JPS6191918A - Manufacturing device of compound thin film - Google Patents

Manufacturing device of compound thin film

Info

Publication number
JPS6191918A
JPS6191918A JP21377984A JP21377984A JPS6191918A JP S6191918 A JPS6191918 A JP S6191918A JP 21377984 A JP21377984 A JP 21377984A JP 21377984 A JP21377984 A JP 21377984A JP S6191918 A JPS6191918 A JP S6191918A
Authority
JP
Japan
Prior art keywords
gas
thin film
reactive gas
reactive
activation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21377984A
Other languages
Japanese (ja)
Inventor
Kiyoshi Morimoto
清 森本
Toshinori Takagi
俊宜 高木
Hiroshi Takaoka
寛 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP21377984A priority Critical patent/JPS6191918A/en
Publication of JPS6191918A publication Critical patent/JPS6191918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent a formation membrane by such as a discharge from deterioration and to form a film of good quality by providing a gas active method in an introducing portion of a reactive gas in forming a compound thin film through introducing the reactive gas into a vacuum vessel. CONSTITUTION:After a reactive gas is introduced through a gas introducing hole 14 from an external of a vacuum vessel 2 and is dissociated or activated or ionizated by a gas active method 15, it is provided into the vacuum vessel 2 from a gas exhaust nozzle. Because of this, as a thin film forming region and an active method is isolated and the reactive gas is provided to a thin film forming portion in an activated state, a deterioration of forming membrane by a process such as a discharge is prevented and a film of good quality can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空容器内に反応性ガスを導入し、蒸着源
からの原子または分子を基板上で反応させて化合物薄膜
を形成する化合物薄膜の製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a compound thin film in which a reactive gas is introduced into a vacuum container and atoms or molecules from a vapor deposition source are reacted on a substrate to form a compound thin film. This invention relates to manufacturing equipment.

〔従来の技術〕[Conventional technology]

従来、気相蒸着法によって化合物薄膜を作製するに際し
、真空容器内にガスを導入する場合、ガス分子を中性で
かつ安定な分子状態で供給している。
Conventionally, when a gas is introduced into a vacuum container when producing a compound thin film by a vapor phase deposition method, gas molecules are supplied in a neutral and stable molecular state.

また、従来より反応性蒸着法の一種として、真空容器内
で放電を起し、反応性ガスの活性化を行なう活性化反応
性蒸着方法が知られてい乙。
Furthermore, as a type of reactive vapor deposition method, an activated reactive vapor deposition method has been known in the past, in which a discharge is generated in a vacuum container to activate a reactive gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記気相蒸着法によるガス供給方性では、たと
えば、酸素ガスの場合、分子状態の酸素02の状態で真
空容器内に供給されるため、良質な酸化物膜が作製でき
ない。また、分子状態の酸素02は安定な状態のため、
供給ガス中には解離された酸素原子や活性化された酸素
ラディカルやイオン化された酸素イオンが存在せず、蒸
着物質と酸素との化学的反応が促進できない。
However, with the gas supply method using the vapor phase deposition method, for example, in the case of oxygen gas, a high-quality oxide film cannot be produced because it is supplied into the vacuum container in the molecular state of oxygen 02. In addition, since molecular oxygen 02 is in a stable state,
There are no dissociated oxygen atoms, activated oxygen radicals, or ionized oxygen ions in the supplied gas, and the chemical reaction between the deposition material and oxygen cannot be promoted.

また、前記活性化反応性蒸着方法の場合、化合物薄膜を
形成するに足る反応性ガスを導入したのみでは放電が生
じない。したがって放電を行なわすべく導入ガスの圧力
を上げ乙と、必要以上の反応性ガスが真空容器内に入る
ことになり、形成される化合物薄膜の膜質を損う。
Furthermore, in the case of the activated reactive vapor deposition method, no discharge occurs simply by introducing a reactive gas sufficient to form a compound thin film. Therefore, if the pressure of the introduced gas is increased in order to cause discharge, more reactive gas than necessary will enter the vacuum vessel, impairing the quality of the formed compound thin film.

