JPS619122A - Phase comparing circuit of relay - Google Patents

Phase comparing circuit of relay

Info

Publication number
JPS619122A
JPS619122A JP59127519A JP12751984A JPS619122A JP S619122 A JPS619122 A JP S619122A JP 59127519 A JP59127519 A JP 59127519A JP 12751984 A JP12751984 A JP 12751984A JP S619122 A JPS619122 A JP S619122A
Authority
JP
Japan
Prior art keywords
circuit
relay
output
phase comparison
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59127519A
Other languages
Japanese (ja)
Inventor
五十嵐 公二
近藤 良太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59127519A priority Critical patent/JPS619122A/en
Publication of JPS619122A publication Critical patent/JPS619122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、電力系統の故障時において基本波に過渡高調
波が重畳した状態でも正確、かつ高速度で位相比較でき
るようにした継電器の位相比較回路に関するものである
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a phase comparison of a relay that enables accurate and high-speed phase comparison even when transient harmonics are superimposed on the fundamental wave in the event of a power system failure. It is related to circuits.

[発明の技術的背景] 一般的な位相比較保護継電装置の動作原理を第2図〜第
4図を用いて説明する。
[Technical Background of the Invention] The operating principle of a general phase comparison protective relay device will be explained using FIGS. 2 to 4.

第2図は位相比較継電装置7を設置する電力系統の構成
を示すもので、位相比較継電装置7はA電気所及びB電
気所に夫々設置される。両電気所に共通なものは同一符
号を付して表わす。7は母線、2はその電気所の背後の
発電機、5はA電気所とB電気所を連系する送電線であ
る。送電線5で故障が発生すると両電気所に設置された
変流器3によって、送電線5に流れる故障電流に比例し
た電流6が位相比較継電装置7に導かれ、7の出力回路
11によってしゃ断器4が開路される。位相比較継電装
置7に導かれた電流6は方形波変換回路8において位相
比較用の方形波信号に変換された後、自端信号としてア
ンド回路9へ導かれると同時に、伝送路12を介して相
手端継電装置へ送信される。
FIG. 2 shows the configuration of a power system in which the phase comparison relay device 7 is installed, and the phase comparison relay device 7 is installed at an A electric station and a B electric station, respectively. Items common to both electrical stations are designated by the same reference numerals. 7 is a bus bar, 2 is a generator behind the electric station, and 5 is a transmission line connecting electric stations A and B. When a fault occurs in the power transmission line 5, a current 6 proportional to the fault current flowing in the power transmission line 5 is guided by the current transformer 3 installed at both electric stations to the phase comparison relay device 7, and the output circuit 11 of 7 The circuit breaker 4 is opened. The current 6 led to the phase comparison relay device 7 is converted into a square wave signal for phase comparison in the square wave conversion circuit 8, and then is led to the AND circuit 9 as a self-end signal, and at the same time is passed through the transmission line 12. and is sent to the relay device at the other end.

一方、同様にして相手端から送信されて来た位相比較信
号は自端のアンド回路9のもう一つのゲートに導かれる
。アンド回路9では両端の位相比較信号の重なりを求め
、この大きさが次段の限時動作回路10で測定され、所
定の値(一般には60°)以上であれば限時復帰回路1
1において連続化した出力祖号「1」を得て、しゃ断器
4を開路する。
On the other hand, the phase comparison signal transmitted from the other end in the same manner is guided to another gate of the AND circuit 9 at the other end. The AND circuit 9 determines the overlap of the phase comparison signals at both ends, and the magnitude of this is measured by the next-stage time-delayed operation circuit 10. If it is greater than or equal to a predetermined value (generally 60 degrees), the time-delayed return circuit 10
1, a continuous output code "1" is obtained, and the circuit breaker 4 is opened.

次に、第3図及び第4図を用いて被保護送電線の内部、
及び外部故障時の位相比較継電装置7の応動について説
明する。
Next, using Figures 3 and 4, the inside of the protected power transmission line,
The response of the phase comparison relay device 7 in the event of an external failure will be explained.

第り図は内部故障時、即ち、図においてFで示される地
点で故障が発生した場合の位相比較継電装置7の各部回
路の波形を示したものである。内4     部故障時
は、自端A電気所の位相比較信号8(^)と相手端B電
気所からの位相比較信号8(B)の位相は一致するため
アンド回路9でアンド条件が成立し、限時動作回路10
、限時復帰回路11の出力を得てしゃ断器4の引き外し
を行なう。
Figure 2 shows waveforms of various circuits of the phase comparison relay device 7 when an internal failure occurs, that is, when a failure occurs at a point indicated by F in the figure. When four of the four parts fail, the phases of the phase comparison signal 8 (^) from the electric station A at the own end and the phase comparison signal 8 (B) from the electric station B at the other end match, so the AND condition is established in the AND circuit 9. , time-limited operation circuit 10
, the output of the time-limited return circuit 11 is obtained and the breaker 4 is tripped.

