JPS6195851A - Data processing device - Google Patents

Data processing device

Info

Publication number
JPS6195851A
JPS6195851A JP21380384A JP21380384A JPS6195851A JP S6195851 A JPS6195851 A JP S6195851A JP 21380384 A JP21380384 A JP 21380384A JP 21380384 A JP21380384 A JP 21380384A JP S6195851 A JPS6195851 A JP S6195851A
Authority
JP
Japan
Prior art keywords
machining
tool
command
input
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21380384A
Other languages
Japanese (ja)
Inventor
Toru Itanami
徹 伊多波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21380384A priority Critical patent/JPS6195851A/en
Publication of JPS6195851A publication Critical patent/JPS6195851A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To improve machining efficiency and machining accuracy by computing machining condition command in which cutting efficiency becomes optimum successively with progress of machining and by performing machining following to the change in machining condition. CONSTITUTION:When machining information is input in an input device, a tool transfer position is computed from the machining information such as the input machining objective shape, shape machined, tool shape used, machining method. And machining condition is computed from the input information and cutting constant. As the machining condition, feeding value which keeps efficiency optimum following to cutting load changed according to the tool position and cutting speed can be considered. And machining condition command is determined by the computed machining condition, and the command is output with the tool transfer command. This process is repeated until judgement of processing finish to the machining objective shape is given. Then, machining time can be shortened, and better machining face can be obtained and machining accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、データ処理装置、特に与えられた目的形状
を加工するために、工作機械へ制御指令として工具移動
指令および加工条件指令を出力するデータ処理装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a data processing device, particularly a data processing device that outputs tool movement commands and machining condition commands as control commands to a machine tool in order to machine a given target shape. The present invention relates to a data processing device.

〔従来の技術〕[Conventional technology]

第10図は従来のデータ処理装置を示すブロック図であ
う、図において、(1)は加工目的形状、被削材形状、
使用工具形状、加工方法並びに加工条件等の加工情報を
入力するキーボード、タブレット、ライトペン、機能別
に分けられたキースイッチ群等の入力装置、(2)は被
削材を入力情報に従って加工するだめの工具移動指令を
決定する工具移動指令決定手段、(4)は工具移動指令
および加工条件指令を出力する紙テープパンチャー、磁
気記録装置、工作機械の制御装置への接続装置等の出力
装置である。ここで、上記加工方法の入力としては工具
ビック量、工具移動パターン等であシ、加工条件の入力
としては切削速度、送り等があるO 従来のデータ処理装置は上記のように溝成されておシ、
その動作を第11図のフローチャートに基づき説明する
。入力装置(1)に加工情報が入力されると(ステップ
111)、その入力された加工目的形状、被加工形状、
使用工具形状、加工方法等の加工情報により工具移動位
置が算出され(ステップ112)、その工具移動位置に
基づき工具移動指令が決定される(ステップ113)。
FIG. 10 is a block diagram showing a conventional data processing device. In the figure, (1) indicates the machining target shape, the workpiece shape,
Input devices such as keyboards, tablets, light pens, and groups of key switches divided by function for inputting machining information such as the shape of the tool used, machining method, and machining conditions; (2) is for machining the workpiece according to the input information; (4) is an output device such as a paper tape puncher, a magnetic recording device, a connection device to a control device of a machine tool, etc., which outputs a tool movement command and a machining condition command. Here, the input for the machining method is the tool bulk amount, tool movement pattern, etc., and the input for the machining conditions is the cutting speed, feed, etc. Oh,
The operation will be explained based on the flowchart of FIG. When machining information is input to the input device (1) (step 111), the input machining target shape, workpiece shape,
A tool movement position is calculated based on machining information such as the shape of the tool used and the machining method (step 112), and a tool movement command is determined based on the tool movement position (step 113).

次に、入力された加工条件より加工条件指令が決定され
(ステップ114)、工具移動指令と共に出力される(
ステップ115)。これを加工目的形状に対する処理の
終了判定(ステップ116)が行なわれるまで繰り返す
Next, machining condition commands are determined from the input machining conditions (step 114), and are output together with tool movement commands (
Step 115). This process is repeated until it is determined that the processing for the target shape is completed (step 116).