持に導電彰を決定する不純物ガスを導入する場合、余分
なガスが真空容器内壁1(トラップされ、このトラップ
された元素が次の放電工程で内壁から放出されるので、
1個の真空容器内で、たとえばp−n喀合を形成するこ
とは困難である。このことは、プラズマ中で気相成長を
行なう手法のもう一つの問題点であって、活性化反応性
蒸着方法も、この問題点からまぬがれ得ない。
When introducing an impurity gas that determines the conductivity, the excess gas is trapped on the inner wall of the vacuum chamber (1), and this trapped element is released from the inner wall in the next discharge process.
For example, it is difficult to form a pn coupling within one vacuum vessel. This is another problem with the method of vapor phase growth in plasma, and the activated reactive deposition method cannot escape from this problem.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、前記の欠点に留意してなされたものであり
、真空容器内に反応性ガスを導入し、蒸発源からの原子
または分子を基板上で反応させて化合物薄膜を形成する
化合物薄膜の製造装置において、前記反応性ガスの導入
部に、該反応性ガスを屏1または活性化あるいはイオン
化するガス活性化手段を設ζフたことを特徴とする化合
物薄膜の製造装置である。
This invention was made in consideration of the above-mentioned drawbacks, and is a method of forming a thin compound film by introducing a reactive gas into a vacuum container and reacting atoms or molecules from an evaporation source on a substrate to form a thin compound film. The manufacturing apparatus is characterized in that a gas activation means for activating or ionizing the reactive gas is installed in the introduction part of the reactive gas.

〔作用〕[Effect]

したがって、この発明によると、反応性ガスの真空容器
への導入部にガス化性化手段が設けられ、薄膜形成領域
と分離されているため、活性化された状態で薄膜形成部
に反応性、ガスが供給され、放電等による形成皮膜の劣
化が防がれ、良質の薄膜形成が可能となる。
Therefore, according to the present invention, the gasifying means is provided at the introduction part of the reactive gas into the vacuum container and is separated from the thin film forming area, so that in an activated state, the gasifying means is provided in the thin film forming area. Gas is supplied, preventing the formed film from deteriorating due to discharge, etc., and making it possible to form a high-quality thin film.

〔実施例〕〔Example〕

つぎにこの発明を、その実施例を示した図面とともに詳
細に説明する。
Next, the present invention will be explained in detail with reference to drawings showing embodiments thereof.

まず、反応性クラスタイオンビーム蒸着装置の場合の1
実施例を示した第1図ないし第3図について説明する。
First, 1 in the case of reactive cluster ion beam evaporation equipment.
Embodiments will be explained with reference to FIGS. 1 to 3 showing examples.

ベースプレート(1)の上に置かれた真空容器(2)は
、真空容器(2)内をベースプレート(1)の一部に設
けられた排気孔(3)を通して排気することにより、ベ
ースプレート(υVc固定される。
The vacuum container (2) placed on the base plate (1) is fixed to the base plate (υVc) by evacuating the inside of the vacuum container (2) through the exhaust hole (3) provided in a part of the base plate (1). be done.

蒸着物質14)はるつぼ(5)に装填され、るつぼ(5
)はベースプレート(1)上の支持棒(6)ニよって担
持され、るつぼ(5)を包囲するフィラメントからな6
乙っぽ加熱手段(7)ニよって加熱され、加熱されたる
つぼ(5)の中にある蒸着物質t4)がるつぼ(5)の
上部に設。
The vapor deposition substance 14) is loaded into the crucible (5), and the crucible (5)
) is carried by support rods (6) on the base plate (1) and consists of filaments 6 surrounding the crucible (5).
The vapor deposition material t4) in the heated crucible (5) is heated by the heating means (7) and placed on the upper part of the crucible (5).

けられたノズル(8)を通して噴射する時、るつぼ(5
)の内部と外部の圧力差のため、蒸着物質(4)の塊状
原子集団、すなわちクラスタが形成され乙。
When injecting through the cut nozzle (8), the crucible (5
) Due to the pressure difference between the inside and outside of the vapor deposition substance (4), a lumpy atomic group, or cluster, is formed.

この形成されたクラスタの一部は、フィラメント(9)
とフィラメント(9ンニ隣接して設置されたグリッド(
11とで1成されるイオン化部を通過する時イオン化さ
れる。
Part of this formed cluster is a filament (9)
and the filament (9 grids installed adjacent to each other)
When passing through an ionization section formed by 11 and 11, it is ionized.

