JPS6185774A - Fuel battery structure - Google Patents

Fuel battery structure

Info

Publication number
JPS6185774A
JPS6185774A JP59206309A JP20630984A JPS6185774A JP S6185774 A JPS6185774 A JP S6185774A JP 59206309 A JP59206309 A JP 59206309A JP 20630984 A JP20630984 A JP 20630984A JP S6185774 A JPS6185774 A JP S6185774A
Authority
JP
Japan
Prior art keywords
electrolitic
electrode
electrolyte plate
plate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59206309A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Kobayashi
成嘉 小林
Hidekazu Fujimura
秀和 藤村
Yoshihiro Uchiyama
内山 好弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59206309A priority Critical patent/JPS6185774A/en
Publication of JPS6185774A publication Critical patent/JPS6185774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To lower density of generated current, decrease fuel concentration lowering rate of a current and equalize distribution of current density. CONSTITUTION:A cathode electrode 1 and an anode electrode 2 are provided in both sides of electrolitic plates 10, 11, 10 of multilayer structure and a collector is provided in the side of separator 20 of electrode. The externally supplied fuel and oxidizing agent are supplied to the gas routes 22, 23 of separator 20 through the maniholds 21, 12 of electrolytic plates. While, these are passing through the routes, electro-chemical reaction is generated at the interface of electrode and electrolitic substance, generating electrical power. The intermediate layer 11 of electrolitic plate is composed of four thin tiles of electrolitic plate in different ion conductivity having different gap coefficient or bending curvature of porous material and it is held from both sides by electrolitic plates 10 having uniform ion conductivity. As a result, ion conductivity of electrolitic plate becomes larger than that in the output side of route and density of generated current can be lower than the average value at the input side of route.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係り、特に、電流密度分布が一様な
発電に好適な燃料電池構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell, and particularly to a fuel cell structure suitable for power generation with a uniform current density distribution.

〔発明の背景〕[Background of the invention]

従来の燃料電池では、ガスの流し方を熱交換器などで用
いられている向流、平行流、あるいは。
In conventional fuel cells, the gas flow is countercurrent, parallel flow, or parallel flow, which is used in heat exchangers.

直交流などのタイプが用いられ、それぞれのフローパタ
ーンにより電池内部の電流密度、11度分布が異なり、
電池性能に差が生じている。しかし。
Types such as cross-flow are used, and the current density and 11 degree distribution inside the battery vary depending on each flow pattern.
There is a difference in battery performance. but.

いずれのフローパターンについても、溶融炭酸塩型電池
ではガス入口流路、特に、燃料である水素ガスの分圧が
高い部分とガス出口流路、すなわち、水素ガス分圧の低
い部分との間に大きな電流密度差が発生し、電池内部で
の発熱分布に大きな差が生じる点については配慮されて
いなかった(J。
For both flow patterns, in molten carbonate batteries, there is a gap between the gas inlet flow path, especially the part where the partial pressure of hydrogen gas, which is the fuel, is high, and the gas outlet flow path, that is, the part where the hydrogen gas partial pressure is low. No consideration was given to the fact that a large current density difference would occur, resulting in a large difference in heat generation distribution inside the battery (J.

E!lectrocham、 SOC,、von 、 
130 NCLl p48〜55(1983) ) 。
E! electrocham, SOC,, von,
130 NCLl p48-55 (1983)).

〔発明の目的〕[Purpose of the invention]

本発明の目的は電池内部に発生する電流密度差を小さく
シ、一様な電流密度分布とし電池内部での発熱分布に大
きな差が発生しないようにした燃料電池構造を提供する
ことにある。
An object of the present invention is to provide a fuel cell structure in which the difference in current density generated inside the battery is reduced, the current density distribution is uniform, and the heat generation distribution within the battery is prevented from generating a large difference.

〔発明の鷹要〕[Keystone of invention]

燃料電池の運転は、各セルの運転電圧がセル全面にわた
って一定であることから、セル内の電流密度がアノード
、カソード電極での分極作用による過電圧と電解質板の
イオン伝導度及び接触抵抗などの内部抵抗による電圧降
下によって決まる。
When operating a fuel cell, the operating voltage of each cell is constant over the entire surface of the cell, so the current density within the cell is affected by overvoltage caused by polarization at the anode and cathode electrodes, and internal factors such as the ionic conductivity and contact resistance of the electrolyte plate. Determined by the voltage drop across the resistor.

過電圧は?!!極の細孔特性とガスの組成(分圧)とに
よって決まり、電極特性、ガス流路形状によってその値
、分布は変化する。一方、内部抵抗は主にm解質板のイ
オン伝導度によって決まる。電池内の局所の電流密度i
は、 E−V−++、(i)+η、(i)+i−RmOここで
What about overvoltage? ! ! It is determined by the pore characteristics of the electrode and the gas composition (partial pressure), and its value and distribution change depending on the electrode characteristics and gas flow path shape. On the other hand, the internal resistance is mainly determined by the ionic conductivity of the m-solite plate. Local current density i in the battery
is E-V-++, (i)+η, (i)+i-RmO where.