ここで、第4図に示される被削材(13)の形状に対し
て加工を行ない、第5図に示す目的形状を得る場合、第
6図に示すように工具(14)は、Aの部分を加工する
ときはBの部分を加工する時に比べ切り込み深さが大き
くなる。
Here, when processing the shape of the workpiece (13) shown in FIG. 4 to obtain the target shape shown in FIG. 5, the tool (14) is When machining part B, the depth of cut is larger than when machining part B.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明にかかるデータ処理装置は、上記のように、最
大切削負荷を考慮して入力された加工情報に基づき、一
定の加工条件指令が出力されるので、第6図のような加
工を行なう場合、加工条件はAの部外の切削負荷によっ
て決定され、Bの部分を加工する際は冗長な加工条件で
加工することになり、加工の効率が低下するという問題
点かあつた。
As described above, the data processing device according to the present invention outputs a certain machining condition command based on the machining information input in consideration of the maximum cutting load, so when performing machining as shown in FIG. The machining conditions were determined by the external cutting load of A, and when machining part B, redundant machining conditions were used, resulting in a problem that machining efficiency was reduced.

この発明はかかる問題点を解決するためになされたもの
で、切削効率が常に最大となるような加工条件指令を出
力しうるデータ処理装置を得ることを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide a data processing device that can output machining condition commands such that cutting efficiency is always maximized.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかるデータ処理装置は入力した加工情報に
従って被削材を加工するために工具移動位置を算出し工
具移動指令を決定する工具移動指令決定手段と、前記工
具移動位置における工具と前肥被削材の接触関係および
予め設定されている切削定数により加工条件指令を決定
する加工条件決定手段と、上記両指令を出力する出力装
置とを備えたものである。
The data processing apparatus according to the present invention includes a tool movement command determining means that calculates a tool movement position and determines a tool movement command in order to machine a workpiece according to input machining information, and a tool movement command determining means that calculates a tool movement position and determines a tool movement command in order to machine a workpiece according to input machining information; The apparatus is equipped with a machining condition determining means that determines a machining condition command based on the contact relationship of cutting materials and a preset cutting constant, and an output device that outputs both of the above commands.

〔作用〕[Effect]

この発明においては、加工の進行に伴なって逐次切削効
率が最適となるような加工条件指令を算出し、加工状況
の変化に追従した加工を行なうもので、加工効率と加工
精度が向上する。
In this invention, as machining progresses, machining condition commands are calculated to optimize cutting efficiency one by one, and machining is performed that follows changes in machining conditions, thereby improving machining efficiency and machining accuracy.

〔実施例〕〔Example〕

m1図はこの発明の一実施例を示すブロック図であり、
(1)、(2)、(4)は前記従来装置と同一のもので
ある。(3)は工具(14)と該被削材(13)の接触
関係と予め設定されている切削定数より、切削効率が最
適になるような加工条件指令を決定する加工条件指令決
定手段である。
Figure m1 is a block diagram showing an embodiment of the present invention,
(1), (2), and (4) are the same as those of the conventional device. (3) is a machining condition command determining means that determines a machining condition command that optimizes cutting efficiency based on the contact relationship between the tool (14) and the workpiece (13) and a preset cutting constant. .

第2図はこの発明の電気的接続を示すもので、中央デー
タ処理装置(5)と処理プログラム等を格納する記憶装
置(6)により、前記工具移動指令決定手段(2)と加
工条件指令決定手段(3)との機能を実行する。
FIG. 2 shows the electrical connection of the present invention, in which a central data processing unit (5) and a storage device (6) storing processing programs etc. are used to determine the tool movement command determination means (2) and machining condition commands. Executes the function of means (3).