そして、グリッドOQの上部に設置された加速1tba
nに印加された加速電圧により、イオン化されたクラス
タが加速され、加速されたクラスタイオンは、中性のク
ラス?とともにクラスタビームOaを形成し、るつぼ(
5)に対峙して設置された基板03に蒸着される。
And the acceleration 1tba installed at the top of the grid OQ
The ionized cluster is accelerated by the accelerating voltage applied to n, and the accelerated cluster ion is in the neutral class? together with the cluster beam Oa, the crucible (
5) is deposited on the substrate 03 placed opposite to the substrate 03.

一方、反応性ガスは真空容器(2)の外部からガス導入
孔Q4)を通して導入され、ガス活性化手段Q9で解1
または活性化あるいはイオン化され、ガス噴出孔Mから
真空容器(2)内に供給表は、第1図に示したこの発明
の1実施例によって作製した酸化シリコン(Sin2)
膜の屈折率特性であり、イオン化のための電子電流Ie
および加速電圧Vaを増加することによって屈折率は減
少し、Ie=3(lQmA、 Va=3KVで1.44
となり、バルクの値に近い値を示す。
On the other hand, the reactive gas is introduced from the outside of the vacuum container (2) through the gas introduction hole Q4), and is activated by the gas activation means Q9.
Alternatively, the activated or ionized silicon oxide (Sin2) supplied from the gas nozzle M into the vacuum container (2) is silicon oxide (Sin2) produced according to an embodiment of the present invention shown in FIG.
It is the refractive index characteristic of the film, and the electron current Ie for ionization
By increasing the accelerating voltage Va, the refractive index decreases and becomes 1.44 at Ie=3(lQmA, Va=3KV).
, which shows a value close to the bulk value.

そして、真空容器(2)のガス圧力が、10 ’Tor
r台あるいはそれ以下の低いガス圧力の状態でも、酸素
は解離、活性化あるいはイオン化され、酸素とシリコン
の反応効率が促進され、良質の酸化シリコンrsio2
)膜が得られる。
Then, the gas pressure in the vacuum container (2) is 10' Torr.
Oxygen is dissociated, activated, or ionized even at low gas pressures on the order of r or lower, promoting the reaction efficiency of oxygen and silicon, and producing high quality silicon oxide rsio2.
) membrane is obtained.

つぎIC1第2図第3図は、第1図のガス活性化手段の
拡大図であり、中央部の電子放出用フィラメント′17
)から放出された電子は、電子放出用フィラメント17
)を包囲する円筒状のアノード(至)へ移動する。この
場合、7E子放出用フイラメント/b)を加熱し、電子
を放出させるために、フィラメント用電極09からフィ
ラメント’171に電流を供給する。また、放出された
電子をアノード(至)へ移動させるために、アノード用
電極翰に電子放出用フィラメントフ7)に対してプラス
の電圧を印加しておく。
Next, IC1 FIG. 2 and FIG. 3 are enlarged views of the gas activation means in FIG.
) The electrons emitted from the electron emitting filament 17
) to the cylindrical anode (to) that surrounds it. In this case, a current is supplied from the filament electrode 09 to the filament '171 in order to heat the 7E electron emitting filament/b) and cause it to emit electrons. Further, in order to move the emitted electrons to the anode, a positive voltage is applied to the anode electrode with respect to the electron emitting filament 7).

そして、ガス導入孔/1荀から導入された反応性ガスは
前記電子との衝突′Cよって原子状態に解離されたり、
励起状態に活性化されたり、あるいはイオン状態にイオ
ン化され、この解離、活性化あるいはイオン化された反
応性ガスは、ガス導入孔α→とガス噴出孔OQとの圧力
差によって軸AA :c沿って移動し、ガス噴出孔αQ
から真空容器(2)に導入される。なお、反応性ガスの
解離、活性化あるいはイオン化の状態を保持するため、
ガス活性化手段+19の容器は石英ガラスで作られてい
る。
The reactive gas introduced from the gas introduction hole/1 is dissociated into an atomic state by collision with the electrons,
This dissociated, activated or ionized reactive gas is activated to an excited state or ionized to an ionic state, and is moved along the axis AA:c due to the pressure difference between the gas introduction hole α→ and the gas ejection hole OQ. Move and gas vent αQ
is introduced into the vacuum container (2). In addition, in order to maintain the dissociated, activated or ionized state of the reactive gas,
The container of gas activation means +19 is made of quartz glass.

