-21 1994-10-11 Kabushiki Kaisha Toshiba Contact material for vacuum circuit breakers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743718A (en) * 1987-07-13 1988-05-10 Westinghouse Electric Corp. Electrical contacts for vacuum interrupter devices
EP0474628B1 (en) * 1989-05-31 1993-07-28 Siemens Aktiengesellschaft Process for producing a cucr contact material for vacuum switches and appropriate contact material
TW237551B (en) * 1990-06-07 1995-01-01 Toshiba Co Ltd

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147481A (en) * 1978-05-11 1979-11-17 Mitsubishi Electric Corp Contact for vacuum breaker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1194674A (en) * 1966-05-27 1970-06-10 English Electric Co Ltd Vacuum Type Electric Circuit Interrupting Devices
DE2346179A1 (en) * 1973-09-13 1975-06-26 Siemens Ag COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES
US3960554A (en) * 1974-06-03 1976-06-01 Westinghouse Electric Corporation Powdered metallurgical process for forming vacuum interrupter contacts
US4048117A (en) * 1974-10-29 1977-09-13 Westinghouse Electric Corporation Vacuum switch contact materials
US4190753A (en) * 1978-04-13 1980-02-26 Westinghouse Electric Corp. High-density high-conductivity electrical contact material for vacuum interrupters and method of manufacture
US4304600A (en) * 1979-11-01 1981-12-08 Bell Telephone Laboratories, Incorporated Manufacture of high-strength metallic articles
JPS59163726A (en) * 1983-03-04 1984-09-14 株式会社日立製作所 Vacuum breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147481A (en) * 1978-05-11 1979-11-17 Mitsubishi Electric Corp Contact for vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354352A (en) * 1991-06-21 1994-10-11 Kabushiki Kaisha Toshiba Contact material for vacuum circuit breakers

Also Published As

Publication number Publication date
EP0178796A2 (en) 1986-04-23
EP0178796B1 (en) 1989-11-02
GB8426009D0 (en) 1984-11-21
DE3574074D1 (en) 1989-12-07
EP0178796A3 (en) 1987-05-27
GB2166161A (en) 1986-04-30
IN164807B (en) 1989-06-03
GB8521984D0 (en) 1985-10-09
GB2166161B (en) 1988-08-24

Similar Documents

Publication Publication Date Title
EP0083245B2 (en) A sintered contact material for a vacuum circuit breaker
EP0153635B2 (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
US2470034A (en) Electric contact formed of a ruthenium composition
US4008081A (en) Method of making vacuum interrupter contact materials
JPS6196621A (en) Manufacture of vacuum breaker contactor
US4834939A (en) Composite silver base electrical contact material
JPS6059691B2 (en) Vacuum shield contact and its manufacturing method
US4874430A (en) Composite silver base electrical contact material
US2221286A (en) Electric contact
EP0675514B1 (en) Electrical contact compositions and novel manufacturing method
JPS60180026A (en) Electrode material of vacuum interrupter and method of producing same
JP2001351451A (en) Contact element material and contact element
JPS5914218A (en) Contact material for vacuum breaker
JPS59119625A (en) Electrode for vacuum interrupter
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
KR0171607B1 (en) Vacuum circuit breaker and contact
EP0440340A2 (en) Electrical contact materials and method of manufacturing the same
JPS5914212A (en) Electric contact material
JPS6411698B2 (en)
JPH0118975B2 (en)
JPS62217521A (en) Electrode material for vacuum interruptor
JPH0711357A (en) Electrode material for vacuum interrupter
JPS6411699B2 (en)
JPS5916220A (en) Electric contact material
JPH0146571B2 (en)