上記のように構成されたデータ処理装置の処理工程を第
3図のフローチャートに示す。第3図において、ステッ
プ(32)、(33)、(35)〜(37)は前記従来
装置の処理工程を示す第11図のステップ(112)〜
(116)と同じであるが、この発明ではステップ(3
1)で入力される情報の中に加工条件の入力が省かれて
いる。そして、入力された情報や切削定数によりステッ
プ(34)で加工条件を算出している。
The processing steps of the data processing apparatus configured as described above are shown in the flowchart of FIG. In FIG. 3, steps (32), (33), (35) to (37) are steps (112) to (37) in FIG. 11 showing the processing steps of the conventional apparatus.
(116), but in this invention step (3
The input of processing conditions is omitted from the information input in 1). Then, machining conditions are calculated in step (34) based on the input information and cutting constants.

以下、ステップ(34)の加工条件算出処理について説
明する。算出する加工条件としては送り、使用する工具
形状としてはスフウェアフラットエンドミルとし、第4
図に示される被削材(13)に対して加工を行ない、第
5図に示される目的形状を得るものとする。
The machining condition calculation process in step (34) will be described below. The processing conditions to be calculated are feed, the tool shape to be used is a square flat end mill, and the fourth
It is assumed that the work material (13) shown in the figure is machined to obtain the target shape shown in FIG.

第6図は加工状態を示しており、第7図は第6図の平面
図である。第7図において、(13a)は被削材の未加
工部分、(13b)は被削材の既加工部分、(7)は工
具進行方向、(8)は工具ビック幅P、 (9)は単位
時間当たりの削除部分、(10)は送fi?すなわち単
位時間当たりの工具送り量を示す。この加工状態におい
て、工具(14)の被削材(13)との接触状態は第8
図のようになり、(11)は被削材(13)との接触部
分つまり接触面積、(12)は切シ込み深さDである。
FIG. 6 shows the processing state, and FIG. 7 is a plan view of FIG. 6. In Fig. 7, (13a) is the unmachined part of the workpiece, (13b) is the machined part of the workpiece, (7) is the tool advancing direction, (8) is the tool big width P, and (9) is Is the deleted part per unit time (10) the sending fi? In other words, it indicates the amount of tool feed per unit time. In this machining state, the contact state of the tool (14) with the workpiece (13) is the eighth
As shown in the figure, (11) is the contact area with the workpiece (13), and (12) is the cutting depth D.

なお、前記切削定数としては、被削材材質と工具の組み
合わせに対して単位時間内に工具の1刃で削除可能な最
大体積VMが設定されているとする0 上記送りFを算出する処理工程は第9図のフローチャー
トで示される。まず、加工が進行している時点における
被削材形状と既にステップ(32)で算出されている工
具移動位置により、ステップ(91)で切シ込み深さD
を算出する。工具ピック幅Pは加工方法情報の1つとし
て入力されている。
It is assumed that the cutting constant is set to the maximum volume VM that can be removed by one tool blade within a unit time for the combination of workpiece material and tool. is shown in the flowchart of FIG. First, the depth of cut D is determined in step (91) based on the shape of the workpiece at the time when machining is in progress and the tool movement position already calculated in step (32).
Calculate. The tool pick width P is input as one piece of processing method information.

従って、単位時間当たりの被削材の削除体積Vは、V=
P  x D)t? で表される。工具形状情報として入力されている工具の
刃数を2とすると、効率が最大となる送シFは上式を基
にして、 F = (VM x Z ) / (P x D )の
形式で算出される。
Therefore, the volume V of the workpiece removed per unit time is V=
P x D)t? It is expressed as Assuming that the number of tool teeth input as tool shape information is 2, the feed rate F that maximizes efficiency is calculated in the form F = (VM x Z) / (P x D) based on the above formula. be done.

こうして、工具位置によって変動する切削負荷に追従し
て効率を最適に保つ送りの値が得られる。
In this way, a feed value is obtained that follows the cutting load, which varies depending on the tool position, and maintains optimum efficiency.