つぎに、@4図は、この発明のガス活性化手段の他の実
施例を示し、ガス活性化手段ηの一側に導波管Qυが接
続され、導波管Q1)を通してマイクロ波給電管(図示
せず)からガス活性化手段09′Lマイクロ波を供給す
る。そして、ガス導入孔/J4)から供給された反応性
ガスは、前記マイクロ波によって放電を起こし、放1<
よって解離、活性化、イオン化した反応性ガスは、ガス
噴出孔(lから真空容器(2) [導入される。
Next, Figure @4 shows another embodiment of the gas activation means of the present invention, in which a waveguide Qυ is connected to one side of the gas activation means η, and a microwave feeding tube is passed through the waveguide Q1). Gas activating means 09'L microwave is supplied from a gas activation means 09'L (not shown). Then, the reactive gas supplied from the gas introduction hole /J4) causes discharge by the microwave, and discharges 1<
Therefore, the dissociated, activated, and ionized reactive gas is introduced into the vacuum vessel (2) from the gas nozzle (1).

第5図は、ガス活性化手段ηのさらに他の実施例を示し
、ガス活性化手段αυにRF波電源■から13.56M
Hzの高周波電磁波を供給するために供給線(至)をガ
ス活性化手段αυにヘリカル状に巻′き誘電結合させ、
ガス活性化手段Q9の内部のガス圧力が=3 10  Torr以上になるまでガス導入孔/14から
反応性ガスを導入する。この反応性ガスはガス活性化手
段/1Gで放電を起こし、解離、活性化、イオン化した
反応性ガスとなり、ガス噴出孔θGから真空容器(2)
 rc導入される。
FIG. 5 shows still another embodiment of the gas activation means η, in which the gas activation means αυ is connected to an RF wave power supply 13.56M.
In order to supply high frequency electromagnetic waves of Hz, the supply line (to) is wound helically around the gas activation means αυ and inductively coupled to it.
A reactive gas is introduced through the gas introduction hole/14 until the gas pressure inside the gas activation means Q9 becomes equal to or higher than 3 10 Torr. This reactive gas causes a discharge in the gas activation means/1G, becomes a dissociated, activated, and ionized reactive gas, and passes through the gas outlet θG to the vacuum vessel (2).
rc is introduced.

第6図は、ガス活性化手段1υの他の実施例を示し、ガ
ス活性化手段上を2枚の平板電極弼で挟み込み、平板電
極■ycRF波電源謁から13−56MHzの高周波電
磁波を供給するために供給線(至)を接続し、ガス活性
化手段/1Gの内部のガス圧力が1O−3Torr以上
になるまでガス導入孔/14)から反応性ガスを導入す
る。この反応性ガスは、ガス活性化手段aQで放電を起
こし、解離、活性化、イオン化した反応性ガスとなり、
ガス噴出孔OQから真空容器(2)に導入される。
Fig. 6 shows another embodiment of the gas activation means 1υ, in which the gas activation means is sandwiched between two flat plate electrodes, and a high frequency electromagnetic wave of 13-56 MHz is supplied from the flat plate electrode ycRF wave power source. For this purpose, the supply line (to) is connected, and a reactive gas is introduced from the gas introduction hole/14) until the gas pressure inside the gas activation means/1G becomes 10-3 Torr or more. This reactive gas causes a discharge in the gas activation means aQ, and becomes a dissociated, activated, and ionized reactive gas,
The gas is introduced into the vacuum container (2) from the gas outlet OQ.

