JPS6190000A - Air lift pump - Google Patents

Air lift pump

Info

Publication number
JPS6190000A
JPS6190000A JP21147984A JP21147984A JPS6190000A JP S6190000 A JPS6190000 A JP S6190000A JP 21147984 A JP21147984 A JP 21147984A JP 21147984 A JP21147984 A JP 21147984A JP S6190000 A JPS6190000 A JP S6190000A
Authority
JP
Japan
Prior art keywords
liquid
gas
tube
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21147984A
Other languages
Japanese (ja)
Inventor
Jun Kanai
金井 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd Fukuoka
Original Assignee
Asahi Engineering Co Ltd Fukuoka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd Fukuoka filed Critical Asahi Engineering Co Ltd Fukuoka
Priority to JP21147984A priority Critical patent/JPS6190000A/en
Publication of JPS6190000A publication Critical patent/JPS6190000A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/18Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To maintain a constant flow of the transferring liquid of a pump by providing a counterflow preventing device in a hydraulic introduction tube for introducing the liquid from a liquid charging tank to a liquid lifting tube and providing a unit for restricting the amount of the liquid discharged from an air-liquid separating tank and a flow control device for driving-purpose compressed air. CONSTITUTION:The transferred liquid from a liquid charging tank 1 is transmitted from a hydraulic introduction tube 2 to the lower part of a liquid lifting tube 3, and succeedingly the compressed air is introduced from a drive-purpose compressed air introducing tube 5 to the liquid lifting tube 3. At this time, the transferred fluid is transmitted upward along the tube 3, and thereafter it is transmitted to an air-liquid separating tank 6, but because a counterflow preventing unit 4 is provided near to the entrance of the tube 3, the counterflow of the foregoing air to the liquid charging tank 1 side can be prevented. Also, the liquid discharged and transmitted from the air-liquid separating tank 6 is restricted by a liquid discharging quantity restricting unit 8 and the surface of the liquid is detected by a level meter 11, and a s a result, it is compared with the set standard surface. A flux adjusting valve 12 provided in the foregoing air introducing tube 5 is operated in response to a signal corresponding to its deviation and the flow of the compressed air to the liquid lifting tube 3 is controlled and regulated, and consequently the flow of the liquid transmitted to the pump can be maintained constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エアリフトポンプに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an air lift pump.

〔従来技術〕[Prior art]

従来、エアリフトポンプid At1A動源として空気
等の圧縮気体を用いた簡便な揚液あるいは液移送装置と
して広く使用されて@た。例えば、廃水処理設備におけ
る汚泥の移送、排水ピットからの揚液。
Conventionally, the air lift pump ID At1A has been widely used as a simple liquid pumping or liquid transfer device using compressed gas such as air as the power source. For example, sludge transfer in wastewater treatment facilities, pumping liquid from drainage pits.