一方、外部故障においては、両電気所の位相比較継電装
置7の入力電流6(A)及び6(B)の位相関係は第4
図で示す波形となるので、位相比較信号8(^)と8(
B)の重なりは生じない。従って回路11の出力は零と
なり、しゃ断器4の引き外しは行なわれない。
On the other hand, in the case of an external failure, the phase relationship between the input currents 6 (A) and 6 (B) of the phase comparison relay device 7 of both electric stations is 4th.
Since the waveform is as shown in the figure, the phase comparison signals 8(^) and 8(
B) overlap does not occur. Therefore, the output of the circuit 11 becomes zero, and the circuit breaker 4 is not tripped.

[背景技術の問題点] ところが、第5図の系統図に示すようにB電気′所にケ
ーブル系統25が接続され、その先が無電源(負荷端)
あるいは小電源となっている系統の架空系統側で内部故
障が発生ずると、ケーブル系統の静電容量と架空系統の
インダクタンスにより非常に大きな過渡高調波が発生し
、それが健全回線から流れ込む基本波に重畳して日電気
所に流れる電流は第6図6(B)の様な波形となる。こ
の電流6(B)を方形波交換すると、第6図8(B)に
示すように「1」、rOJが断続する位相比較信号と 
   (yなってしまう。この状態で信号8(A)と8
(B)の位相比較を行なっても、アンド回路9(A)及
び9(B)の出力信号は夫々断続信号となってしまうの
で、次段の限時動作回路10(A) 、10(B)から
出力を得ることができない。
[Problems with the Background Art] However, as shown in the system diagram of Fig. 5, the cable system 25 is connected to the B electric station, and the end thereof is a non-power source (load end).
Or, if an internal failure occurs on the overhead system side of a system with a small power supply, the capacitance of the cable system and the inductance of the overhead system will generate very large transient harmonics, which will be the fundamental wave flowing from the healthy line. The current superimposed on the current flowing through the NEC office has a waveform as shown in FIG. 6(B). When this current 6 (B) is exchanged with a square wave, it becomes "1" as shown in FIG. 6, 8 (B), and a phase comparison signal in which rOJ is intermittent.
(It becomes y. In this state, signals 8(A) and 8
Even if the phase comparison in (B) is performed, the output signals of the AND circuits 9(A) and 9(B) will become intermittent signals, so the next-stage time-limiting operation circuits 10(A) and 10(B) I can't get any output from .

結局、内部故障が発生しているのにも拘らず、継電器は
故障発生直後動作不可能であり、過渡高調波成分が充分
減衰してから動作可能となるので、継電器動作が大幅に
遅れてしまうという問題があつ Iこ 。
In the end, even though an internal failure has occurred, the relay cannot operate immediately after the failure occurs, and can only operate after the transient harmonic components have sufficiently attenuated, resulting in a significant delay in relay operation. I have this problem.

[発明の目的] 本発明は、上記した過渡高調波が重畳するような波形に
おいても、正確、かつ高速に位相比較が可能な継電器の
位相比較回路を提供することを目的としている。
[Object of the Invention] An object of the present invention is to provide a phase comparison circuit for a relay that is capable of accurately and quickly comparing phases even in a waveform in which the above-mentioned transient harmonics are superimposed.

[発明の概要] 本発明では各電気所からの入力雷気聞を論理積回路に導
入して「1」、「0」による位相比較信号をつくり、こ
の「1」、rOJ信号に応じて正方向及び負方向の各積
分動作を所定範囲まで行ない、この所定範囲までの積分
値が所定レベル以上である場合に継電器の出力を導出し
ようとするものである。
[Summary of the Invention] In the present invention, input thunder signals from each electrical station are introduced into an AND circuit to create a phase comparison signal of "1" and "0", and a phase comparison signal of "1" and "0" is generated. Each integral operation in the direction and the negative direction is performed up to a predetermined range, and when the integral value up to this predetermined range is equal to or higher than a predetermined level, the output of the relay is derived.

[発明の実施例] 以下図面を参照して実施例を説明する。第1図(a)、
 (b)は本発明による継電器の位相比較回路の一実施
例構成図である。
[Embodiments of the Invention] Examples will be described below with reference to the drawings. Figure 1(a),
(b) is a configuration diagram of an embodiment of a phase comparator circuit for a relay according to the present invention.