第7図は、ガス活性化手段Q!19のさらに他の実施例
を示し、第5図のガス活性化手段O8のガス導入孔Q4
)を2個にしたものであり、それぞれのガス導入孔〈1
4)からたとえば水素ガ、スとジボラン(B2H6)の
水素化合物ガスとの2種類の反応性ガスを導入し、基板
03上における蒸着物質(4)と反応性ガスとの反応を
促進させることができるようにしだものである。
Figure 7 shows gas activation means Q! 19, the gas introduction hole Q4 of the gas activation means O8 in FIG.
), and each gas introduction hole <1
From 4), for example, two types of reactive gases, hydrogen gas and hydrogen compound gas of diborane (B2H6), can be introduced to promote the reaction between the vapor deposition substance (4) and the reactive gas on the substrate 03. It is something that can be done.

この水素ガスとジボランを導入する例としては、p形の
アモルファスシリコン薄膜を形成する場合があげられる
。すなわち、水素によりアモルファスシリコンの未結合
手(ダングリングボンド)をターミネートし、同時″I
c:iう素Bを不純物として導入する場合である。また
ジボランの代りてホスフィン(PH3)を導入すれば、
n形のアモルファスシリコン薄膜が形成できる。
An example of introducing hydrogen gas and diborane is when forming a p-type amorphous silicon thin film. That is, by terminating the dangling bonds of amorphous silicon with hydrogen and simultaneously
c:i This is a case where ion B is introduced as an impurity. Also, if phosphine (PH3) is introduced instead of diborane,
An n-type amorphous silicon thin film can be formed.

この場合、いずれも、たとえば水素ガスを10 ’To
rrとし、ジボランまたはホスフィンを5000 pT
)m位、必要な量を導入すればよいので、余分な反応性
ガスによる膜質の悪化等の問題はない。さらに、たとえ
真空容器の内壁にトラップされる不純物があったとして
も、次工程でこれが放出されることがないので、一つの
真空系内でp−n接合を形成することも可能である。
In this case, for example, hydrogen gas is
rr and diborane or phosphine at 5000 pT.
) Since the necessary amount of reactive gas can be introduced, there is no problem such as deterioration of film quality due to excess reactive gas. Furthermore, even if there are impurities trapped on the inner wall of the vacuum container, they will not be released in the next step, so it is possible to form a pn junction within one vacuum system.

あるいは、異なる反応性ガスを混合し重合させてガス噴
出孔aQから真空容器(2)に供給することもでき乙。
Alternatively, it is also possible to mix and polymerize different reactive gases and supply the mixture to the vacuum container (2) from the gas outlet aQ.

したがって、この発明によると、反応性ガスを原子状態
に解離あるいは励起状態に活性化ゐ乙いはイオン状態に
イオン化し、反応効率を増すガス活性化手段を有し、気
相蒸着法によって化合物膜を1製する手段として、反応
効率の高い反応性ガスを供給する手段が得られ乙。
Therefore, according to the present invention, a gas activation means is provided which increases the reaction efficiency by dissociating a reactive gas into an atomic state, activating it into an excited state, or ionizing it into an ion state, and forms a compound film by a vapor phase deposition method. As a means of producing one, a means of supplying a reactive gas with high reaction efficiency can be obtained.

なお、前記実施例では、反応性ガスとして酸素ガスを例
゛(述べたが、この発明では窒素、水素あるいはアセチ
レンのような水素化合物ガスなどにも応用でき乙。たと
えば、鉄の表面に窒化物の薄膜を形成する場合、ガス活
性化部を通した水素ガスと窒素を真空容器内に導入し、
活性化された水素ガスにより鉄表面を還元して表面の清
浄化を図り、その上に窒化物を被着させれば、付着力の
強い窒化膜が形成できる等、この発明は、その要旨を更
しない範囲で種々変形できるものである。
In the above embodiment, oxygen gas was used as an example of the reactive gas. However, the present invention can also be applied to nitrogen, hydrogen, or hydrogen compound gas such as acetylene. When forming a thin film, hydrogen gas and nitrogen are introduced into a vacuum container through a gas activation section,
The gist of this invention is that by reducing the iron surface with activated hydrogen gas to clean the surface and depositing nitride on it, a nitride film with strong adhesion can be formed. It can be modified in various ways as long as it does not change.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、真空容器内に反応性ガスを
導入して化合物薄膜を形成する!gに、反応性ガスの導
入部にガス活性化手段を設けたことにより、薄膜形成領
域と活性化手段が分離されており、活性化された状態で
薄膜形成部に反応性ガスが供給されるため、放電等によ
る形成皮膜の劣化が防げ、良質の膜形成が可能となる。
As described above, the present invention forms a compound thin film by introducing a reactive gas into a vacuum container! In g, by providing a gas activation means in the reactive gas introduction part, the thin film forming region and the activation means are separated, and the reactive gas is supplied to the thin film forming part in an activated state. Therefore, deterioration of the formed film due to discharge etc. can be prevented, and a high quality film can be formed.