スラリー液の移送等に効果的に使われている。エアリフ
トポンプはその構造上、ポンプ内部で移送される液体中
に一存在する沈澱成分等による詰まり等をおこす恐れが
ないという利点全有し、更に、保守、点検、管理が格別
必要がないという取扱い −の容易さと信頼性の高さ、
あるいは経済的にも安価であるという利点を有するもの
であるが、しかしながら従来のエアリフトポンプはいく
つかの欠点ヲ肩するものであるので、これt説明すると
、第3図に示すように、エアリフトポンプは低位置にあ
る給液槽20中の液体を揚液管21に導入し、高位置に
ある受液槽22へ前記の液体を揚液するために用いられ
る。前記給液槽20より移送される液体は、液導入管2
3を通って前記した揚液管21の下部へ重力流にて流入
し、次いで空気等の、駆動圧縮気体を揚液管21の下方
に開口した駆動気体47人口24より前記揚液管21内
に吹き込むと、揚液管21中の液体は駆動気体により揚
液管21中を上方へ浮揚きせられる。この状態は第2図
(イ)仲)(ハ)に示すように1.駆動圧縮気体が分散
して気泡状となり、こ几が移送すべき液体を上方へ浮揚
し移送している。そして、上記した揚液管21内におい
ては、前記した。1駆動圧縮気体は、大きなプラグ状気
泡Gになっており(第2図参照)、このプラグ状気泡は
圧縮・縮小したり、膨張したシ、あるいは更に小さな気
泡に分散したり、まt合体して大きなプラグ状気泡にな
ったりしている。このように、揚液管21内の状態は常
に変動しており・したがって、移送する液量を一定に保
つこと(一定流量性)は困難とされていた。欠に、揚液
管21の上端に達した液体すなわち気液混相流体は気液
分離槽25に入り気液分離され、液体は気液分離槽25
の下部よシ受液槽22に給液され、気体は気体分離槽2
5の上部より外部へと排出される。
It is effectively used for transferring slurry liquid, etc. Due to its structure, air lift pumps have the advantage that there is no risk of clogging due to precipitated components present in the liquid transferred inside the pump, and furthermore, there is no need for special maintenance, inspection, or management. - ease of use and high reliability;
Alternatively, it has the advantage of being economically inexpensive, but conventional air lift pumps have some disadvantages, so to explain this, as shown in Figure 3, the air lift pump is used for introducing the liquid in the liquid supply tank 20 located at a low position into the liquid pumping pipe 21 and pumping the liquid to the liquid receiving tank 22 located at a high position. The liquid transferred from the liquid supply tank 20 is transferred to the liquid introduction pipe 2.
3 into the lower part of the liquid lift pipe 21 mentioned above by gravity flow, and then the driving compressed gas such as air is introduced into the liquid lift pipe 21 from the driving gas 47 opening 24 opened below the liquid lift pipe 21. When the liquid is blown into the liquid lift pipe 21, the liquid in the liquid lift pipe 21 is floated upward in the liquid lift pipe 21 by the driving gas. This state is as shown in Figure 2 (a) middle) (c). The driving compressed gas is dispersed into bubbles, and the liquid to be transferred is floated upward by the container and transferred. The inside of the liquid lift pipe 21 is as described above. 1 The compressed gas becomes a large plug-shaped bubble G (see Figure 2), and this plug-shaped bubble can be compressed and contracted, expanded, dispersed into smaller bubbles, or coalesced. It becomes a big plug-like bubble. As described above, the condition inside the liquid pumping tube 21 is constantly changing, and therefore, it has been difficult to maintain a constant amount of liquid to be transferred (constant flow rate). Inadvertently, the liquid that has reached the upper end of the liquid pumping pipe 21, that is, the gas-liquid multiphase fluid, enters the gas-liquid separation tank 25 and is separated into gas and liquid.
The liquid is supplied to the liquid receiving tank 22 from the lower part of the tank, and the gas is supplied to the gas separation tank 2.
It is discharged to the outside from the upper part of 5.

このような、従来のエアリフトポンプの移送される液体
の流量を一定に制御すること全目的として駆動用の圧縮
気体の流量調整機構を設けているが、一定流量を足常的
に得ること(定常流量性)は実用上困難である。そして
、このことは、前記の揚液管21内の流動状態の変動以
外にも敵浸率、揚程1.駆動用圧縮気体、系内圧力等に
よって移送流量が変動するからである。
Conventional air lift pumps are equipped with a drive compressed gas flow rate adjustment mechanism for the purpose of controlling the flow rate of the transferred liquid at a constant level. flow rate) is difficult in practice. In addition to the above-mentioned fluctuations in the flow state in the liquid pumping pipe 21, this also affects the enemy immersion rate, the lift height 1. This is because the transfer flow rate varies depending on the compressed driving gas, the pressure within the system, and the like.