E:ガスの組成、温度によって決まる 平衡電位 V二運転電圧 η、(i):電流密度iによるアノード電極の過電圧 η、(i):電極密度iによるカソード電極の過電圧 R:電池の内部抵抗 を満足するiの値となる。この式でガス入口部、特に、
燃料流路側では燃料濃度(分圧)が高いため、過電圧が
小さくても大電流密度が得られるが、流路出口部では燃
料濃度(分圧)が低くなるため、過電圧が大きくならな
いと電流が流れなくなり、電解質板の伝導度、すなわち
、内部抵抗がセル全面で一定であれば、得られる電流密
度は小さくなる。そこで、ガス流路出口の燃料濃度を少
しでも高くするために、流路入口部での平均値よりもか
なり大きな発生電流密度を下げる方法として内部抵抗、
特に、電解質板のイオン伝導度を流路出口側よりも大き
くすることにより、発生電流密度を下げ、下流の燃料濃
度低下率を小さくし、電流密度分布の一様化を図る。
E: Equilibrium potential V determined by gas composition and temperature Two operating voltage η, (i): Overvoltage of the anode electrode due to current density i η, (i): Overvoltage of the cathode electrode due to electrode density i R: Internal resistance of the battery The value of i is satisfied. In this formula, the gas inlet section, especially,
Since the fuel concentration (partial pressure) is high on the fuel flow path side, a large current density can be obtained even if the overvoltage is small, but the fuel concentration (partial pressure) is low at the flow path outlet, so the current will not flow unless the overvoltage becomes large. If there is no flow and the conductivity of the electrolyte plate, that is, the internal resistance, is constant over the entire cell surface, the obtained current density will be small. Therefore, in order to increase the fuel concentration at the outlet of the gas flow path as much as possible, the internal resistance is
In particular, by making the ionic conductivity of the electrolyte plate larger than that on the flow path outlet side, the generated current density is lowered, the downstream fuel concentration decrease rate is reduced, and the current density distribution is made more uniform.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第4図により説
明する。第1図は燃料電池の構成とその積層状態を示す
、多層構造からなる電解質板10゜11.10の両側に
カソード電極1とマノード電tM 2が設けられ、電極
のセパレータ側には集電板が取り付けられる。電解質板
と電極はセパレータ20によって両側から押えつけられ
電解質板とセパレータのシール面24とで燃料ガス、酸
化剤用ガスのシールが行なわれる。外部から供給された
燃料、rIt化剤ガスはセパレータ、電解質板に開けら
れたガス供給マニホールド21.12を通して。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Figure 1 shows the structure of a fuel cell and its laminated state.A cathode electrode 1 and a manode electrode tM2 are provided on both sides of an electrolyte plate 10°11.10 consisting of a multilayer structure, and a current collector plate is provided on the separator side of the electrode. can be installed. The electrolyte plate and the electrode are pressed down from both sides by the separator 20, and the fuel gas and oxidizing gas are sealed between the electrolyte plate and the sealing surface 24 of the separator. Fuel and rIt-forming agent gas supplied from the outside pass through gas supply manifolds 21 and 12 opened in the separator and electrolyte plate.

セパレータに加工されたガス流路22.23に供給され
、その流路を流れる間に電極と電M質との界面で電気化
学反応を起こし、発電を行なう、その際、溶融炭酸塩型
燃料電池では7ノード側、カソード側の電極で次の反応
により電気が発生する。
The gas is supplied to the gas passages 22 and 23 processed into the separator, and while flowing through the passage, an electrochemical reaction occurs at the interface between the electrode and the electrolyte, generating electricity. Then, electricity is generated by the following reaction at the electrode on the 7th node side and cathode side.

H,+CO3°−→CO,+H,O+2a−CO,+−
0,+2e−→CO,− この反応からも判るように、アノード側では水素が反応
物として消費され、炭酸ガスと水とが生成物として燃料
ガス中へ流入してくるため、下流に行くにつれて水素濃
度(分圧)が低下し、先に述べたように過電圧が大きく
なる。その結果、ガス流路出口での電流密度が小さくな
ってしまう。
H, +CO3°-→CO, +H,O+2a-CO,+-
0, +2e-→CO,- As seen from this reaction, hydrogen is consumed as a reactant on the anode side, and carbon dioxide and water flow into the fuel gas as products, so as it goes downstream, The hydrogen concentration (partial pressure) decreases, and as mentioned above, the overvoltage increases. As a result, the current density at the gas flow path outlet becomes small.

