JPS6194049A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6194049A
JPS6194049A JP21571784A JP21571784A JPS6194049A JP S6194049 A JPS6194049 A JP S6194049A JP 21571784 A JP21571784 A JP 21571784A JP 21571784 A JP21571784 A JP 21571784A JP S6194049 A JPS6194049 A JP S6194049A
Authority
JP
Japan
Prior art keywords
layer
germanium
carbon
amorphous
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21571784A
Other languages
Japanese (ja)
Inventor
Hidekazu Kaga
英一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21571784A priority Critical patent/JPS6194049A/en
Publication of JPS6194049A publication Critical patent/JPS6194049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To permit the optional selection of the absorption wavelength region of an electrophotographic sensitive body from near IR rays to near UV rays by using an amorphous material consisting essentially of carbon and germanium to constitute a layer for blocking injection of electric charge photoconductive layer and surface layer. CONSTITUTION:The layer for blocking injection of electric charge 12 is formed on a conductive substrate 5, for example, aluminum, stainless steel, etc. P type amorphous germanium carbide and N type amorphous germanium carbide are used for the layer 12. The photoconductive layer 13 is formed thereon for which the amorphous germanium carbide consisting of carbon and germanium at varied ratios is used. The surface layer 14 is further formed thereon in which the carbon/germanium ratio is made larger than the ration of the photo conductive layer. The IIIA-group or VA-group element of periodic table may be incorporated into the layer 12. The optional selection of the absorption end from the short wavelength to long wavelength is thus possible for the resul tant photosensitive body and the photosensitive body is made thermally stable and mechanically highly strong.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電子写真感光体に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an electrophotographic photoreceptor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、電子写真感光体には、非晶質セレン、非晶質セレ
ン・テルル合金、非晶質セレン・ヒ素合金、酸化亜鉛樹
脂分散系、硫化カドミウム、炭酸カドミウム樹脂分散系
、Pbs、非晶質シリコン等の無機材料、PVK、PV
K/TNF、有機顔料樹脂分散系等の有機材料があるが
、いずれも吸収端が可視、紫外の狭い領域に限定されて
いる。一般に電子写真感光体は、光吸収能、光励起キャ
リア輸送能、帯電能の三機能をもつことが電子写真特性
を維持するために最低限必要であるが、特に光吸収能に
ついては、最近の電子写真感光体の多様化から1例えば
、レーザーダイオードプリンタへの応用を目的として近
赤外の長波長に吸収をもつもの、また、電子写真にカラ
ー再現性をもたせるため、可視域の任意の波長に吸収端
を設定できるもの、更に吸収端が近紫外領域にあって、
可視光をほぼ完全に透過する窓材として作用する主とし
て表面層に使用されるもの等が必要とされている。この
ように近赤外の長波長から近紫外の短波長まで広範囲の
波長領域の任意の波長に吸収端をもつ感光体が要求され
ている。更に前記した種々の感光体は、非晶質シリコン
を除いて機械的強度。
Conventionally, electrophotographic photoreceptors include amorphous selenium, amorphous selenium/tellurium alloy, amorphous selenium/arsenic alloy, zinc oxide resin dispersion, cadmium sulfide, cadmium carbonate resin dispersion, Pbs, amorphous Inorganic materials such as silicon, PVK, PV
There are organic materials such as K/TNF and organic pigment resin dispersion systems, but all of them have absorption edges limited to the narrow visible and ultraviolet regions. In general, an electrophotographic photoreceptor must have the three functions of light absorption ability, photoexcited carrier transport ability, and charging ability as a minimum in order to maintain electrophotographic properties. Due to the diversification of photographic photoreceptors, 1. For example, there are those that absorb near-infrared long wavelengths for application in laser diode printers, and those that absorb at any wavelength in the visible range to provide color reproducibility to electrophotography. The absorption edge can be set, and the absorption edge is in the near ultraviolet region.
There is a need for a material primarily used in the surface layer that acts as a window material that almost completely transmits visible light. As described above, there is a demand for a photoreceptor having an absorption edge at any wavelength in a wide range of wavelengths, from near-infrared long wavelengths to near-ultraviolet short wavelengths. Furthermore, the various photoreceptors described above, except for amorphous silicon, have a high mechanical strength.