さらに、導入するガスは、必要最低限の量だけ導入すれ
ばよいので、形成された皮膜あるいは真空容器に対する
汚染が防止できる。また、たとえ真空容器内壁に多少不
純物がトラップされたとしても、これはトラップされた
ままで放出されろことがないので、次工程に悪影響を与
えない。すなわち、1個の真空系内で連続してp−n接
合部等を形成できる利点があるなど、従来の反応性蒸着
装@にないすぐれた効果を有するものである。
Furthermore, since it is sufficient to introduce only the minimum necessary amount of gas, contamination of the formed film or the vacuum container can be prevented. Furthermore, even if some impurities are trapped on the inner wall of the vacuum chamber, they remain trapped and are not released, so they do not adversely affect the next process. That is, it has the advantage of being able to form p-n junctions etc. continuously within one vacuum system, and has excellent effects not found in conventional reactive vapor deposition systems.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の化合物薄膜の製造装置の実施例を示し
、@1図はl実施例の正面図、第2図および第3図は第
1図のガス活性化手段の切断正面図および切断側面図、
第4図ないし@7図はそれぞれこの発明のガス活性化手
段の他の実施例を示し、@4図は斜視図、第5図ないし
第7図は正面図である。 (1)・・・ベースプレート、(2)・・・真空容器、
(3)・・・排気孔、′4)・・・蒸着物質、(5)・
・・るつぼ、(8)・・・ノズル、(9)・・・フィラ
メント、 QQ・・・グリッド、01)・・・加速電極
、α2・・・クラスタビーム、αj・・・基板、’14
)・・・ガス導入孔、′19・・・ガス活性化手段、Q
f9・・・ガス噴出孔、/l7)−・・電子放出用フィ
ラメント、(至)・・・アノード、Ql)・・・導波管
、ツ・・・RF波電源。
The drawings show an embodiment of the compound thin film production apparatus of the present invention, and Figure 1 is a front view of the embodiment, and Figures 2 and 3 are a cutaway front view and a cutaway side view of the gas activation means in Figure 1. figure,
Figures 4 to 7 show other embodiments of the gas activation means of the present invention, with Figure 4 being a perspective view and Figures 5 to 7 being front views. (1)...Base plate, (2)...Vacuum container,
(3)...Exhaust hole, '4)...Vapour-deposited material, (5)-
... Crucible, (8) ... Nozzle, (9) ... Filament, QQ ... Grid, 01) ... Accelerating electrode, α2 ... Cluster beam, αj ... Substrate, '14
)...Gas introduction hole, '19...Gas activation means, Q
f9...Gas outlet, /l7)--Electron emission filament, (to)...Anode, Ql)...Waveguide, T...RF wave power source.

Claims (1)

【特許請求の範囲】[Claims] (1)真空容器内に反応性ガスを導入し、蒸発源からの
原子または分子を基板上で反応させて化合物薄膜を形成
する化合物薄膜の製造装置において、前記反応性ガスの
導入部に、該反応性ガスを解離または活性化あるいはイ
オン化するガス活性化手段を設けたことを特徴とする化
合物薄膜の製造装置。
(1) In a compound thin film manufacturing apparatus in which a reactive gas is introduced into a vacuum container and atoms or molecules from an evaporation source are reacted on a substrate to form a compound thin film, the reactive gas is introduced into the reactive gas inlet. 1. An apparatus for producing a compound thin film, comprising a gas activation means for dissociating, activating, or ionizing a reactive gas.
JP21377984A 1984-10-11 1984-10-11 Manufacturing device of compound thin film Pending JPS6191918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21377984A JPS6191918A (en) 1984-10-11 1984-10-11 Manufacturing device of compound thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21377984A JPS6191918A (en) 1984-10-11 1984-10-11 Manufacturing device of compound thin film

