JPS6184350A - Sintered hard alloy and its manufacture - Google Patents

Sintered hard alloy and its manufacture

Info

Publication number
JPS6184350A
JPS6184350A JP59206380A JP20638084A JPS6184350A JP S6184350 A JPS6184350 A JP S6184350A JP 59206380 A JP59206380 A JP 59206380A JP 20638084 A JP20638084 A JP 20638084A JP S6184350 A JPS6184350 A JP S6184350A
Authority
JP
Japan
Prior art keywords
hard alloy
alloy
carbonitride
sintered hard
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59206380A
Other languages
Japanese (ja)
Other versions
JPH0471986B2 (en
Inventor
Kunihiro Takahashi
邦博 高橋
Yasuhiro Shimizu
靖弘 清水
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59206380A priority Critical patent/JPS6184350A/en
Publication of JPS6184350A publication Critical patent/JPS6184350A/en
Publication of JPH0471986B2 publication Critical patent/JPH0471986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop the sintered hard alloy contg. plenty of nitrogen which is excellent in toughness and heat resistance by using Fe group metal or Cr group metal as the bonding metal and sintering the hard powdery raw material consisting of carbonitride of Ti having the specified composition. CONSTITUTION:30-40wt% powder of Fe group metal such as Fe, Ni and Co or Cr group metal such as Cr, Mo and W is mixed as the bonding material in a sintering period with the powder of hard carbonitride contg. Ti as essential component, Mo and W shown by a formula (I) [in the formula, (x) and (y) are molar fraction of metallic elements x+y=1.0, (u)+(v)=1.0, (z) is the stoichiometric parameter, 0.80<=z<=1.02, y=0.04-0.40. The value of (v) is limited to (a), (b), (c) and (d)] and the mixture is press-molded. The molded material is sintered at 1,400-1,500 deg.C in the atmosphere of 0.1-500Torr nitrogen partial pressure and thereby the sintered hard alloy contg. plenty of nitrogen excellent in toughness and heat resistance is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高a性かつ耐熱性に優れた高N3含有の焼結
硬質合金(サーメット合金)お工びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sintered hard alloy (cermet alloy) with high N3 content and high aluminium and excellent heat resistance, and a method for manufacturing the same.

(従来の技術) 近年、Tie基サーメットにTiN 、 Ti(ON)
 。
(Prior art) In recent years, TiN and Ti(ON) have been added to Tie-based cermets.
.

(TiMoJ (ON) 、 (Tie) (ON)等
を添加含有させることにエリ、硬質相粒子を微粒化して
、靭性および耐摩耗性が大巾に向上したサーメット合金
が提案されている。
(TiMoJ (ON), (Tie) (ON), etc. are added to the cermet alloy, and the hard phase particles are atomized, thereby greatly improving toughness and wear resistance. Cermet alloys have been proposed.

例えば特公昭56−51201号公報にアーウィン呻ル
デイによって提案されたサーメット合金の硬質相は、第
2図に示す工うに(TtxMy)(OuNV)  中に
おけるYと、■で規定されており、ホu (TiO,1
111MO,04) (CO,44No、sa入へ1j
(Ti・、sa Mo、04 )(Coja NO+0
4 )、  ) u (Tio、ao MoAo) (
00,116NO1141s チは(Tie、io M
O,40) (co、goNo、to )  である〇
ここで、Mは、Moお工び/まfCはWをあられす。な
お第2図は上記の硬質相の範囲をあられすゲラフチ、横
軸ハ(T’ xMy ) (Cu Nv l 2 中に
おけるモル分率Y1また縦軸ハ(TlxMy)(CuN
v)2 中におけるモル分率Vである。
For example, the hard phase of a cermet alloy proposed by Irwin Oulday in Japanese Patent Publication No. 56-51201 is defined by Y in TtxMy (OuNV) and ■ as shown in Figure 2, and (TiO,1
111MO, 04) (CO, 44No, enter sa 1j
(Ti・, sa Mo, 04) (Coja NO+0
4), ) u (Tio, ao MoAo) (
00,116NO1141s Tie, io M
O, 40) (co, goNo, to) 〇Here, M is Mo work/MafC is W. In addition, Fig. 2 shows the range of the above-mentioned hard phase, the horizontal axis shows the mole fraction Y1 in (T'
v) is the molar fraction V in 2.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

しかしながら、繭記の公報に記載の方法にエリ製造した
サーメット合金は、高温における強度の低下が大きいた
め、重切削や、強い衝撃を受ける切削などには、満足な
使用に期待できない。
However, the cermet alloy produced by the method described in Mayuki's publication suffers a large decrease in strength at high temperatures, so it cannot be expected to be used satisfactorily for heavy cutting or cutting that is subjected to strong impact.