第1図(6)において、13は位相比較判定回路(以下
回路13と言う)であり、第2図の従来技術による位相
比較継電装置7において限時動作回路10の代わりに設
けた回路である。この他の回路については第2図構成図
と同一である。即ち、アンド回路9と回路13とで位相
比較回路を構成している。
In FIG. 1 (6), 13 is a phase comparison and determination circuit (hereinafter referred to as circuit 13), which is provided in place of the time-limited operation circuit 10 in the phase comparison relay device 7 according to the prior art shown in FIG. . The other circuits are the same as the configuration diagram in FIG. 2. That is, the AND circuit 9 and the circuit 13 constitute a phase comparison circuit.

第1図で、喝は回路13の入力で第2図アンド回路9の
出力信号がここに導入、される。14は入力回路、15
は入力回路14の出力信号を積分する回路、16は積分
回路15の積分値を所定の範囲で停止させる回路、17
は積分回路15の出力信号叫が所定の検出レベル以上と
なった時出力信号角を発生する回路であり、レベル検出
回路11の出力信号角は信号連続化の目的で第2固成時
復帰回路11へ導入される。
In FIG. 1, the input signal is the input of the circuit 13, and the output signal of the AND circuit 9 in FIG. 2 is introduced here. 14 is an input circuit, 15
16 is a circuit that integrates the output signal of the input circuit 14, 16 is a circuit that stops the integrated value of the integration circuit 15 within a predetermined range, and 17 is a circuit that integrates the output signal of the input circuit 14;
is a circuit that generates an output signal angle when the output signal of the integrator circuit 15 exceeds a predetermined detection level, and the output signal angle of the level detection circuit 11 is generated by the second fixation return circuit for the purpose of signal continuity. 11 will be introduced.

第1図(b)Lt、第1図(a)回路14〜17の構成
例を示したものであり、各回路と対応する部分は同一符
号をつけている。
FIG. 1(b) shows an example of the configuration of circuits 14 to 17 in FIG.

入力回路14において、SWI及びSW2はアナログス
イッチ等の電子スイッチで夫々信号q及び信号qをノッ
ト回路110TIにて反転した信号で制御される。積分
回路15は演算増幅器OA1を用いた周知の積分回路で
あり、R1及びCは夫々演算抵抗とコンデンサである。
In the input circuit 14, SWI and SW2 are controlled by electronic switches such as analog switches using a signal q and a signal obtained by inverting the signal q by a NOT circuit 110TI, respectively. The integrating circuit 15 is a well-known integrating circuit using an operational amplifier OA1, and R1 and C are an operational resistor and a capacitor, respectively.

積分停止回路16のZDlはツェナーダイオードで、積
分回路15のコンデンサCと並列接続される。レベル検
出1回路17は周知のレベル検出回路であって、R2は
抵抗、ZD2はツェナーダイオード、TRIはトランジ
スタ、R3、内は夫々トランジスタTR1のバイアス抵
抗、コレクタ抵抗、N0T2はエミッタ接地されたトラ
ンジスタTR1の出力信号を反転するノ1     ッ
ト回路であり、ノット回路N0T2より出力信号qを発
生する。
ZDl of the integration stop circuit 16 is a Zener diode, which is connected in parallel with the capacitor C of the integration circuit 15. The level detection circuit 17 is a well-known level detection circuit, R2 is a resistor, ZD2 is a Zener diode, TRI is a transistor, R3 is a bias resistor and collector resistor of the transistor TR1, and N0T2 is a transistor TR1 whose emitter is grounded. This is a knot circuit that inverts the output signal of the NOT circuit N0T2, and generates an output signal q from the NOT circuit N0T2.

以下本発明の作用を図面を用いて説明する。第1図(b
)において入力信号qが「1」の時スイッチSW1はオ
ン状態となり直流電源−VCより演算抵抗R1を介して
演算増幅器OAIの反転入力端子に電流1い即ち、二V
C−を供給し積分を開始する。
The operation of the present invention will be explained below with reference to the drawings. Figure 1 (b
), when the input signal q is "1", the switch SW1 is turned on, and a current of 1, that is, 2 V, is applied from the DC power supply -VC to the inverting input terminal of the operational amplifier OAI via the operational resistor R1.
Supply C- and start integration.

演算増幅器0^1の出力信号〜がツェナーダイオードl
D1のツェナー電圧で決まるレベルV、71、即ち積分
の上限値IL2まで上昇すると積分を停止し、以後もの
電位は一定となる。
The output signal of the operational amplifier 0^1 is the Zener diode l
When the voltage rises to the level V determined by the Zener voltage of D1, 71, that is, the upper limit value IL2 of integration, the integration is stopped and the potential remains constant thereafter.