上記したように、従来のエアリフトポンプは移送される
液体の一定流量性及び定常流量性がないという欠点′に
肩していた。このためにプロセスの重要な部分に利用で
きないものとをれていた。
As mentioned above, conventional air lift pumps suffer from the disadvantage of not having a constant flow rate and constant flow rate of the liquid being transferred. This left important parts of the process unusable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のエアリフトポンプによる液体の移送量が不安定と
なる原因の一つは、揚液管に吹込まれた空気等の駆動用
圧縮気体が、揚液管の下部に接続されている給液槽より
の液体を揚液管に導入するだめの液導入管を通じて給液
検測へ逆流することにあ沙が補明した。この逆流現象は
揚液管内で気体と液体とのバランスがくずれ、f体の方
が多く司 なり過ぎたときに起るものであるが、この現象に長時間
にわたるものでなく極めて短時間で消滅し直ちに元の状
態に復帰するものであるが、この逆流によって一時的で
あるにせよ液導入管よりの液体の移送は停止し定常流量
は維持できないことになる。また、液体の移送量を不安
定としている第2の原因は、揚液管内における流動が基
本的にはプラグフロー型であシ、かつ1駆動用空気等の
気体が圧縮性流体であるためプラグ状気泡の大きさが一
定せず、大きくなったり小さくなつン゛ヒりすることに
ある(この流動状態は透明管を利用した揚液管により観
察を通じて確認できた)。このため。
One of the reasons why the amount of liquid transferred by conventional air lift pumps is unstable is that the compressed driving gas such as air blown into the liquid lift pipe is not connected to the liquid supply tank connected to the bottom of the liquid lift pipe. Asa explained that the liquid flows back to the liquid supply test through the liquid introduction pipe that introduces the liquid into the pump liquid pipe. This backflow phenomenon occurs when the balance between gas and liquid is disrupted in the liquid pumping pipe and too many f-isomers dominate, but this phenomenon does not last for a long time and disappears in a very short time. However, due to this backflow, the transfer of liquid from the liquid introduction pipe stops, even if only temporarily, and a steady flow rate cannot be maintained. The second reason why the amount of liquid transferred is unstable is that the flow in the liquid pumping pipe is basically a plug flow type, and the gas such as the driving air is a compressible fluid. The reason for this is that the size of the bubbles is not constant and fluctuates between becoming larger and smaller (this flow state was confirmed through observation using a liquid pumping tube using a transparent tube). For this reason.

移送される液体の流量は不安定となるのである。The flow rate of the transferred liquid becomes unstable.

それ故、本発明は、これら第1及び第2の原因に対処し
てこれらを除去するためになされたものである0 〔問題点を解決するだめの手段〕 本発明は、エアリフトポンプに関し、従来のものでは移
送される液体が定常的に一定流量で送られることが困難
である原因は前記したように、駆動用の圧縮気体が液導
管を通じて給液検測へ逆流することにあるので、給液槽
より揚液管へ液体を移送する液導入管に逆流防止装置を
設置したところ、前記の逆流は生じなかった。また、第
2の原因として前記したようにエアリフトポンプの揚液
管内の液体の流動はプラグフロー型であり、プラグ状の
気泡の犬ささが一定せず、大きくなったり小さくなった
りすることのために液体の移送量が不安定となっていた
が、揚液管の排出口に接続した気液分離槽の液出口に液
排出量制限機114を設け、前記の気液分離槽内に液体
を滞溜させたところ、受液槽への液流量は若干の脈流を
伴うものの実質的に一定流量となった。
Therefore, the present invention has been made to address and eliminate these first and second causes. As mentioned above, the reason why it is difficult to send the liquid to be transferred at a constant flow rate is that the compressed gas for driving flows back through the liquid conduit to the supply liquid measurement. When a backflow prevention device was installed in the liquid introduction pipe that transfers liquid from the liquid tank to the liquid lift pipe, the above-mentioned backflow did not occur. In addition, as mentioned above, the second cause is that the flow of liquid in the liquid lifting pipe of an air lift pump is a plug flow type, and the size of the plug-shaped bubbles is not constant and may become larger or smaller. However, a liquid discharge amount limiter 114 was installed at the liquid outlet of the gas-liquid separation tank connected to the discharge port of the liquid pumping pipe, and the liquid was transferred into the gas-liquid separation tank. When the liquid was allowed to stagnate, the flow rate of the liquid to the liquid receiving tank became a substantially constant flow rate, although there was some pulsation.

以上のような知見に基いて本発明がなされた。The present invention was made based on the above findings.

すなわち、本発明は、駆動源として圧縮気体を揚液管内
に導入して液体を揚液するエアリフトポンプにおいて、
前記揚液管へ液体を導入する導入管部に逆流防止装置を
設置し、前記揚液骨の排出口に接欣した気泡分離槽から
の液排出量を制限する懺構を設けめとともに、前記気液
分離槽内に滞溜せしめる液体の液面を一定ならしめる如
く前記、駆動用圧縮気体の流量制御装置を備えたことを
荷液とするエアリフトポンプである。
That is, the present invention provides an air lift pump that pumps liquid by introducing compressed gas into a liquid lifting pipe as a driving source.
A backflow prevention device is installed in the introduction pipe section for introducing the liquid into the liquid pumping pipe, and a structure is provided to limit the amount of liquid discharged from the bubble separation tank connected to the discharge port of the liquid pumping pipe. This air lift pump is equipped with the above-mentioned flow rate control device for the driving compressed gas so as to keep the level of the liquid accumulated in the gas-liquid separation tank constant.