熱的安定性にも問題のあるものが多い。Many also have problems with thermal stability.

〔発明の目的〕[Purpose of the invention]

本発明は上記事業に基いてなされたもので、その目的と
するところは、吸収波長域を近赤外の長波長から近紫外
の短波長まで任意に選ぶことが可能でかつ機械的強度が
強く、熱的に安定した電子写真感光体を提供しようとす
るものである。
The present invention has been made based on the above-mentioned project, and its purpose is to provide a system that can arbitrarily select the absorption wavelength range from long wavelengths in the near-infrared to short wavelengths in the near-ultraviolet, and has strong mechanical strength. The present invention aims to provide a thermally stable electrophotographic photoreceptor.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、ゲルマニウムと炭素
のみの二元系の非晶質材料を用いゲルマニウム、炭素比
をかえることにより吸収端をさらにダイナミックにかえ
ることをできるようにするものである、一般にゲルマニ
ウムと炭素の二元系の非晶質材料は光学的禁制帯幅にし
て、1eV〜3.5e■まで任意に変えることができる
。これは、吸収端波長にして1200〜35 Q nm
程度の値に相当し、近赤外から近紫外の全域の波長をカ
バーすることができる。炭素とゲルマニウムを主体とし
た非晶質材料(以下、非晶質炭化ゲルマニウムと略す)
も非晶質シリコンと同様に水素あるいはハロゲン元素を
含有させることが光・電気的特性を向上させることに対
して有効であり、更に周期律表第1I[A族あるいは、
第VA族の元素の添加によってフェルミレベルを移動さ
せてP型あるいはN型の半導体とすることが可能である
In order to achieve the above object, the present invention uses a binary amorphous material containing only germanium and carbon, and by changing the ratio of germanium and carbon, the absorption edge can be changed more dynamically. Generally, the optical forbidden band width of a binary amorphous material of germanium and carbon can be changed arbitrarily from 1 eV to 3.5 e■. This is the absorption edge wavelength of 1200 to 35 Q nm.
It corresponds to a value of about 100%, and can cover the entire wavelength range from near infrared to near ultraviolet. Amorphous material mainly composed of carbon and germanium (hereinafter abbreviated as amorphous germanium carbide)
Similarly to amorphous silicon, it is effective to contain hydrogen or halogen elements to improve optical and electrical properties.
By adding a Group VA element, it is possible to shift the Fermi level and make it a P-type or N-type semiconductor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図および第2図に示す一実施例を参
照して説明する。
The present invention will be described below with reference to an embodiment shown in FIGS. 1 and 2.

第1図はプラズマCVD法による成膜を行なう装置の概
略を示すものである。この装置は概略、反応容器1、ガ
ス供給系2、排気系3、放電用電源4に大別される。前
記反応容器1中には導電性支持体5が加熱手段6を内蔵
し、接地されているサセプタ7上に設置されている。一
方導電性支持体5と対向する位置に放電用電源4の出力
に接続されている放電用電極8が反応容器1壁とは電気
的に絶縁されて固定されている。前記放電用電極8は同
時にガス供給系2と接続されており導電性支持体5に対
向する面にはガス吹出孔9があり、ガス供給系2からの
ガスを反応容器1内に導入する機構になっている。
FIG. 1 schematically shows an apparatus for forming a film by plasma CVD. This device is roughly divided into a reaction vessel 1, a gas supply system 2, an exhaust system 3, and a discharge power source 4. A conductive support 5 includes a heating means 6 in the reaction vessel 1, and is placed on a grounded susceptor 7. On the other hand, a discharge electrode 8 connected to the output of the discharge power source 4 is fixed at a position facing the conductive support 5 so as to be electrically insulated from the wall of the reaction vessel 1 . The discharge electrode 8 is also connected to the gas supply system 2 and has a gas blowing hole 9 on the surface facing the conductive support 5, which is a mechanism for introducing gas from the gas supply system 2 into the reaction vessel 1. It has become.