次に入力信号e1が「0」となると、スイッチSW1は
オフ状態となり、代わりにノット回路N0T1の出力が
「1」の期間スイッチSW2がオン状態となる。スイッ
チSW2がオン状態となると直流電源十A/cより電流
12が供給され、負方向の積分を開始するので演算増幅
器OAIの出力電圧は下降し、ツェナーダイオードZD
Iの順方向電圧で決まる負の電位、即ち積分の下限値I
L1にて積分を停止し、信号〜は一定電圧となる。  
            )積分回路15の積分値をあ
られす信号喝の電圧が、次段のツェナーダイオードZD
2のツェナー電圧゛Vz2で決まる電位まで上昇すると
トランジスタTRIがオンし、TRIの出力信号がノッ
ト回路N0T2で反転されて信号Ojを発生する。
Next, when the input signal e1 becomes "0", the switch SW1 is turned off, and instead, the switch SW2 is turned on while the output of the NOT circuit N0T1 is "1". When the switch SW2 is turned on, a current of 12 is supplied from the DC power supply of 10 A/c, and integration in the negative direction starts, so the output voltage of the operational amplifier OAI decreases, and the output voltage of the zener diode ZD decreases.
A negative potential determined by the forward voltage of I, that is, the lower limit of integration I
Integration is stopped at L1, and the signal ~ becomes a constant voltage.
) The voltage of the signal that generates the integrated value of the integrating circuit 15 is applied to the Zener diode ZD in the next stage.
When the voltage rises to a potential determined by the Zener voltage Vz2 of No. 2, the transistor TRI is turned on, and the output signal of TRI is inverted by the NOT circuit N0T2 to generate the signal Oj.

第7図〜第10図は入力信号もの種々の状態に対し、上
記した回路13がどのような動作をするかを示したタイ
ムチャート図である。
7 to 10 are time charts showing how the circuit 13 described above operates with respect to various states of input signals.

ここではツェナーダイオード201 、ZD2のツェナ
ー電位VZ1とVZ2は等しい。電流11と12の大き
さの絶対値は等しい。位相比較の重なり色判定角度は電
気角で606 としている。
Here, the Zener potentials VZ1 and VZ2 of the Zener diodes 201 and ZD2 are equal. The absolute values of currents 11 and 12 are equal. The overlapping color determination angle for phase comparison is 606 electrical degrees.

第7図は、入力信号もの信号「1」の期間が重なり色判
定角度60°と同一である場合のタイムチャート図であ
り、信号角は、信号への電位がツェナー電位Vzlと等
しくなる点で出力「1」を発生する。
FIG. 7 is a time chart when the periods of the input signal "1" overlap and are the same as the color judgment angle of 60 degrees, and the signal angle is the point where the potential to the signal is equal to the Zener potential Vzl. Generates output "1".

第8図は、入力信@もの信号「1」の期間が重なり色判
定角度60°よりも充分に長い場合のタイムチャート図
である。
FIG. 8 is a time chart when the periods of the input signal "1" overlap and are sufficiently longer than the color determination angle of 60 degrees.

第9図は、第8図の状態において入力信号もの波形が高
調波重畳等の彰彎で分断されてしまった場合のタイムチ
ャート図であり、信号qが「1」である期間TI、T3
と信号qがrOJである期間■2とを比較して、T1及
びT2が60’未満であっても、T1+ 13− T2
≧606であれば出力信号qを発生することを示してい
る。
FIG. 9 is a time chart diagram when the input signal waveform is divided by harmonics such as harmonic superposition in the state shown in FIG.
and the period ■2 in which the signal q is rOJ, even if T1 and T2 are less than 60', T1+ 13- T2
≧606 indicates that output signal q is generated.

第10図は入力信号もの信号「1」の期間が重なり色別
定角度60°未満の場合のタイムチャート図であり、こ
の場合信号qはツェナー電位Vzlに達することができ
ず、出力信号e3はrOJである。
FIG. 10 is a time chart when the periods of the input signal "1" overlap and the fixed angle for each color is less than 60 degrees. In this case, the signal q cannot reach the Zener potential Vzl, and the output signal e3 It is rOJ.

本回路は積分範囲を上限IL2は重なり色判定角度60
°と略同−値、下限1[1は積分値略零に設定している
ので、例えば第8図からも明らかのように積分の上限、
下限を演算増幅器0^1の飽和点までとった破線の積分
波形と比較して積分の動作、復帰が早まり、そのぶん継
電器の高速動作、復帰が可能という特徴がある。
In this circuit, the upper limit of the integration range is IL2, which is the overlap color judgment angle of 60.
Since the lower limit 1 [1 is set to approximately zero integral value, for example, as is clear from Fig. 8, the upper limit of the integral is approximately the same value as °.
Compared to the integral waveform of the broken line whose lower limit is taken to the saturation point of the operational amplifier 0^1, the integral operation and recovery are faster, and the relay can operate and recover faster.