Publications (1)

Publication Number Publication Date
JPS6191918A true JPS6191918A (en) 1986-05-10

Family

ID=16644894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21377984A Pending JPS6191918A (en) 1984-10-11 1984-10-11 Manufacturing device of compound thin film

Country Status (1)

Country Link
JP (1) JPS6191918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341013A (en) * 1986-08-06 1988-02-22 Mitsubishi Electric Corp Forming device for thin-film
JPS63260035A (en) * 1986-11-18 1988-10-27 Res Dev Corp Of Japan Hydrogen plasma semiconductor manufacturing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105550A (en) * 1973-12-11 1975-08-20
JPS5121472A (en) * 1974-08-16 1976-02-20 Hitachi Ltd
JPS5132423A (en) * 1974-09-14 1976-03-19 Nissan Chemical Ind Ltd Igata no sakuseiho
JPS5547452A (en) * 1978-07-27 1980-04-03 Cremer Device for measuring speed of automobile
JPS5851506A (en) * 1981-08-26 1983-03-26 パリアン・アソシエイツ・インコ−ボレイテツド Molecular beam converter for vacuum covering system
JPS5870522A (en) * 1981-10-23 1983-04-27 Konishiroku Photo Ind Co Ltd Thin film formating device
JPS5996721A (en) * 1982-11-25 1984-06-04 Sekisui Chem Co Ltd Manufacture of thin film semiconductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105550A (en) * 1973-12-11 1975-08-20
JPS5121472A (en) * 1974-08-16 1976-02-20 Hitachi Ltd
JPS5132423A (en) * 1974-09-14 1976-03-19 Nissan Chemical Ind Ltd Igata no sakuseiho
JPS5547452A (en) * 1978-07-27 1980-04-03 Cremer Device for measuring speed of automobile
JPS5851506A (en) * 1981-08-26 1983-03-26 パリアン・アソシエイツ・インコ−ボレイテツド Molecular beam converter for vacuum covering system
JPS5870522A (en) * 1981-10-23 1983-04-27 Konishiroku Photo Ind Co Ltd Thin film formating device
JPS5996721A (en) * 1982-11-25 1984-06-04 Sekisui Chem Co Ltd Manufacture of thin film semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341013A (en) * 1986-08-06 1988-02-22 Mitsubishi Electric Corp Forming device for thin-film
JPS63260035A (en) * 1986-11-18 1988-10-27 Res Dev Corp Of Japan Hydrogen plasma semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4805555A (en) Apparatus for forming a thin film
US4915977A (en) Method of forming a diamond film
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
Turban et al. Ion and radical reactions in the silane glow discharge deposition of a-Si: H films
US4514437A (en) Apparatus for plasma assisted evaporation of thin films and corresponding method of deposition
EP0288608B1 (en) Apparatus for forming a thin film
US4948750A (en) Method and apparatus for producing semiconductor layers composed of amorphous silicon-germanium alloys through glow discharge technique, particularly for solar cells
JPH0541705B2 (en)
JPH06275545A (en) Formation of compound thin film using gas cluster ion
US5952061A (en) Fabrication and method of producing silicon films
JPH04236781A (en) Plasma cvd device
JPS6191918A (en) Manufacturing device of compound thin film
US5089289A (en) Method of forming thin films
JPH08222554A (en) Film deposition and film deposition system using plasma
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
JP3007579B2 (en) Manufacturing method of silicon thin film
JP2846534B2 (en) Plasma CVD apparatus and method for forming functional deposited film using the same
JPS61267315A (en) Plasma cvd device
JPH01290758A (en) Production of oxide thin film
JPS6034013A (en) Manufacture of solid thin film
JPH0238573A (en) Producing device for thin film by directly-exciting vapor phase depositing method
JP3169302B2 (en) Activated gas generator
CA1341184C (en) Method and apparatus for the plasma etching substrate cleaning or deposition of materials by d.c. glow discharge
JPH07335395A (en) Plasma generating method, and film forming method, etching method, semiconductor accumulating method and doping method using it