〔作用〕[Effect]

本発明に2いては、給液槽からエアリフトポンプの揚液
管へ液体を導入する尋人管部に逆流防止装置を設けたの
で、揚液管より空気等の圧縮気体を含んだ敵の逆流を防
止することができるため、エアリフトポンプでの一定流
量を揚液移送する一助となるものであり、更に、揚液さ
れた液体を気液分離槽よυ受液槽に排出送液するに当9
、排出する′M、体の液面を一定とすることによって、
一定流量の液体を受液槽に送液できるものである。
In the second aspect of the present invention, a backflow prevention device is provided in the guise pipe section that introduces liquid from the liquid supply tank to the liquid lift pipe of the air lift pump, so that backflow of the enemy containing compressed gas such as air from the liquid lift pipe This helps in pumping and transferring the liquid at a constant flow rate with the air lift pump, and also helps in discharging and sending the pumped liquid to the gas-liquid separation tank and the υ liquid receiving tank. 9
, by draining 'M, and keeping the fluid level in the body constant,
It is capable of sending a constant flow of liquid to the liquid receiving tank.

〔実施例〕〔Example〕

本発明を第1図に示す実7M例について説明すると、1
は移送される液体が収容される給液槽であり、該給液槽
1内の液体は給液槽1の下部に接続される液導入管2に
よってエアリフトポンプの揚上装置であり、この逆流防
止装置4は第1図の実施例ではボール型逆止弁を示して
いるが、他の型式の逆上装置も可能である。5は前記揚
液管3の下部に接続される。駆動用圧縮気体導入管であ
って、該駆動用圧縮気体導入管5よジ空気等の圧縮気体
を揚液管3内に吹出させて液体を移送するものである。
The present invention will be explained with reference to an actual 7M example shown in FIG.
is a liquid supply tank in which the liquid to be transferred is stored, and the liquid in the liquid supply tank 1 is lifted by a liquid introduction pipe 2 connected to the lower part of the liquid supply tank 1, which is a lifting device of the air lift pump, and this backflow Although the prevention device 4 is shown as a ball-type check valve in the embodiment of FIG. 1, other types of backlash devices are also possible. 5 is connected to the lower part of the liquid lift pipe 3. The drive compressed gas introduction pipe 5 blows compressed gas such as air into the liquid lift pipe 3 to transfer liquid.

6は上記揚液管3の排出口3′に接続される気液分離槽
であり、前記揚液管3内を上昇した気液混相流体が流入
し、該気液分離槽6で気体と液体に分離され、気体は気
体分離槽6の上部に接続された排気管7より排出さ扛、
液体は気液分離槽6の下部排(支)口側に設置された液
排出量制限磯構8によって排出量が制限されるので、揚
液管3(エアリフトポンプ)により移送されたa体に前
記することができるし、まだ、固定型の絞り方式として
もよい。9は気液分離槽6より液排出量制限機構8を通
った液体を受液槽10に送液するための送液管である。
6 is a gas-liquid separation tank connected to the discharge port 3' of the liquid lift pipe 3, into which the gas-liquid multiphase fluid that has risen in the liquid lift pipe 3 flows, and the gas and liquid are separated in the gas-liquid separation tank 6. The gas is discharged from an exhaust pipe 7 connected to the upper part of the gas separation tank 6,
The amount of liquid discharged is limited by the liquid discharge amount restriction rock 8 installed at the lower outlet (support) side of the gas-liquid separation tank 6, so that the liquid is The above method may be used, or a fixed aperture method may also be used. Reference numeral 9 denotes a liquid sending pipe for sending the liquid that has passed through the liquid discharge amount limiting mechanism 8 from the gas-liquid separation tank 6 to the liquid receiving tank 10.