第11図は上記した狗路13を位相比較継電装置7に適
用した場合の内部故障時の応動波形図であって、第6図
、に示す従来技術の例では高調波の重畳により誤不動作
であったものが、第11図では高速、かつ正動作となっ
ている。
FIG. 11 is a response waveform diagram at the time of an internal failure when the above-mentioned Inuji 13 is applied to the phase comparison relay device 7. In the prior art example shown in FIG. What was a normal operation is now a high-speed and normal operation in Fig. 11.

上記説明ではツェナー電圧をV zl−V z2とした
が、VZ2の電位を少し下げてVzl>Vz2としても
良い。
In the above description, the Zener voltage was set to V zl - V z2, but the potential of VZ2 may be lowered a little so that Vzl>Vz2.

以上本発明を位相比較継電装置に適用した場合を例にと
って説明してきた。しかし、本発明はこれに何ら限定さ
れることなく複数の電気量より2量を抽出し、この2足
間の位相の重なりを求める回路全てに適用が可能である
The present invention has been described above by taking as an example a case in which the present invention is applied to a phase comparison relay device. However, the present invention is not limited to this in any way, and can be applied to any circuit that extracts two quantities from a plurality of electrical quantities and determines the phase overlap between these two quantities.

以下他の実施例として距離継電器への適用例を示す。An example of application to a distance relay will be shown below as another embodiment.

第12図はモー形距離継電器を示す構成図であり、第1
3図はその動作原理を示すベクトル図である。
FIG. 12 is a configuration diagram showing a Moh type distance relay, and the first
FIG. 3 is a vector diagram showing the principle of operation.

距離継電器はその設置点の電圧と電流とを入力とし、両
者の大きさと位相関係とから保護区間内に故障が発生し
ているかどうかを判別するもので、    ある。
A distance relay receives the voltage and current at its installation point and determines whether a fault has occurred within the protected area based on the magnitude and phase relationship between the two.

第12図に示されているように、電圧入力(以後Vと呼
ぶ)と電流入力(以後Iと呼ぶ)は、夫々入力変成器1
8.19に入力される。変成器19の出力は交流電気量
を送電線のインピーダンスにより電圧と電流の間に生ず
る位相角φだけ進み方向に移相する移相回路20に導入
され、その出力iンと変り求められ、方形波変換回路2
2により方形波に変換される。一方、変成器18の出力
Vは記憶回路23に導入され、電圧■に対応した極性間
電圧■を導出する。電気量VPは方形波変換回路24に
より方形波変換され、回路22と24との両者出力はア
ンド回路9によりその重なり角が求められ、次に第1図
構成の回路13にて重なり角の大きさが90”以上であ
れば回路13に断続出力を発生し、次段の限時復帰回路
11にて連続化された継電器出力を得ている。
As shown in FIG. 12, the voltage input (hereinafter referred to as V) and the current input (hereinafter referred to as I) are connected to input transformer 1, respectively.
Entered on 8.19. The output of the transformer 19 is introduced into a phase shift circuit 20 that shifts the alternating current amount of electricity in the leading direction by a phase angle φ generated between the voltage and the current due to the impedance of the transmission line, and its output is changed to i, which is calculated as a rectangular wave conversion circuit 2
2 is converted into a square wave. On the other hand, the output V of the transformer 18 is introduced into the memory circuit 23, which derives the polarity voltage ■ corresponding to the voltage ■. The electrical quantity VP is converted into a square wave by the square wave conversion circuit 24, and the overlapping angle of both outputs from the circuits 22 and 24 is determined by the AND circuit 9. Next, the magnitude of the overlapping angle is determined by the circuit 13 having the configuration shown in FIG. If the value is 90'' or more, an intermittent output is generated in the circuit 13, and a continuous relay output is obtained in the next stage time-limited return circuit 11.

この時の各部波形を第14図に示す。The waveforms of various parts at this time are shown in FIG.

ここで回路13の重なり色別定角度が90°である点を
考慮すれば、第12図は位相比較継電装置で説明したこ
とと同等の作用効果を生じるので、電力□。、、おい、
。、□□ツカ、□   ツした状態でも正確、かつ高速
度で位相比較が可能である。
If we take into account that the fixed angle for each overlapping color of the circuit 13 is 90 degrees, the effect shown in FIG. 12 is equivalent to that described for the phase comparison relay device, so the power □. ,,Hey,
. , □□ Tsuka, □ Accurate and high-speed phase comparison is possible even when the device is turned on.

第15図は、回路13の他の構成例を示したもので、第
16図はその動作原理を示すタイムチャート図である。
FIG. 15 shows another example of the configuration of the circuit 13, and FIG. 16 is a time chart showing its operating principle.