本発明では、その問題点を解消するため、第2図。In the present invention, in order to solve this problem, FIG.

第3図に示すように、電解質板を多層構造としである。As shown in FIG. 3, the electrolyte plate has a multilayer structure.

第2図ではその一列として三層恰造の場合を示しである
が、中間層11は第3図のA−Dに示すような四つの薄
い、しかも、それぞれ空隙率あるいは、多孔体の屈曲率
が異なるイオン伝導度の違う電解質板タイルで構成され
、両側からイオン伝導度の一様な電解質板10ではさま
れている。
Although FIG. 2 shows a three-layer structure as one row, the intermediate layer 11 has four thin layers as shown in A to D in FIG. It is composed of electrolyte plate tiles having different ionic conductivities, and is sandwiched from both sides by electrolyte plates 10 having uniform ionic conductivities.

この電解質板はアノード側、カソード側のガスの差圧に
耐え、ガスが一方から他方へ流れ、電気化学反応以外の
反応を起こすのを防止しなければならず、厚さを薄くす
ることには限界がある。第3図では直交流タイプの流れ
で燃料ガス32と酸化剤ガス33が供給されている場合
であり、当然第3図の左上が燃料、酸化剤とも濃度が高
く、その部分の電流密度が大きくなり、右側の部分が反
対に燃料濃度が低くなり、電流密度が小さくなることが
予想される。そこで、本発明の実施例として第3図の四
つの部分A−Dの電解質板のイオン伝導度を1/2.0
 .1/1.5 .1.lと変化させた場合の電流密度
分布を計算した。第4図はその計算結果であり、電池運
転電圧0.875 V、7ノード、カソードガスの利用
率85%、60%、アノードガスの組成、水素60%、
炭酸ガス17%。
This electrolyte plate must withstand the differential pressure between the gases on the anode and cathode sides, preventing the gas from flowing from one side to the other and causing reactions other than electrochemical reactions. There is a limit. Figure 3 shows a case where fuel gas 32 and oxidizer gas 33 are supplied with a cross flow type flow, and naturally the upper left of Figure 3 has a high concentration of both fuel and oxidant, and the current density in that part is high. On the contrary, it is expected that the fuel concentration will be lower in the right-hand side and the current density will be lower. Therefore, as an example of the present invention, the ionic conductivity of the electrolyte plate in the four parts A to D in FIG. 3 was set to 1/2.0.
.. 1/1.5. 1. The current density distribution was calculated when the current density was changed to l. Figure 4 shows the calculation results, battery operating voltage 0.875 V, 7 nodes, cathode gas utilization rate 85%, 60%, anode gas composition, hydrogen 60%,
Carbon dioxide 17%.

水23%、カソードガスの組成、炭酸ガス29%。Water 23%, cathode gas composition, carbon dioxide 29%.

酸素15%、窒素56%で行った。第5図は電解質板の
イオン伝導度を一様として、上記条件で計算した結果で
ある0両者の計算結果では平均電流密度はほとんど同じ
であり1面内の電流密度差が本発明の実施例では40%
低減している。
The test was carried out using 15% oxygen and 56% nitrogen. Figure 5 shows the results of calculations under the above conditions, assuming that the ionic conductivity of the electrolyte plate is uniform.In both calculation results, the average current density is almost the same, and the difference in current density within one plane is the same as that of the embodiment of the present invention. So 40%
It is decreasing.

電解質板のイオン伝導度分布をさらに細かく分けること
により、面内の電流密度分布はさらに均一にすることが
できる。従って、電池内の発熱分布も一様になり、電池
の寿命、信頼性の向上が達成できる。
By further dividing the ionic conductivity distribution of the electrolyte plate, the in-plane current density distribution can be made more uniform. Therefore, the distribution of heat generation within the battery becomes uniform, and the life span and reliability of the battery can be improved.

第6図、第7図は本発明の他の一実施例を示したもので
、f4m質板1〇がイオン伝導度の異なる四つのタイル
から構成されている。その効果は第2図、第3図の場合
と同様であり、均一な面内電流密度分布が得られ、一様
な電池的発熱分布が達成できる。
FIGS. 6 and 7 show another embodiment of the present invention, in which the F4M plate 10 is composed of four tiles having different ionic conductivities. The effect is the same as in the case of FIGS. 2 and 3, and a uniform in-plane current density distribution can be obtained, and a uniform battery-like heat generation distribution can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電池面内の電流密度分布が均一にでき
るので電池内部の発熱分布が一様となり。
According to the present invention, since the current density distribution within the battery surface can be made uniform, the heat generation distribution inside the battery can be made uniform.