本発明の目的は、この工つな現状に鑑み、従来広による
サーメット合金の高温での強度低下の問題を解決して、
高U性かつ耐熱性に優れたサーメット合金お工びその製
造方法を提供するところにある。
In view of this difficult current situation, the purpose of the present invention is to solve the conventional problem of the decrease in strength of cermet alloys at high temperatures.
The purpose of the present invention is to provide a cermet alloy with high U properties and excellent heat resistance, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、サーメット合金の靭性、耐熱性を向上す
べく鋭意研究の結果、これまでに提案されているサーメ
ット合金エリ、さらに装置の窒素を含有させた高N3含
有サーメット合金が、工9高靭性かつ耐熱性に優れ、上
記の目的を達成できること、さらにこの工うな高N3含
有サーメット合金の製法を見出し、本発明に到った。
As a result of intensive research aimed at improving the toughness and heat resistance of cermet alloys, the present inventors found that the cermet alloys proposed so far, as well as high N3-containing cermet alloys containing nitrogen in the equipment, The inventors have discovered that the cermet alloy has high toughness and heat resistance, can achieve the above objectives, and has also found a method for producing a high N3-containing cermet alloy, leading to the present invention.

すなわち本発明は、Tiを生成分とする炭窒化物の硬質
相と、鉄族金属およびクロム族金属の18又は2種以上
からなり合金全体の60〜40重量%である結合金属と
からなる焼結硬質合金において、該炭窒化物組成が、下
記式 %式%) (式中、X@ yt’;!金属元素のモル分率、u、 
yに非金属元素のモル分率、X + 7 = 1.0、
U+v=1.0、zは化学量論的パラメーターであり0
.80≦2≦1.02である。また、yの値は[104
からf140であり、Vの値に第1図のイ、口、ハ、二
、に工って限定される。)で表されることを特徴とする
焼結硬質合金を提供する。
That is, the present invention provides a sintered material comprising a hard phase of carbonitride containing Ti as a product and a bonding metal consisting of 18 or two or more of iron group metals and chromium group metals and making up 60 to 40% by weight of the entire alloy. In a hardened alloy, the carbonitride composition is expressed by the following formula %) (where X@yt';! Molar fraction of metal element, u,
y is the mole fraction of the nonmetallic element, X + 7 = 1.0,
U+v=1.0, z is the stoichiometric parameter and 0
.. 80≦2≦1.02. Also, the value of y is [104
to f140, and is limited by modifying the value of V to A, C, C, and II in FIG. ) A sintered hard alloy is provided.

また本発明は上記合金においてJMOお工び/又[Wt
”%ル比でα01〜[150まで’ra 、 Nb。
Further, the present invention provides JMO machining/or [Wt
``%le ratio from α01 to [150'ra, Nb.

Zr 、 vのうち1種又r12種以上で置換された焼
結硬質合金を提供する。
Provided is a sintered hard alloy substituted with one or more of Zr and v or r12 or more.