前記ガス供給系2からは膜の主成分となる炭素あるいは
ゲルマニウムを含むガスたとえばCH4、C2H,、C
3H,、C2H,、C,)]2゜C,H,、CF4等の
炭素化合物、Gem、。
From the gas supply system 2, a gas containing carbon or germanium, which is the main component of the film, such as CH4, C2H, C
3H,,C2H,,C,)]2°C,H,,carbon compounds such as CF4, Gem.

GeF4等のゲルマニウム化合物等があげられる。Examples include germanium compounds such as GeF4.

その他He 、Ar 、Ne 、H2等の希釈相カス、
伝導型を制御する元素すなわちB 、 A/3 。
Other dilute phase scum such as He, Ar, Ne, H2, etc.
Elements that control conductivity type, namely B and A/3.

Ga、In等の周期律表第1[A族元素及びN。Group 1 elements of the periodic table such as Ga and In [A group elements and N.

P 、As 、8b等の第VA族元素を含むガス、最も
典型的なものとしてB2H6、PH3。
Gases containing Group VA elements such as P, As, 8b, most typically B2H6, PH3.

A s H3等があげられる。その他、8iH4。Examples include As H3. Others, 8iH4.

S 12H6,S 13)I8. S i F4等のシ
リコンを含むガスを導入することも有効である。
S 12H6, S 13) I8. It is also effective to introduce a gas containing silicon such as S i F4.

この装置によって構成される電子写真感光体11は導電
性支持体5上に電荷注入阻止層12、光導電層13、表
面層14が積層された構造となっている。上記導電性支
持体11はアルミニウム、ステンレス、耐食処理を施し
た鉄等の金属あるいは、ガラス、樹脂フィルム等絶縁物
の上に金属あるいは金属酸化膜からなる導電性膜を形成
することも可能である。最も一般的なものはアルミニウ
ム及びその合金である。また上記電荷注入阻止層12は
、コロナ帯電時に帯電電荷と逆極性の電荷の導電性支持
体5から光導電層13への注入を阻止し、同時に像露光
時に光導電層13内で発生した光生成キャリア対の中で
帯電電荷と同極性の電荷をもったキャリアの導電性支持
体5への流れをスムーズに行なわせるという二つの機能
をもつ必要がある。このような機能をもつために電荷注
入阻止層12は正帯電用にはp型あるいはt型の非晶質
炭化ゲルマニウム、負帯電用にはn型あるいはn+型の
非晶質炭化ゲルマニウムが使用される。p+ 型あるいはp 型のものは、膜中に周期律表第A族元素
を10’ 〜l Q’ atm P PM n型あるい
はn+型のものは膜中に周期律表第VA族元素を102
〜105a105atを含有サセル必要がある。更に導
電性支持体5との密着性をよくするためにケイ素を含有
させることも有効である。光導電層13は光吸収、光生
成キャリアの輸送の両機能をもつ必要がある。光吸収に
ついてはその要求される吸収波長域によって、非晶質炭
化ゲルマニウムの炭素とゲルマニウムの比率が異なる。
An electrophotographic photoreceptor 11 constituted by this device has a structure in which a charge injection blocking layer 12, a photoconductive layer 13, and a surface layer 14 are laminated on a conductive support 5. The conductive support 11 can be formed by forming a conductive film made of a metal or metal oxide film on a metal such as aluminum, stainless steel, or iron treated with corrosion resistance, or on an insulating material such as glass or a resin film. . The most common are aluminum and its alloys. Further, the charge injection blocking layer 12 prevents charges having a polarity opposite to the charged charges from being injected from the conductive support 5 into the photoconductive layer 13 during corona charging, and at the same time prevents light generated within the photoconductive layer 13 during image exposure. It is necessary to have two functions: to smoothly flow carriers having charges of the same polarity as the charged charges among the generated carrier pairs to the conductive support 5. To have such a function, the charge injection blocking layer 12 is made of p-type or t-type amorphous germanium carbide for positive charging, and n-type or n+ type amorphous germanium carbide for negative charging. Ru. For p+ type or p-type, the film contains 10 to 10% of Group A elements of the periodic table.Q' atm P PM For n-type or n+ type, the film contains 102
A sacell containing ~105a105at is required. Furthermore, it is also effective to contain silicon in order to improve the adhesion with the conductive support 5. The photoconductive layer 13 needs to have both the functions of absorbing light and transporting photogenerated carriers. Regarding light absorption, the ratio of carbon to germanium in amorphous germanium carbide varies depending on the required absorption wavelength range.