電池の寿命、信頼性が向上する。Improves battery life and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃料電池の猜造と積層
状態図、第2図は第1図の断面図、第3図は第1図の電
解質板平面図とガスの流れの様子を示す図、第4図、第
5図は本発明の実施例による面内電流密度分布と従来例
による分布とのが析結果を示す図、第6図、第7図は本
発明の他実施例図、第6図は断面図、第7図は電解質板
の平面図とガスの流れを示す図である。 10・・・電解質板、11・・・イオン伝導度に分布の
ある電解質板、20・・・セパレータ、32・・・燃料
ガス。 33・・・酸化剤ガス。
Fig. 1 is a diagram of the construction and stacking state of a fuel cell showing an embodiment of the present invention, Fig. 2 is a sectional view of Fig. 1, and Fig. 3 is a plan view of the electrolyte plate of Fig. 1 and the flow of gas. 4 and 5 are diagrams showing the analysis results of the in-plane current density distribution according to the embodiment of the present invention and the distribution according to the conventional example. FIG. 6 is a cross-sectional view, and FIG. 7 is a plan view of an electrolyte plate and a diagram showing gas flow. DESCRIPTION OF SYMBOLS 10... Electrolyte plate, 11... Electrolyte plate with distribution of ionic conductivity, 20... Separator, 32... Fuel gas. 33... Oxidizing gas.

Claims (1)

【特許請求の範囲】 1、二枚の電極とその間にはさまれる電解質板、及び燃
料と酸化剤とを分離して流すセパレータとから構成され
る燃料電池において、 前記電解質板のイオン伝導度を前記燃料、前記酸化剤の
流れる流路に沿って変化させたことを特徴とする燃料電
池構造。 2、特許請求の範囲第1項において、前記電解質板を多
層構造とし、中間に組み入れる層の前記電解質板を空隙
率あるいは屈曲率の異なる電解質板のタイルの組み合わ
せで構成し、前記電解質板の全体のイオン伝導度を流路
に沿って変化させたことを特徴とする燃料電池構造。 3、特許請求の範囲第1項において、前記電解質板を空
隙率あるいは屈曲率の異なる電解質板タイルを組み合わ
せて構成したことを特徴とする燃料電池構造。
[Claims] 1. In a fuel cell composed of two electrodes, an electrolyte plate sandwiched between them, and a separator that separates and flows fuel and oxidizer, the ionic conductivity of the electrolyte plate is A fuel cell structure characterized in that the flow path of the fuel and the oxidant is changed along the flow path. 2. In claim 1, the electrolyte plate has a multilayer structure, and the electrolyte plate of the layer incorporated in the middle is composed of a combination of tiles of electrolyte plates having different porosity or curvature ratio, and the electrolyte plate has a multilayer structure. A fuel cell structure characterized by changing ionic conductivity along a flow path. 3. The fuel cell structure according to claim 1, wherein the electrolyte plate is constructed by combining electrolyte plate tiles having different porosity or curvature ratio.
JP59206309A 1984-10-03 1984-10-03 Fuel battery structure Pending JPS6185774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206309A JPS6185774A (en) 1984-10-03 1984-10-03 Fuel battery structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206309A JPS6185774A (en) 1984-10-03 1984-10-03 Fuel battery structure

Publications (1)

Publication Number Publication Date
JPS6185774A true JPS6185774A (en) 1986-05-01

Family

ID=16521164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206309A Pending JPS6185774A (en) 1984-10-03 1984-10-03 Fuel battery structure

Country Status (1)

Country Link
JP (1) JPS6185774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258365A (en) * 1988-04-06 1989-10-16 Hitachi Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258365A (en) * 1988-04-06 1989-10-16 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JP4516229B2 (en) Solid polymer cell assembly
RU2531912C2 (en) Combined schemes of flows in packet of fuel elements or in packet of electrolytic elements
US7008709B2 (en) Fuel cell having optimized pattern of electric resistance
JPS60100377A (en) Fuel battery
JPH04292865A (en) Solid electrolytic fuel cell
WO2012007998A1 (en) Fuel cell
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP2003323905A (en) Solid polymer fuel cell
CA2547813C (en) Solid oxide fuel cell
JPS6290871A (en) Fuel cell
JP5082467B2 (en) Fuel cell and separator constituting fuel cell
JPS63119166A (en) Fuel battery
JPH08185873A (en) Fuel cell
JPS6185774A (en) Fuel battery structure
JP4572252B2 (en) Fuel cell stack
EP0810684B1 (en) Molten carbonate fuel cell comprising electolyte plate having fine through holes
Mitsuda et al. Characterization of gas flow configurations for phosphoric acid fuel cells
JPS6298567A (en) Fuel cell
JPS63236265A (en) Fuel cell
JPS62147664A (en) Reaction gas supply method in fuel cell
JPH04370664A (en) Fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
US20050214622A1 (en) Fuel cell
JPH08153525A (en) Fuel cell
JPH10340733A (en) Fuel cell laminate