同様に他方の加工条件である切削速度についても、切削
定数や工具と被削材の接触関係情報例えば接触面積によ
り、切削効率が最適となる送りの値を算出可能である。
Similarly, regarding the cutting speed, which is the other machining condition, it is possible to calculate the feed value that optimizes the cutting efficiency based on the cutting constant and contact relationship information between the tool and the workpiece, such as the contact area.

なお、上記実施例では工具形状がスクウエアフラットエ
/ドミルの場合について述べたが、他の工具形状につい
ても同様の処理が適用できる。
In the above embodiment, the case where the tool shape is a square flat mill is described, but the same processing can be applied to other tool shapes.

また、加工条件の送りや切削速度の一方、切削定数は入
力指定を可能としてもかまわない。
Further, it is also possible to input and specify one of the machining conditions, such as feed and cutting speed, as well as the cutting constant.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、加工時の切削効率が
常に最適となる加工条件指令を出力可能なように構成し
たので、この出力された加工条件指令に基づいて加工を
行なうことにより、加工時間が短縮され、かつ、良好な
加工面が得られ、加工精度も向上するという効果がある
As described above, according to the present invention, the machining condition command that always optimizes the cutting efficiency during machining can be outputted, so that by performing machining based on the outputted machining condition command, This has the effect of shortening machining time, obtaining a good machined surface, and improving machining accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の全体構成図、第2図はこ
の発明の電気的接続を示す図、第3図はこの発明の処理
動作を示すフローチャート図、第4図は被加工形状の斜
視図、第5図は加工目的形状の斜視図、第6図は被削材
の加工状態を示す斜視図、第7図は被削材の加工状態を
示す平面図、第8図は工具と被削材の接触状態を示す斜
視図、第9図は送りを算出する動作のフローチャート図
・第10図は従来のデータ処理装置の全体構成図、第1
1図は従来のデータ処理装置の処理動作を示すフローチ
ャート図である。 図において(1)は入力装置、(2)は工具移動指令決
定手段、(3)は加工条件指令決定手段、(4)は出力
装置、(13)は被削材、(14)は工具である。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人  弁理士  大 岩 増 雄 (ほか2名) 第1図 第2図 第3図 第4図 第7図 第9図 第10図
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram showing electrical connections of the invention, Fig. 3 is a flowchart showing processing operations of the invention, and Fig. 4 is a shape of the workpiece. Fig. 5 is a perspective view of the shape to be machined, Fig. 6 is a perspective view showing the machining state of the workpiece, Fig. 7 is a plan view showing the machining state of the workpiece, and Fig. 8 is the tool. FIG. 9 is a flowchart of the operation for calculating feed; FIG. 10 is an overall configuration diagram of a conventional data processing device;
FIG. 1 is a flowchart showing the processing operation of a conventional data processing device. In the figure, (1) is an input device, (2) is a tool movement command determining means, (3) is a machining condition command determining means, (4) is an output device, (13) is a workpiece, and (14) is a tool. be. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent: Patent Attorney Masuo Oiwa (and 2 others) Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)加工情報を入力する入力装置と、被削材を前記加
工情報に従って加工するために工具移動位置を算出し工
具移動指令を決定する工具移動指令決定手段と、前記工
具移動位置における工具と前記被削材の接触関係および
予め設定されている切削定数により切削効率が最適とな
るような加工条件指令を決定する加工条件指令決定手段
と、前記工具移動指令および前記加工条件指令を出力す
る出力装置と、を備えたデータ処理装置。
(1) An input device for inputting machining information, a tool movement command determining means for calculating a tool movement position and determining a tool movement command in order to process a workpiece according to the machining information, and a tool movement command determining means for calculating a tool movement position and determining a tool movement command in order to process a workpiece according to the machining information; a machining condition command determining means that determines a machining condition command that optimizes cutting efficiency based on the contact relationship of the workpiece and a preset cutting constant; and an output that outputs the tool movement command and the machining condition command. A data processing device comprising:
JP21380384A 1984-10-12 1984-10-12 Data processing device Pending JPS6195851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21380384A JPS6195851A (en) 1984-10-12 1984-10-12 Data processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21380384A JPS6195851A (en) 1984-10-12 1984-10-12 Data processing device