長波長に感度が必要なものほどゲルマニウムの含有比が
高い。一般に炭素/ゲルマニウムの原子数比は、2〜0
.3が適当である。また層中に周期律表第1IA族元素
あるいは第■A族元素が含有されていてもよい。表面層
804は表面保護、光透過及び帯電能向上を目的とした
もので光導電層に比べて炭素/ゲルマニウム比が大とな
っており5〜1が適当である。
The higher the sensitivity to longer wavelengths is required, the higher the germanium content ratio. Generally, the carbon/germanium atomic ratio is 2 to 0.
.. 3 is appropriate. Further, the layer may contain an element of group 1IA of the periodic table or an element of group 1A of the periodic table. The surface layer 804 is intended to protect the surface, improve light transmission, and improve charging ability, and has a carbon/germanium ratio larger than that of the photoconductive layer, and suitably has a carbon/germanium ratio of 5 to 1.

また、上記電子写真感光体11は第1図に示した成膜装
置を用いて以下の要領で形成される。
Further, the electrophotographic photoreceptor 11 is formed using the film forming apparatus shown in FIG. 1 in the following manner.

すなわち、導電性支持体5にはアルミニウム板100m
x 10 ornsn、厚さQ、 3 M 、表面粗さ
0.38をトリクレンにより脱脂洗浄を行なったものを
用いた。先ず反応容器を10’−’ Torrの真空度
まで排気し、アルミニウム板を約230℃まで加熱した
。次にGeH4,CH4,及びB2H,、1vol %
含有のArをそれぞし150SCCM、2008CCM
、10 SCCMを導入し、排気糸を調節して反応容器
内の圧力を0.7Torrに維持した。更に放電用電源
として13、56 M Hzの高周波電源を用い3oO
Wの電力をアルミニウム板、対向電極間に投入し、アル
ミニウム板上に放電を生起せしめ、第一層の成膜を行な
った。
That is, the conductive support 5 has an aluminum plate of 100 m
x 10 ornsn, thickness Q, 3 M, and surface roughness 0.38, which had been degreased and cleaned with trichlene. First, the reaction vessel was evacuated to a vacuum level of 10'-' Torr, and the aluminum plate was heated to about 230°C. Next, GeH4, CH4, and B2H, 1 vol%
The content of Ar is 150SCCM and 2008CCM respectively.
, 10 SCCM was introduced and the exhaust line was adjusted to maintain the pressure inside the reaction vessel at 0.7 Torr. Furthermore, a high frequency power source of 13.56 MHz was used as a power source for discharging.
Power of W was applied between the aluminum plate and the opposing electrode to generate a discharge on the aluminum plate, thereby forming the first layer.

5分後高周波電源の出力を切り、続いてB、H,,1v
o1%含有のArの導入ヲ停止シ1、G e H,、C
H,の流量をそれぞれ2008CCMとして再び高周波
電力300Wを投入し、第二層の成膜を行なった。反応
圧力は0.7 Torrを維持した。2時間後高周波電
源の出力を切り、更1:QeH,,CH4をそれぞれl
 008CCM。
After 5 minutes, turn off the output of the high frequency power supply, then turn on B, H, 1v.
Stopping the introduction of Ar containing 1% o1, G e H,,C
The second layer was formed by setting the flow rates of H and 2008 CCM and applying high frequency power of 300 W again. The reaction pressure was maintained at 0.7 Torr. After 2 hours, turn off the output of the high frequency power supply, and then turn off each of QeH, CH4.
008CCM.

4008CCMは圧力1.2 Torrとシテ高周波電
力150Wを15分間投入し第三層の成膜を行なった。
For 4008CCM, the third layer was formed by applying a pressure of 1.2 Torr and high frequency power of 150 W for 15 minutes.