11は前記気液分離槽6内に滞溜するエアリフトポンプ
によって移送された液体の液面を検知する液面計であっ
て、該検知された液面と予め設定された基準となる液面
とを比較してその偏差に応じた信号により、前記した駆
動用圧縮気体導入管5に設けた流量調整弁12を作動し
て湯液管3内へ導入吹き出させる圧縮気体の流量を調整
するようにし、揚液管3内に導入する圧縮気体の流量を
制御することによって気疲分離槽6内に滞溜する液体の
液面を一定としている。
Reference numeral 11 denotes a liquid level gauge that detects the liquid level of the liquid transferred by the air lift pump that accumulates in the gas-liquid separation tank 6, and compares the detected liquid level with a preset reference liquid level. A signal corresponding to the deviation is used to operate the flow rate adjustment valve 12 provided in the driving compressed gas introduction pipe 5 to adjust the flow rate of the compressed gas introduced into the hot liquid pipe 3 and blown out. By controlling the flow rate of the compressed gas introduced into the liquid pumping pipe 3, the level of the liquid accumulated in the gas fatigue separation tank 6 is kept constant.

なお、図中13id外部気体導入機構、14は気体導入
管、15il″i駆動用気体供給装置であり、図におい
てにプロワ−を示しているが、ポンプ等の他の方式であ
ってもよい。16は循環気体放出機構である。
In the figure, 13id is an external gas introduction mechanism, 14 is a gas introduction pipe, and 15il''i is a driving gas supply device, and although a blower is shown in the figure, other systems such as a pump may be used. 16 is a circulating gas release mechanism.

以上のように構成されるエアリフトポンプは、給液槽1
より被移送液は液導入管2よりエアリフトポンプの揚液
管3の下部へ流入し、次いで、前記揚液管3の下部に接
続される1駆動用圧縮気体導入管5より空気等の圧縮気
体が揚液管3内に吹き出され該、!駆動用気体によって
被移送久体は揚液管3内を上方に移送され、揚液管3の
排出口に接続される気液分離槽6内に送り込まれるが、
前記した液導入管2の揚液管3人口近傍に逆流防止装置
4が設けであるので、エアリフトポンプ運転中において
、揚液管3内において空気等の気体と液体のバランスが
くずれて液体の方が多くなり過ぎたときに生ずる前記の
気体が給液槽1側へ逆流することを防止することができ
、また、前記した気体分m槽6より受液槽10への給液
については、気液分離槽6より排出送液されるfL体金
液排出量制限機構8によって制限したので、揚液管3に
より移送された′tL体に、前記気液分離槽6内に滞溜
することとな9、この滞溜する液体の液面を一定とする
ように液面計11によって液面を検知し、検知された液
面と予め設定された基準となる液面とを比較し、その偏
差に応じた信号により1.駆動用圧縮気体導入管5に設
けた流量調整弁12を作動して揚液管3内に吹き出す圧
縮気体の流量を調整・制御するようになされる。そして
、通常の場合は気液分離槽6から受液槽10への送液ば
、液面ヘッド差に見合った直置が流れる如くされている
The air lift pump configured as described above has a liquid supply tank 1.
The liquid to be transferred flows from the liquid introduction pipe 2 to the lower part of the liquid lifting pipe 3 of the air lift pump, and then compressed gas such as air is introduced from the compressed gas introduction pipe 5 for driving 1 connected to the lower part of the liquid lifting pipe 3. is blown out into the liquid lift pipe 3, and! The body to be transported is moved upward in the liquid pumping pipe 3 by the driving gas and sent into the gas-liquid separation tank 6 connected to the discharge port of the liquid pumping pipe 3.
Since the backflow prevention device 4 is provided near the liquid pumping pipe 3 of the liquid introduction pipe 2 described above, during operation of the air lift pump, the balance between gas such as air and liquid in the liquid pumping pipe 3 may be disrupted, and the liquid may It is possible to prevent the gas generated when the amount of gas becomes too large from flowing back to the liquid supply tank 1 side. Since the metal liquid discharge amount of the fL body discharged from the liquid separation tank 6 is restricted by the liquid discharge amount limiting mechanism 8, the 'tL body transferred by the liquid pumping pipe 3 is prevented from accumulating in the gas-liquid separation tank 6. 9. The liquid level of the accumulated liquid is detected by the liquid level gauge 11 so as to be constant, and the detected liquid level is compared with a preset standard liquid level, and the deviation is calculated. 1. by the signal according to. The flow rate regulating valve 12 provided in the driving compressed gas introduction pipe 5 is operated to adjust and control the flow rate of the compressed gas blown into the liquid pumping pipe 3. In a normal case, the liquid is sent from the gas-liquid separation tank 6 to the liquid receiving tank 10 in a direct manner commensurate with the difference in liquid level head.