入力信号もはアップダウンカウンタICIのUP/DO
WN端子に導入される。信号もが「1」の期間はクロッ
ク信号をアップカウントし、信号もが「0」の期間はク
ロック信号をダ、ウンカウントする。カウンタICIの
カウント値は、例えば16進数表現でカウントの上限を
「80」、カウントの下限を「00」としており、「0
0」から「80」まで連続的にカウントした時の期間が
電気角で90°となるようにしている。
Input signal is also UP/DO of up/down counter ICI
Introduced to the WN terminal. During the period when the signal is also "1", the clock signal is counted up, and during the period when the signal is also "0", the clock signal is counted down. The count value of the counter ICI is, for example, expressed in hexadecimal notation with the upper limit of the count as "80" and the lower limit of the count as "00".
The period of continuous counting from "0" to "80" is 90 degrees in electrical angle.

信号もの「1」の期間が90°以上の場合、アップカウ
ント期間中にカウント値は「80」に達し、Q出力とし
て句を出力する。
If the period of the signal "1" is 90 degrees or more, the count value reaches "80" during the up-counting period, and a phrase is output as the Q output.

Q出力と信号qとはアンド回路AND1に導入され、ア
ンド条件が成立すれば、カウンタICIのノーカウント
端子汀を制御し、カウン]−値「80」の一定値に保持
する(第16図1の期1!l)。
The Q output and the signal q are introduced into an AND circuit AND1, and if the AND condition is satisfied, the no-count terminal of the counter ICI is controlled and held at a constant value of ``count'' minus the value ``80'' (Fig. 16). period 1!l).

次に信号龜が「0」となると、この期間ダウンカウント
を行ない、Q出力は「0」となる。カウント値が「00
」になった時点で端子CARRYの信号は「O」となる
ので入力信号もとの間でノア条件が成立し、カウンタを
「00」の値にクリアし、このクリア状態は次に入力信
号もが「1」となってノア条件が不成立となるまで続け
られる。結局第15図の回路は、第1図の構成例と同等
の作用、効果を生じる。
Next, when the signal level becomes "0", a down count is performed during this period, and the Q output becomes "0". The count value is “00”
'', the signal at the terminal CARRY becomes ``O'', so a NOR condition is established between the input signals and the counter is cleared to the value ``00'', and this cleared state also applies to the next input signal. The process continues until becomes "1" and the Noah condition is no longer satisfied. In the end, the circuit shown in FIG. 15 produces the same functions and effects as the configuration example shown in FIG.

以上の実施例では、回路13の積分の時間変化率は正、
負両方向で同一として説明してぎた。本発明はこれに何
ら限定されることなく正、負の方向で積分の時間変化率
を異なったものとしても良い。
In the above embodiment, the time rate of change of the integral of the circuit 13 is positive;
I have explained that it is the same in both negative directions. The present invention is not limited to this, but the time rate of change of the integral may be different in the positive and negative directions.

このためには、例えば第1図(b)の構成例では、さを
変えるもしくは演算抵抗R1を11.12回路で独立に
設は演算抵抗値を変える等の手段をとることができる。
For this purpose, for example, in the configuration example shown in FIG. 1(b), it is possible to take measures such as changing the resistance value or setting the calculated resistance R1 independently in 11.12 circuits to change the calculated resistance value.

今、動作判定周期を360°、重なり角の判定角度をθ
い正方向及び負方向の積分の時間変化率を夫々TA、 
TBとすれば、 θ、xTA−(360’−θ、)xTBTA    3
60’−〇。
Now, the motion judgment period is 360°, and the overlap angle judgment angle is θ.
The time rate of change of the positive and negative integrals is TA, respectively.
If TB, θ, xTA-(360'-θ,)xTBTA 3
60'-〇.

TB       θ1 がTAとTBのとり得る限界となる。TB θ1 is the limit that TA and TB can take.

今、θを90°とすると、時間変化率■Aを3TBまで
とることができる。TA= 3TBとした場合、例えば
第9図において、信号もが「1」であり正方向の積分を
行なっている期間、即ち、継電器にとっては動作側の判
定を行なっている期間中に信号もの波形が「0」に落ち
込んでも負方向の積分の時間変化率TBは緩かであり、
この信号もの波形がrOJに落ち込んだことによる影響
を軽減できる効果がある。
Now, if θ is 90°, the time rate of change ■A can be up to 3 TB. When TA = 3TB, for example, in Fig. 9, the signal waveform changes during the period when the signal is "1" and integration is performed in the positive direction, that is, during the period when the relay is being judged on the operating side. Even if TB falls to 0, the time rate of change TB of the integral in the negative direction is slow,
This has the effect of reducing the influence caused by the waveform of this signal dropping to rOJ.