放電終了後、試料加熱及びガスの導入を停止し、反応容
器内のガスをチッ素によりパージした。試料が室温まで
冷却した後、試料を取り出した。取り出した試料に6.
5 K Vの正コロナ帯電を施したところ6.20Vの
表面電位まで帯電した。更に初期表面電位550■の状
態から10 luxの照度をもつハロゲンランプを照射
したところ、表面電位が初期の】/2に減衰するまでに
必要な光量は、 0.6 lux −seeであった。
After the discharge ended, sample heating and gas introduction were stopped, and the gas in the reaction vessel was purged with nitrogen. After the sample had cooled to room temperature, it was removed. 6. to the sample taken out.
When positive corona charging of 5 KV was applied, the surface potential was charged to 6.20V. Furthermore, when a halogen lamp with an illuminance of 10 lux was irradiated from an initial surface potential of 550 cm, the amount of light required for the surface potential to attenuate to the initial value of ]/2 was 0.6 lux -see.

またこの試料を500■の表面電位に帯電し、像露光を
施し、磁気ブラシ法により負極性のトナー現像を行なっ
たところ試料上に鮮明な画像が得られた。
Further, this sample was charged to a surface potential of 500 cm, subjected to imagewise exposure, and developed with negative polarity toner by a magnetic brush method, whereby a clear image was obtained on the sample.

また、電子写真感光体11は第1図に示した成膜装置を
用いて以下の要領で形成するようにしてもよい。導電性
支持体5には上述したと同様のものを用いた。先ず反応
容器を1O−4Torrの真空度まで排気し、アルミニ
ウム板を約230℃まで加熱した。次にGeH4,CH
4及びB2H,l vo1%含有のArをそれぞれ15
0 SCCM 、 20’OSCCM 、 108CC
Mヲ導入し排気系を調節して反応容器内の圧力を0、7
 Torrに維持した。更に放電用電源として13.5
6MH2(7)高周波電源を用い3ooWの電力をアル
ミニウム板、対向電極間に投入し、アルミニウム板上に
放電を生起せしめ第一層の成膜を行なった。5分後高周
波電源の出力を切り、続いてB、H6l vol係含有
のArの導入を停止し、Gem、、CH4の流量をそれ
ぞれ25oSCCM、2oosccMとして再ヒ高周波
電力300Wを投入し、第二層の成膜を行なった。反応
圧力は0.7 Torrを維持した。2時間後高周波電
源の出力を切り、更にGeH,。
Further, the electrophotographic photoreceptor 11 may be formed using the film forming apparatus shown in FIG. 1 in the following manner. As the conductive support 5, the same one as described above was used. First, the reaction vessel was evacuated to a vacuum level of 10-4 Torr, and the aluminum plate was heated to about 230°C. Next, GeH4,CH
4 and B2H, l vo 1% Ar containing 15% each
0 SCCM, 20'OSCCM, 108CC
Introduce M and adjust the exhaust system to reduce the pressure inside the reaction vessel to 0.7
It was maintained at Torr. Furthermore, as a power source for discharging, 13.5
Using a 6MH2 (7) high frequency power source, 3ooW of power was applied between the aluminum plate and the opposing electrode to generate a discharge on the aluminum plate to form the first layer. After 5 minutes, the output of the high frequency power supply was cut off, and then the introduction of Ar containing vol. A film was formed. The reaction pressure was maintained at 0.7 Torr. After 2 hours, the output of the high frequency power supply was turned off, and GeH was added.