さらに本発明は上記の焼結硬質合金を製造する方法とし
て、Tiを生成分とする炭窒化物の硬質相と、鉄族金属
お工びクロム族金属の1種又は2種以上からなり合金全
体の30〜40重量%である結合金属とからなる焼結硬
質合金であって、該炭窒化物組成が下記式 %式%) (式中、”e7は金属元素のモル分率、u、 vは非金
属元素のモル分率、!+7=l、Q、u+v = 1.
0.2は化学緻論的パラメーターであり180≦2≦1
,02である。また、yの値は004から0.40であ
り、Vの値は第1図のイ九口、ハ、二、に工って限定さ
れる。)で表される焼結硬質合金の製造方法であって、
a丁(モル比)が[15以上のT1(0ムNB)  お
工び/又は、−(モル比)がα3以下で’F!+F(モ
ル比)0+D がQ、5以上の(T i a (Moお工び/又’d 
” )n ) (OgNF)の炭窒化物固溶体粉末に、
結合金属として鉄族金属おLびクロム族金属の1種又は
2種以上を混合した後、所定の形状にブレスし、その後
窒素分圧n1〜500 TOrrの窒素雰囲気中にて、
温度1400〜1500℃にて焼結することを特徴とす
る上記焼結硬質合金の製造方法を提供する。
Furthermore, the present invention provides a method for producing the above-mentioned sintered hard alloy. A sintered hard alloy consisting of 30 to 40% by weight of a bonding metal, the carbonitride composition of which is expressed by the following formula % (%) (where "e7 is the molar fraction of the metal element, u, v is the mole fraction of nonmetallic elements, !+7=l, Q, u+v = 1.
0.2 is a chemically precise parameter and 180≦2≦1
,02. Further, the value of y is from 004 to 0.40, and the value of V is limited to A, C, and II in FIG. ) A method for producing a sintered hard alloy,
If a (molar ratio) is [15 or more, T1 (0 mNB) is completed/or - (molar ratio) is α3 or less, 'F! +F (molar ratio)0+D is Q, 5 or more (T i a (Mo work/also'd
” ) n ) (OgNF) carbonitride solid solution powder,
After mixing one or more of iron group metals and chromium group metals as bonding metals, they are pressed into a predetermined shape, and then in a nitrogen atmosphere with a nitrogen partial pressure of n1 to 500 Torr.
Provided is a method for manufacturing the above-mentioned sintered hard alloy, characterized in that sintering is performed at a temperature of 1400 to 1500°C.

本発明者に、サーメット合金の靭性、耐熱性を向上する
べく研究を行った結果、T1’に生成分とする炭窒化物
の硬質相と鉄族金属お工びクロム族金属の1種又は2種
以上3〜40重菫チからなる焼結硬質合金において、炭
窒化物に(Ttx(”お工び/又tI′s、W)y)(
CuNv)zであられされ、!、7は金属元素のモル分
率、U、Vは非金属元素のモル分率、x + y = 
1.0、u+v=1.0、Zは化学量論パラメーターで
あって(180≦2公j、02で6り、17vyの値は
104から[L40であり、■の値は第1図のイロノ\
二によって限定され、 イに(Tio、9s (Mo jl?工び/又は” )
 o、o4) (C(1,14No、ao廊・口I”j
 (TI、、、 (MOお工び/又if )0.04 
j (O(+、56N0.443Z sハは(Tio、
go (Moおよび/又U W ) 0.40 ) (
Co、go No、ao ) Z %二Jd (Ti@
、−6(Moお工び/又n W ) o、ao ) (
co、io No、io ) Z sであると、高靭性
で耐熱性にとむサーメット合金になるとの矧見を得友。
As a result of research conducted by the present inventor to improve the toughness and heat resistance of cermet alloys, it was found that T1' contains a hard phase of carbonitride as a generated component and one or two types of chromium group metal. In a sintered hard alloy consisting of 3 to 40 violet nitrides, carbonitrides (Ttx("work/also tI's, W)y)(
Hail to CuNv)z! , 7 is the mole fraction of the metal element, U, V are the mole fraction of the nonmetal element, x + y =
1.0, u+v=1.0, Z is the stoichiometric parameter (180≦2 public j, 02 is 6, the value of 17vy is from 104 to [L40, the value of ■ is as shown in Figure 1) Irono\
limited by two, to i (Tio, 9s (Mo jl?work/or”)
o, o4) (C(1,14No, ao-ro/guchi I"j
(TI,,, (MO work/also if) 0.04
j (O(+, 56N0.443Z s ha (Tio,
go (Mo and/or U W ) 0.40 ) (
Co, go No, ao) Z%2Jd (Ti@
, -6 (Mo work/also n W ) o, ao ) (
co, io No, io) Z s makes a cermet alloy with high toughness and high heat resistance.

ここで第1図は、本発明の焼結硬質合金の硬質相の炭窒
化物組成の範囲を示すグラフであって、横軸[(TiX
(Moおよび/また[W)y)(OuNv)z中におけ
るモル分率y1縦軸td (Tix(M。
Here, FIG. 1 is a graph showing the range of carbonitride composition of the hard phase of the sintered hard alloy of the present invention, with the horizontal axis [(TiX
Mole fraction y1 in (Mo and/or [W)y)(OuNv)z Vertical axis td (Tix(M.