したがって、気液分離槽6内に滞溜する液体の液面が一
定になるように制御すれば孜面高さに見合った流量を確
保していることになるものである。
Therefore, if the level of the liquid accumulated in the gas-liquid separation tank 6 is controlled to be constant, a flow rate commensurate with the height of the surface can be ensured.

また、流量を変える場合は設定液面を変えることによっ
て容易になされる。このことは、気液分離槽6から受液
槽10への液体の流量を別途準備した測定器具によって
測定することによって、前記した液体の流量は非常に安
定した一′定流量が得られていることが確認できた。そ
して、前記の流量はエアリフトポンプの移送量に等しく
、したがってエアリフトポンプは安定した一定流量の液
体の移送を行っているものである。
Further, the flow rate can be easily changed by changing the set liquid level. This means that by measuring the flow rate of liquid from the gas-liquid separation tank 6 to the liquid receiving tank 10 using a separately prepared measuring instrument, a very stable constant flow rate of the liquid can be obtained. This was confirmed. The flow rate is equal to the transfer amount of the air lift pump, and therefore the air lift pump transfers liquid at a stable constant flow rate.

また、上記した気液分離槽6内に移送された液を該槽6
内に滞溜させ、その液面を一定に制御することは、エア
リフトポンプの運転中においてエアリフトポンプの性能
を確認することに利用し得るものである。すなわち、エ
アリフトポンプ運転中に駆動圧縮気体の揚液管3への吹
き込みを一時停止し・被移送液の移送を一時中止して、
気体分離槽6内の液面低下の速度を検知する。一方、事
前に前記液面と気液分離槽内容積の検量線を作成してお
き、その検量線によって検疋時間当りの液面低下、すな
わち液谷柑及び液流量を知ることができ、このことによ
って気液分離槽6より受液槽10への液流量が確認でき
るものであり、長時間運転後あるいは詰まり易い液体等
に対する場合に行うことにより性能の信頼性を侍ること
かできるものである。
In addition, the liquid transferred into the above-mentioned gas-liquid separation tank 6 is transferred to the tank 6.
The fact that the liquid level is controlled to be constant can be used to check the performance of the air lift pump while the air lift pump is in operation. That is, during operation of the air lift pump, the blowing of the driving compressed gas into the liquid lifting pipe 3 is temporarily stopped, and the transfer of the liquid to be transferred is temporarily stopped.
The rate of drop in the liquid level in the gas separation tank 6 is detected. On the other hand, by creating a calibration curve of the liquid level and the internal volume of the gas-liquid separation tank in advance, it is possible to know the drop in the liquid level per inspection time, that is, the drop in the liquid level and the liquid flow rate. By doing this, the liquid flow rate from the gas-liquid separation tank 6 to the liquid receiving tank 10 can be confirmed, and by performing this after long-term operation or when dealing with liquids that are likely to clog, it is possible to check the reliability of performance. .

更に、前述したように、エアリフトポンプで従米得られ
なかった一定流量性について本発明においては可能とな
ったので、エアリフトポンプをプロセスの重要部分に組
み込み使用すること等その適用範囲も拡がるものであり
、特にエアリフトポンプの保守・点検管理等が不要であ
るという利点は例えば放射性物質取扱関連施設等におい
ては非常に効果的である。しかしながら、放射性液体を
取扱う場合等では気液分離槽より分離され外部に   
  、。
Furthermore, as mentioned above, the present invention has made it possible to achieve a constant flow rate that could not be achieved with air lift pumps, so the scope of application of air lift pumps has been expanded, including the use of air lift pumps in important parts of processes. In particular, the advantage that air lift pumps do not require maintenance, inspection, etc. is very effective, for example, in facilities related to handling radioactive materials. However, when handling radioactive liquids, it is separated from the gas-liquid separation tank and released to the outside.
,.

放出される気体中に放射性物質を同伴しており・放射性
物質を外部へ気体とともに放出してしまうことになり不
都合であυ、その対策も必要であるが、従来のエアリフ
トポンプは簡便式の装置とされていて広く使われていな
かったためにエアリフトポンプの気液分離槽よシの排出
気体に対する問題は特に考慮されていなかったのが実状
である。
The emitted gas is accompanied by radioactive materials, which is inconvenient because the radioactive materials are released together with the gas, and countermeasures are needed, but conventional air lift pumps are simple devices. The fact is that the problems with the gas discharged from the gas-liquid separation tank of air lift pumps were not particularly considered because they were not widely used.