[発明の効果] 以上説明した如く、本発明によれば複数の入力、   
  電気量の位相の重なりを検出する継電器の位相比較
回路を、位相の重なり得る論理積回路と、この論理積回
路の出力を積分入力とする積分回路と、この積分回路の
積分値が所定の積分範囲を越えた時に積分を停止する回
路と、前記積分値が積分範囲と略同−の所定の検出レベ
ルを越えた時に継電器出力を発生ずる回路とによって構
成したので、電力系統の故障時に基本波に高調波成分が
重畳した場合でも正確、かつ高速動作可能な継電器の位
相比較回路を提供できる効果がある。
[Effects of the Invention] As explained above, according to the present invention, a plurality of inputs,
The phase comparator circuit of a relay that detects the phase overlap of electric quantities is composed of an AND circuit whose phases can overlap, an integration circuit which takes the output of this AND circuit as an integration input, and an integral value of this integration circuit that is a predetermined integral. The structure consists of a circuit that stops the integration when the range is exceeded, and a circuit that generates a relay output when the integrated value exceeds a predetermined detection level that is approximately the same as the integration range. This has the effect of providing a phase comparator circuit for a relay that can operate accurately and at high speed even when harmonic components are superimposed on the relay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明による継電器の位相比
較回路の一実施例構成図、第2図は従来技術による位相
比較継電装置の構成図、第3図及び第4図はその内部故
障時、外部故障時の動作原理図、第5図及び第6図は高
調波が発生した場合の位相比較継電装置の動作説明図、
第7図〜第11図は本発明による位相比較回路の動作原
理図、第12図は本発明の他の実施例でありモー形距離
継電器に適用した場合の図、第13図はモー形距離継電
器の特性図、第14図はモー形距離継電器のタイムチャ
ート、□1.6゜4□よよ。!、、、や。、1あ、ア7
   マ゛プダウンカウンタを用いた場合の図、第16
図は動作説明のタイムチャートである。 1・・・母線       2・・・発電機3・・・変
流器      4・・・しゃ断器5・・・送電線  
    6・・・電流7・・・位相比較継電装置 8.22.24・・・方形波変換回路 9・・・アンド回路    10・・・限時動作回路1
1・・・限時復帰回路   12・・・伝送路13・・
・位相比較判定回路 14・・・入力回路15・・・積
分回路     16・・・積分停止回路17・・・レ
ベル検出回路  18.19・・・入力変成器20・・
・移相回路     21・・・減算回路23・・・記
憶回路 (7317)代理人 弁理士 則近憲佑(他1名) 宅1図 ((L) − #〜1、    (b) E−′ 兜2図 鬼3図 毘4図 ’i (A)、’7(8)□θ 10 (A)jO(E3)            0
27(A)、71(β)□。 第5図 9(A)、q(B)−旧り一■−□ 10(A)、fO(8)  、−’ニー   −””’
:’ 。 11 (A)、’11(B)  □0 第7図     第8図 第9図    晃10図 e、−記−A  e3      ’ 児11図 ’? (A)、’?(8) ■l−−丁り。 13(A)、73(B) ]L二止。 11(A)、71(B) −ロ二二。 鬼12図 児13図 兎14図 ’   IJI、=−11!カ□ 第15図 L                        
      J・!
FIGS. 1(a) and 4(b) are block diagrams of an embodiment of a phase comparison circuit for a relay according to the present invention, FIG. 2 is a block diagram of a phase comparison relay device according to the prior art, and FIGS. Figures 5 and 6 are diagrams explaining the operation of the phase comparison relay device when harmonics occur;
Figures 7 to 11 are diagrams of the operating principle of the phase comparison circuit according to the present invention, Figure 12 is another embodiment of the present invention and is a diagram when applied to a Moh type distance relay, and Figure 13 is a diagram of the Moh type distance relay. The characteristic diagram of the relay, Figure 14, is the time chart of the Moh type distance relay, □1.6°4□. ! ,,,or. ,1a,a7
Diagram when using a map-down counter, No. 16
The figure is a time chart for explaining the operation. 1... Bus bar 2... Generator 3... Current transformer 4... Breaker 5... Transmission line
6... Current 7... Phase comparison relay device 8.22.24... Square wave conversion circuit 9... AND circuit 10... Time limited operation circuit 1
1... Time-limited return circuit 12... Transmission line 13...
・Phase comparison/judgment circuit 14...Input circuit 15...Integrator circuit 16...Integration stop circuit 17...Level detection circuit 18.19...Input transformer 20...
・Phase shift circuit 21...Subtraction circuit 23...Memory circuit (7317) Agent Patent attorney Kensuke Norichika (and 1 other person) House 1 diagram ((L) - #~1, (b) E-' Kabuto 2 Oni 3 Bi 4 'i (A), '7 (8) □θ 10 (A) jO (E3) 0
27(A), 71(β)□. Fig. 5 9 (A), q (B) - old one ■ - □ 10 (A), fO (8), -'knee -""'
:'. 11 (A), '11 (B) □0 Figure 7 Figure 8 Figure 9 Figure 10 e, - A e3 'Figure 11'? (A),'? (8) ■l--dori. 13(A), 73(B)] L second stop. 11(A), 71(B) -Ro22. Demon 12 figure Child 13 figure Rabbit 14 figure' IJI, =-11! □ Figure 15 L
J.!