および/またはW )y) (OuNv)z中における
モル分率Vを示し、線イロノにお工び線イロノ為二に工
り囲まれる範囲が本発明の合金の硬質相の範囲である。
and/or W ) y) (OuNv) The range surrounded by the line Irono and Irono Tameji is the range of the hard phase of the alloy of the present invention.

本発明の合金の硬質の炭窒化物において、yin04か
らα4であって、yが0.04工V小であると強度が大
巾に低下して欠けやすぐなり、また040を越えると耐
摩耗性が劣る結果となる。
In the hard carbonitride of the alloy of the present invention, if y is from 04 to α4 and y is less than 0.04 mm, the strength will be greatly reduced and will be easily chipped, and if it exceeds 040, the wear resistance will be reduced. This results in inferior performance.

’It fcZ rJ、0.80 u 上1−02 m
下テアッテ、zが(180エリ小さいと合金中に脆化相
が多くなり欠は易くなり、又1.02エリ大きいと遊離
炭素が存在し強度が低下する。
'It fcZ rJ, 0.80 u upper 1-02 m
If z is smaller by 180 el, there will be more embrittlement phases in the alloy, making it easier to chip, and if it is larger by 1.02 el, free carbon will be present and the strength will decrease.

また第1図の線イニ以上に窒素を含有させると炭窒化物
中の窒素分解圧が高くなり、焼結中に窒素ガスが分解し
、合金中に巣を残し、強度不足となる。さらに線ロバ以
下の窒累倉であると、高温での強度低下、お工び刃先の
塑性変形が大となる。
Furthermore, if nitrogen is contained above the line in FIG. 1, the nitrogen decomposition pressure in the carbonitride increases, and the nitrogen gas decomposes during sintering, leaving voids in the alloy, resulting in insufficient strength. Furthermore, if the nitrogen storage is smaller than a wire rod, the strength will decrease at high temperatures and the plastic deformation of the machining cutting edge will be large.

炭窒化物を結合する金属に、鉄族金属お工びり日ム族金
属の1種又は2種以上からなるが、3重tチェリ少ない
と強度が低下し、40重鎗チを越えると、耐摩耗性が大
巾に低下するので、5〜40重量−が好ましい。
The metal that binds the carbonitrides is composed of one or more of the iron group metals, but if there is less 3-layer metal, the strength will decrease, and if it exceeds 40-layer metal, the resistance will decrease. The weight range is preferably 5 to 40% by weight, since the abrasion properties are greatly reduced.

本発明の焼結硬質合金は、上記の炭窒化物が、MOお工
び/又tlWをモル比でα01〜Q、50まで、Ta 
、 Nb * zr * vのうちの1種又は2種以上
で置換することができ、この↓うな置換に1って靭性お
工び耐熱性を向上できるが、モル比がα01工9少ない
とその効果はな(、(150を越えると耐摩耗性に劣る
結果となる。
The sintered hard alloy of the present invention is characterized in that the above-mentioned carbonitride has a molar ratio of α01 to Q, 50 to MO and tlW, and Ta
, Nb * zr * v, and this substitution can improve toughness and heat resistance, but if the molar ratio is less α01, the If it exceeds 150, the wear resistance will be poor.

本発明のサーメット合金の製造法としては、Tie 、
 TiN  を添加混合する従来法によっても可能であ
るが、スが発生して焼結しにくい場合もある。
The method for producing the cermet alloy of the present invention includes Tie,
Although it is possible to use the conventional method of adding and mixing TiN, sintering may be difficult due to the generation of gas.

したがって本発明のサーメット合金は’ A+B(モル
比)が(15以上のTi (OANB)  のT1炭窒
化物粉末および/又rx O+D (モル比)がα3以
下で古(モル比)が[15以上の(Tto(Moお工び
/又はw)DHa、n−の炭窒化物固溶体粉末を用いる
ことに工って、炭窒化物の焼結時の窒素分解圧が低下し
、合金中の巣が生じにくく19、好適に製造できる。
Therefore, the cermet alloy of the present invention is a T1 carbonitride powder of Ti (OANB) with an A + B (molar ratio) of (15 or more) and/or a T1 carbonitride powder of Ti (OANB) with a (molar ratio) of By using (Tto(Mo)/or w) DHa, n- carbonitride solid solution powder, the nitrogen decomposition pressure during sintering of carbonitride is reduced, and the voids in the alloy are reduced. It is less likely to occur19 and can be manufactured suitably.