しかしながら、前述したようにエアリフトポンプに定常
的に一定流量性が与えられ、一定流量移送装置としての
使用が可能となったので、プロセス内等にも広く使うこ
とが可能となり、エアリフトポンプよシ排出される気体
中の放射性物質等の対策が必要となったが、この点に関
し、第1図に示した実施例において例えば、放射注液体
を取扱った場合でもエアリフトポンプの気液分離槽6の
上部より排気管7に排出された放射性物質を同伴した排
出気体を気体導入管14中の導入気体に混入させブロワ
−等よりなる駆動用気体供給装置15に導き、駆動用気
体として駆動用圧縮気体導入言5より揚液管3内に吹き
込み再使用するクローズドサイクルを構成するものであ
り、このようにして本装置において放射性液体を取扱っ
てもその排出気体を外部に放出することがないものであ
る。
However, as mentioned above, the air lift pump has been given a constant flow rate and can now be used as a constant flow rate transfer device, so it has become possible to use it widely in processes, etc. However, in this regard, in the embodiment shown in Fig. 1, even when handling liquid for radiation injection, the upper part of the gas-liquid separation tank 6 of the air lift pump must be taken. The exhaust gas accompanied by the radioactive material discharged into the exhaust pipe 7 is mixed with the introduced gas in the gas introduction pipe 14 and guided to the driving gas supply device 15 consisting of a blower or the like, and compressed driving gas is introduced as the driving gas. From word 5, it constitutes a closed cycle in which the liquid is blown into the pumping pipe 3 and reused, and even when the radioactive liquid is handled in this apparatus in this way, the discharged gas is not released to the outside.

〔発明の効果〕〔Effect of the invention〕

本発明に係るエアリフトポンプは、エアリフトポンプの
揚液管へ版体を導入する導入管部に逆充防止装置を設け
たので、揚KWより圧縮気体の逆流を防止することがで
き、エアリフトポンプでの一定流量を得るに役立つもの
であり、これに加えて揚液Wにより移送された液体を気
液分離槽より受液槽へと排出送液するに当り、気液分離
槽よりの排出量を制限する機構を設け、気液分離槽内に
移送された孜を滞溜せしめるようになし、揚液管内に吹
き込む駆動圧縮気体の流量を制御することによって前記
滞溜液の液面を一定となし、このことによってエアリフ
トポンプの移送液体の流量を一定となしたものである。
Since the air lift pump according to the present invention is provided with a backfill prevention device in the introduction pipe section that introduces the plate into the lift pipe of the air lift pump, it is possible to prevent backflow of compressed gas from the lift KW. In addition, when the liquid transferred by the pumping liquid W is discharged and sent from the gas-liquid separation tank to the liquid receiving tank, the amount of discharge from the gas-liquid separation tank is reduced. A limiting mechanism is provided to allow the liquid transferred to the gas-liquid separation tank to stagnate, and the liquid level of the stagnation liquid is kept constant by controlling the flow rate of the driving compressed gas blown into the liquid pumping pipe. This makes the flow rate of the liquid transferred by the air lift pump constant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のエアリフトポンプの説明のためのフ
ローシート、第2図(イ)、(ロ)、(ハ)は揚液管内
の気泡の状態の説明図、第3図は従来例の説明のための
フローシートである。 1:給液管     3:揚液管 4:逆流防止装置   5:駆動用圧縮気体導入管6;
気液分離槽    8.液排出量制限機構10:受a槽
    ii:i百計 12:流量調螢弁  15,1駆動剛気体供給装置特許
出願人 旭エンジニアリング株式会社第1図
Figure 1 is a flow sheet for explaining the air lift pump of the present invention, Figures 2 (A), (B), and (C) are explanatory diagrams of the state of air bubbles in the liquid pumping pipe, and Figure 3 is a conventional example. This is a flow sheet for explaining. 1: Liquid supply pipe 3: Lifting liquid pipe 4: Backflow prevention device 5: Drive compressed gas introduction pipe 6;
Gas-liquid separation tank 8. Liquid discharge amount limiting mechanism 10: Receiving tank ii: I hundred meter 12: Flow rate adjustment valve 15,1 drive rigid gas supply device Patent applicant Asahi Engineering Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 駆動源として圧縮気体を揚液管内に導入して液体を揚液
するエアリフトポンプにおいて、前記揚液管へ液体を導
入する導入管部に逆流防止装置を設置し、更に、前記揚
液管の排出口に接続した気液分離槽からの液排出量を制
限する機構を設けるとともに前記気液分離槽内に滞溜せ
しめる液体の液面を一定ならしめる如く前記駆動用の圧
縮気体の流量制御装置を備えたことを特徴とするエアリ
フトポンプ。
In an air lift pump that pumps liquid by introducing compressed gas into a liquid pumping pipe as a driving source, a backflow prevention device is installed in the introduction pipe section that introduces the liquid into the liquid pumping pipe, and a backflow prevention device is installed in the introduction pipe section that introduces the liquid into the liquid pumping pipe. A mechanism is provided to limit the amount of liquid discharged from the gas-liquid separation tank connected to the outlet, and a flow rate control device for the compressed gas for driving is provided so as to maintain a constant level of the liquid accumulated in the gas-liquid separation tank. An air lift pump that is characterized by:
JP21147984A 1984-10-11 1984-10-11 Air lift pump Pending JPS6190000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21147984A JPS6190000A (en) 1984-10-11 1984-10-11 Air lift pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21147984A JPS6190000A (en) 1984-10-11 1984-10-11 Air lift pump