CH4をそれぞれl 00 SCCM、400 SCC
MCC上、圧力を1.2 Torrとして富周波電力1
50Wを15分間投入し、第三層の成膜を行なった。放
電終了後、試料加熱及びガスの導入を停止し、反応容器
内のガスをチッ素によりパージした試料が室温まで冷却
した後試料を取り出した。取り出した試料に6.5 K
 Vの正コロナ帯電を施したところ480■の表面電位
まで帯電した。更に初期電位45 (l Vの状態から
1発振波長790 nmのレーザー光を照射したところ
、電位半減露光感度は0.72μJ/cdであり従来の
ものに比べて優れた感度のものが得られた。
CH4 respectively l 00 SCCM, 400 SCC
On the MCC, the pressure is 1.2 Torr, and the frequency power is 1.
A third layer was formed by applying 50 W for 15 minutes. After completion of the discharge, heating of the sample and introduction of gas were stopped, and the gas in the reaction vessel was purged with nitrogen. After the sample was cooled to room temperature, the sample was taken out. 6.5 K on the sample taken out
When positive corona charging of V was applied, it was charged to a surface potential of 480 cm. Furthermore, when a laser beam with a single oscillation wavelength of 790 nm was irradiated from an initial potential of 45 lV, the potential half-exposure sensitivity was 0.72 μJ/cd, which was superior to the conventional one. .

なお、装置としては第3図に示すような反応性スパッタ
リング法による成膜を行なう装置を用いるようにしても
よい。すなわち、この装置は第1図に示すプラズマCV
D装置とほぼ同様であるが、スパッタリング装置である
ため放電用電極8のかわりにターゲット21がある点と
ガス吹出孔22が独立して設置されている点等が相違点
である。図中第1図と共通の番号の部分は第1図と同様
のものを示′foターゲット2)用の材料にはゲルマニ
ウム単結晶、多結晶あるいは非晶質ゲルマニウムまたグ
ラファイト等が用いられる。使用ガスとしてはターゲッ
ト21のスパッタリング用としてA r 、 N e 
等の不活性ガス、その他水素導入用のガスとしてH7、
さらに、ゲルマニウム、炭素のいずれか一方をガスを供
給源として成膜する場合は、プラズマCVDの項で列挙
した炭素あるいはゲルマニウムを含むガスを導入する。
Note that as an apparatus, an apparatus for forming a film by a reactive sputtering method as shown in FIG. 3 may be used. That is, this device is a plasma CV shown in FIG.
Although this device is almost the same as the D device, the difference is that since it is a sputtering device, a target 21 is provided instead of the discharge electrode 8, and a gas blowing hole 22 is provided independently. In the figure, the parts with the same numbers as in FIG. 1 indicate the same ones as in FIG. 1. The materials used for the target 2) include germanium single crystal, polycrystalline or amorphous germanium, graphite, etc. The gases used are A r and N e for sputtering the target 21.
Inert gas such as, H7 as other gas for hydrogen introduction,
Furthermore, when forming a film using either germanium or carbon gas as a supply source, a gas containing carbon or germanium listed in the plasma CVD section is introduced.

また、ゲルマニウム、炭素の供給源をターゲットとガス
の双方に求めることも有効である。更にプラズマCVD
法を同様に伝導型を制御する元素を含むガスを導入する
。その他SiH4,5i2H,。
It is also effective to seek sources of germanium and carbon from both the target and the gas. Furthermore, plasma CVD
The method similarly introduces a gas containing an element that controls the conductivity type. Others SiH4,5i2H,.

5i3H++ 、 S iF4等のシリコンを含むガス
を導入することも有効である。
It is also effective to introduce a gas containing silicon such as 5i3H++ or SiF4.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、電荷注入阻止層、光導電
層、表面層をそれぞれ少なくとも炭素もしくはゲルマニ
ウムを主成分とした非晶質材料で構成したから、吸収端
を近赤外の長波長から近紫外の短波長から近紫外の短波
長まで任意に選ぶことができ、所望の分光感度を選ぶこ
とが可能で、かつ、熱的に安定で機械的強度の強い感光
体を提供できるという効果を奏する。
As explained above, in the present invention, since the charge injection blocking layer, the photoconductive layer, and the surface layer are each made of an amorphous material containing at least carbon or germanium as a main component, the absorption edge is shifted from the long wavelength of the near infrared. The desired spectral sensitivity can be selected from short wavelengths in the near-ultraviolet range to short wavelengths in the near-ultraviolet range, and a photoreceptor with thermal stability and strong mechanical strength can be provided. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示すもので、
第1図はプラズマCVD装置を示す概略的構成図、第2
図は電子写真感光体を示す断面図、第3図は他の実施例
であるスパッタリング装置を示す概略的構成図である。 5・・・導電性支持体、12・・・電荷注入阻止層、1
3・・・光導電層、14・・・表面層。 出願人代理人 弁理士  鈴  江  武  彦第1 
1 and 2 show an embodiment of the present invention,
Figure 1 is a schematic configuration diagram showing a plasma CVD apparatus, Figure 2
The figure is a sectional view showing an electrophotographic photoreceptor, and FIG. 3 is a schematic configuration diagram showing a sputtering apparatus according to another embodiment. 5... Conductive support, 12... Charge injection blocking layer, 1
3... Photoconductive layer, 14... Surface layer. Applicant's representative Patent attorney Takehiko Suzue 1st
figure