Claims (2)

【特許請求の範囲】[Claims] (1)電力系統の各端電気所からの電気量を導入して位
相比較し、位相比較信号の重なりが所定値以上であると
き動作出力を導出する継電器の位相比較回路において、
各端電気所からの複数の入力電気量を導入する論理積回
路と、前記論理積回路からの出力を導入しその出力に応
じて正、負各方向に積分する積分回路と、前記積分回路
による積分値が上限値、下限値からなる所定の積分範囲
を越えたときに積分動作を停止する積分停止回路と、前
記積分値が積分範囲とほぼ同一の所定の検出レベルを越
えたときに継電器出力を発生するレベル検出回路とから
なることを特徴とする継電器の位相比較回路。
(1) In a phase comparison circuit for a relay that introduces the amount of electricity from each end electrical station of the power system, compares the phases, and derives the operating output when the overlap of the phase comparison signals is greater than or equal to a predetermined value,
an AND circuit that introduces a plurality of input electrical quantities from each end electrical station; an integration circuit that introduces the output from the AND circuit and integrates it in each positive and negative direction according to the output; An integral stop circuit that stops the integral operation when the integral value exceeds a predetermined integral range consisting of an upper limit value and a lower limit value, and a relay output when the integral value exceeds a predetermined detection level that is almost the same as the integral range. A phase comparison circuit for a relay, comprising a level detection circuit that generates a level detection circuit.
(2)積分回路は正、負各積分方向の時間変化率を異な
るように構成したことを特徴とする特許請求の範囲第1
項記載の継電器の位相比較回路。
(2) Claim 1, characterized in that the integration circuit is configured to have different time change rates in the positive and negative integration directions.
Phase comparator circuit for the relay described in .
JP59127519A 1984-06-22 1984-06-22 Phase comparing circuit of relay Pending JPS619122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127519A JPS619122A (en) 1984-06-22 1984-06-22 Phase comparing circuit of relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127519A JPS619122A (en) 1984-06-22 1984-06-22 Phase comparing circuit of relay

Publications (1)

Publication Number Publication Date
JPS619122A true JPS619122A (en) 1986-01-16

Family

ID=14962018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127519A Pending JPS619122A (en) 1984-06-22 1984-06-22 Phase comparing circuit of relay

Country Status (1)

Country Link
JP (1) JPS619122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887343A (en) * 1987-05-29 1989-12-19 Fuji Photo Film Co., Ltd. Method and apparatus for roller leveler
JP2011061934A (en) * 2009-09-08 2011-03-24 Toshiba Corp Current differential protective relay device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887343A (en) * 1987-05-29 1989-12-19 Fuji Photo Film Co., Ltd. Method and apparatus for roller leveler
JP2011061934A (en) * 2009-09-08 2011-03-24 Toshiba Corp Current differential protective relay device

Similar Documents

Publication Publication Date Title
EP0013273B1 (en) Auxiliary commutation circuit for an inverter
JPS619122A (en) Phase comparing circuit of relay
JP2000261958A (en) Protective device for grounding current suppressing device and grounding suppressing method
US4352136A (en) Impedance-measuring device for impedance protection
SU1410182A1 (en) Current-limiting power supply system
RU2179775C2 (en) Overcurrent protective gear
RU2072604C1 (en) Method for suppression of arc short circuits to earth in load windings and supplying transformers of three- phase supply line with non-grounded neutral wire
RU1817217C (en) Device for controlling overvoltage protected electrical converter
SU1091271A1 (en) Method and device for earth leakage protection of wires of a.c. network
SU1628127A1 (en) Voltage converter
JP2703354B2 (en) Digital short-circuit distance relay
SU597044A1 (en) Device for current protection of bus-bars with connections
SU1474781A1 (en) Apparatus for protection against short-circuits of ac single-phase line with predailing active component of resistance
SU1728914A1 (en) Device for back-up phase-fault current protection of tapped line with single-end feeding
SU1290332A1 (en) Device for blocking and restarting electronic computers in case of power failures
JPS5837770B2 (en) Protective relay device
JPS62118712A (en) Distance relay
SU1117768A1 (en) Device for providing current protection of current and voltage sources
SU723714A1 (en) Arrangement for short circuiting current protection of electric circuits
SU868604A1 (en) Sensor of components of sinusoidal electric value
JPH04294634A (en) A/d convertrer with excess input protection function
RU1823102C (en) Stabilized power supply source
JPH0378426A (en) Line-to-ground fault detector
RU1791891C (en) Device for protection of section of buses and supplied connections
RU2028624C1 (en) Power supply monitoring device