Publications (1)

Publication Number Publication Date
JPS6190000A true JPS6190000A (en) 1986-05-08

Family

ID=16606629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21147984A Pending JPS6190000A (en) 1984-10-11 1984-10-11 Air lift pump

Country Status (1)

Country Link
JP (1) JPS6190000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280900A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering apparatus in air lift
JPS63280899A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering method in air lift
JPS6432100A (en) * 1987-07-27 1989-02-02 Taisei Corp Pumping method utilizing inert gas, or such, and device therefor
EP0660001A1 (en) * 1993-11-10 1995-06-28 IEG Industrie-Engineering GmbH Pump device for sensitive liquids
JP2010002312A (en) * 2008-06-20 2010-01-07 Ihi Corp Method and equipment for supplying high level radioactive waste liquid
JP2020168054A (en) * 2019-04-01 2020-10-15 株式会社ヤマト Show case washing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280900A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering apparatus in air lift
JPS63280899A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering method in air lift
JPH0338437B2 (en) * 1987-05-12 1991-06-10 Kogyo Gijutsuin
JPS6432100A (en) * 1987-07-27 1989-02-02 Taisei Corp Pumping method utilizing inert gas, or such, and device therefor
EP0660001A1 (en) * 1993-11-10 1995-06-28 IEG Industrie-Engineering GmbH Pump device for sensitive liquids
JP2010002312A (en) * 2008-06-20 2010-01-07 Ihi Corp Method and equipment for supplying high level radioactive waste liquid
JP2020168054A (en) * 2019-04-01 2020-10-15 株式会社ヤマト Show case washing device

Similar Documents

Publication Publication Date Title
KR100494971B1 (en) Liquid transfer system, and method for transferring liquid from a liquid supply tank to a liquid output line
KR102205980B1 (en) Bubble and foam solutions using a completely immersed air-free feedback flow control valve
US3974847A (en) Liquid additive dispenser
US1897492A (en) Flow controller
JPH04132085U (en) Liquid constant pressure supply device
JP2007532433A (en) Method and system for liquid dispensing with headspace degassing
US4037992A (en) Slurry continuous pressure-feeding apparatus
US4415296A (en) Materials transfer system and methodology
US4339332A (en) Pressurized chemical dispenser
KR100484581B1 (en) A multi-chamber liquid pump, and a method for pumping liquid
EP0108266A3 (en) Degassing apparatus for flowing liquids
JPS6190000A (en) Air lift pump
EP0774134B1 (en) Pressure reduction system and method
US2310051A (en) Fluid feeding device
US4605356A (en) Apparatus for continuously pressure-feeding slurry
ES2197855T3 (en) MEASUREMENT OF THE DENSITY OF A MUDS FOR THE CONTROL OF A STAGE OF THE SLUDGE TREATMENT.
CA2108751A1 (en) Flow control system
US2067335A (en) Gas control and feeding unit
JPH06135471A (en) Fluid transfer device
US5174944A (en) Apparatus for separating gas from a liquid
US2845950A (en) Apparatus for metering small flows of liquids
US2401012A (en) Apparatus for applying treating mediums
JPS6127600B2 (en)
JPS58117399A (en) Liquid conveying apparatus
US3933168A (en) Liquid closure device