Claims (2)

【特許請求の範囲】[Claims] (1)導電性支持体上に電荷注入阻止層、光導電層、表
面層を順次積層した電子写真感光体において、前記三層
をそれぞれ炭素とゲルマニウムを主成分とした非晶質材
料で構成したことを特徴とする電子写真感光体。
(1) In an electrophotographic photoreceptor in which a charge injection blocking layer, a photoconductive layer, and a surface layer are sequentially laminated on a conductive support, each of the three layers is composed of an amorphous material containing carbon and germanium as main components. An electrophotographic photoreceptor characterized by:
(2)前記電荷注入阻止層中に少なくとも周期律表第I
IIA族あるいは第VA族元素を含有させたことを特徴と
する特許請求の範囲第1項記載の電子写真感光体。
(2) In the charge injection blocking layer, at least
The electrophotographic photoreceptor according to claim 1, which contains a Group IIA or Group VA element.
JP21571784A 1984-10-15 1984-10-15 Electrophotographic sensitive body Pending JPS6194049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21571784A JPS6194049A (en) 1984-10-15 1984-10-15 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21571784A JPS6194049A (en) 1984-10-15 1984-10-15 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6194049A true JPS6194049A (en) 1986-05-12

Family

ID=16677006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21571784A Pending JPS6194049A (en) 1984-10-15 1984-10-15 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6194049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPS62150356A (en) * 1985-12-25 1987-07-04 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH02181154A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH08112675A (en) * 1994-03-11 1996-05-07 Kiyousan Denki Kk Formed shape of connecting hollow pipe for projection welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629355A (en) * 1985-07-05 1987-01-17 ゼロツクス コ−ポレ−シヨン Xerographic image forming member containing amorphous carbon
JPS62150356A (en) * 1985-12-25 1987-07-04 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH02181154A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH08112675A (en) * 1994-03-11 1996-05-07 Kiyousan Denki Kk Formed shape of connecting hollow pipe for projection welding

Similar Documents

Publication Publication Date Title
US4495262A (en) Photosensitive member for electrophotography comprises inorganic layers
US4518670A (en) Recording material for electrophotography comprising amorphous silicon containing nitrogen
JPS6410069B2 (en)
JPS628781B2 (en)
JPS6194049A (en) Electrophotographic sensitive body
US4904556A (en) Electrophotographic process using light receiving member with buffer layer containing silicon and aluminum atoms on aluminum substrate
JPS6247303B2 (en)
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPS649625B2 (en)
JPH0150905B2 (en)
JPH06266139A (en) Electrophotographic photoreceptive member
JPS6194048A (en) Photosensitive body
JPS639218B2 (en)
Nakayama et al. High-rate deposition of photosensitive a-SiC: H using a carbon source of C2H2
JPS62151857A (en) Photoconductive member
JPS6410066B2 (en)
JPS6410064B2 (en)
JPS60205457A (en) Electrophotographic sensitive body
JPS6341060B2 (en)
JPS6335979B2 (en)
JPS61105551A (en) Photoconductor
JPS63135954A (en) Electrophotographic sensitive body
JPS6280664A (en) Photoconductive body
JPS60178459A (en) Electrophotographic sensitive body
JPS62113156A (en) Electrophotographic sensitive body