Publications (1)

Publication Number Publication Date
JPS6195851A true JPS6195851A (en) 1986-05-14

Family

ID=16645302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21380384A Pending JPS6195851A (en) 1984-10-12 1984-10-12 Data processing device

Country Status (1)

Country Link
JP (1) JPS6195851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105871A (en) * 1986-10-23 1988-05-11 Hitachi Seiki Co Ltd Device for changing feed speed at machining entrance portion
JPH033757A (en) * 1989-05-30 1991-01-09 Fanuc Ltd Management of cutting load
JPH068386U (en) * 1992-01-29 1994-02-01 勇 斉藤 Floor bundle holding jack
CN100448610C (en) * 2003-04-11 2009-01-07 日立比亚机械股份有限公司 Processing method and processing device
JP2012045647A (en) * 2010-08-25 2012-03-08 Jtekt Corp Cutting method and nc data preparing device
WO2013069363A1 (en) * 2011-11-09 2013-05-16 株式会社小松製作所 Cutting resistance analysis device, cutting device equipped with same, and cutting resistance analysis program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105871A (en) * 1986-10-23 1988-05-11 Hitachi Seiki Co Ltd Device for changing feed speed at machining entrance portion
JPH033757A (en) * 1989-05-30 1991-01-09 Fanuc Ltd Management of cutting load
JPH068386U (en) * 1992-01-29 1994-02-01 勇 斉藤 Floor bundle holding jack
CN100448610C (en) * 2003-04-11 2009-01-07 日立比亚机械股份有限公司 Processing method and processing device
JP2012045647A (en) * 2010-08-25 2012-03-08 Jtekt Corp Cutting method and nc data preparing device
WO2013069363A1 (en) * 2011-11-09 2013-05-16 株式会社小松製作所 Cutting resistance analysis device, cutting device equipped with same, and cutting resistance analysis program
JP5204934B1 (en) * 2011-11-09 2013-06-05 株式会社小松製作所 Cutting force analysis device, cutting device equipped with the same, cutting force analysis program
CN103201069A (en) * 2011-11-09 2013-07-10 株式会社小松制作所 Cutting resistance analysis device, cutting device equipped with same, and cutting resistance analysis program
US9459166B2 (en) 2011-11-09 2016-10-04 Komatsu Ltd. Cutting resistance analysis device, cutting and machining device equipped with same, and cutting resistance analysis program

Similar Documents

Publication Publication Date Title
WO1998019822A1 (en) Method and appratatus for simulation of nc machining
JPH03260708A (en) Position error correcting method
EP0046343A2 (en) Numerical control method and apparatus
EP0026630B1 (en) A tracer control system
JPS6195851A (en) Data processing device
US4412295A (en) Tracer control equipment
JPH02178711A (en) Numerical controller
JPS5981705A (en) Compensating method of nc machine tool
JPS5645343A (en) Multifunction complex machine tool
JPS60180749A (en) Correction controlling method for machining reference point in numerically controlled lathe
JPH0442133B2 (en)
JP2617467B2 (en) Numerical control unit
JPH058604U (en) Interference check device
JPH08150540A (en) Interference preventing device for machine tool
JPS59166447A (en) Method of numerically controlling machining of right-to-left symmetric workpiece
JPH02274457A (en) Copy control device
JPH0592349A (en) Numerically controlled device
EP0038391B1 (en) Tracer control equipment
JPS61173845A (en) Method of controlling measurement of cutter tip in lathe
JP2612364B2 (en) Numerical control unit
JPS60259361A (en) Machining through automatic machine tool
JPS60228056A (en) Method of control for determining tool approach position in milling work
JPH04148308A (en) Designating method for pressing direction for force control robot
JPH0230468A (en) Control method for chopping
JPS59166446A (en) Method of controlling speed of tool feed in numerical-controlled processing machine