以上のごときT1炭窒化物、T1炭窒化物同溶体を用い
た場合、真空焼結でも目的とするサーメット合金は可能
であるが、さらに、α1〜500’rorr  の窒素
分圧で焼結すると、焼結時における合金の表面、内部の
脱窒を防ぐことが可能であり好ましい。
When using T1 carbonitride or T1 carbonitride isosolver as described above, it is possible to form the desired cermet alloy by vacuum sintering, but furthermore, if sintered at a nitrogen partial pressure of α1 to 500'rorr, This is preferable since it is possible to prevent denitrification on the surface and inside of the alloy during sintering.

T1(CANB )  中ノA+ Bが(L5je)少
ないと、合金中に窒素全多量に含有することができない
T1(CANB) If the amount of A+B in the alloy is small (L5je), a large amount of nitrogen cannot be contained in the alloy.

また( Ti O(Moお工び/又はW)D)(O□N
、)中の缶が0.3を越えると、MozC,Weが析出
したり、高窒素を含有させることができない。
Also (Ti O(Mo work/or W)D)(O□N
, ), if the content of the can exceeds 0.3, MozC and We will precipitate and it will not be possible to contain a high nitrogen content.

さらにに+tl’  がα5エリ少ないと、合金中に窒
素を多量に含有することができない。
Furthermore, if +tl' is less than α5, a large amount of nitrogen cannot be contained in the alloy.

窒素雰囲気にて焼結する際の窒素分圧がα1Torr工
9小さいと、脱窒しやすくなり、500Torr k越
えると合金中に巣が生じ、強度低下をきたしたり、表面
に炭窒化物のl1ili金生じることに、Cり%衣表面
脆くなる。
If the nitrogen partial pressure during sintering in a nitrogen atmosphere is small, denitrification will occur easily, and if it exceeds 500 Torr, cavities will form in the alloy, resulting in a decrease in strength, or carbonitrides on the surface. As a result, the coating surface becomes brittle.

焼結温度は1400〜1500℃が好ましく、1400
’C以下では合金中に巣を生じて強度が低下し、また1
500℃を越えると、結合金属の鉄族・クロム族金属が
合金中から揮散するため、所期を工9少なくなってしま
う。
The sintering temperature is preferably 1400 to 1500°C, and 1400°C
Below 'C, cavities are formed in the alloy and the strength decreases, and
If the temperature exceeds 500°C, iron group metals and chromium group metals, which are bonding metals, will volatilize from the alloy, resulting in less than the expected amount.

〔実施例〕〔Example〕

以下実施例を挙げて説明する。 This will be explained below with reference to examples.

実施例1 原料粉末として、TiO、TiN 、 Ti(Co、s
 No、s )tTi (co、a No、a ) e
 (Tie、yWo、m ) (Oo、s N6.s)
e  (Tio、t Wo、冨1’!OoJ ) (0
0,、N(1,7)、 ’raa 、 N’i+O、Z
rO、VC、Co 、 Ni 。
Example 1 As raw material powders, TiO, TiN, Ti(Co, s
No, s ) tTi (co, a No, a ) e
(Tie,yWo,m) (Oo,s N6.s)
e (Tio, t Wo, Tomi 1'!OoJ) (0
0,, N(1,7), 'raa, N'i+O, Z
rO, VC, Co, Ni.

W、Mo、Or粉末を用い、本発明に従い所定の割合に
混合し、本発明の合金a〜ff製造した。
Alloys a to ff of the present invention were manufactured by mixing W, Mo, and Or powders in a predetermined ratio according to the present invention.

それぞれの硬質相(モル比)、結合相(重量%)、焼結
条件、原料を表1にまとめて示す。
Table 1 summarizes the hard phase (molar ratio), binder phase (wt%), sintering conditions, and raw materials for each.

また従来、分類の合金j −y mを製造し比較例とし
たが、仁れについても、同様に表1に示す。
In addition, conventionally, alloys j - y m of classification were manufactured and used as comparative examples, and the pitting is also shown in Table 1.

以上の合金a〜mについて、以下硬度(HV)、抗折力
(kli+/、、” )を試験し、さらに次の切削試験
を行った。
The above alloys a to m were tested for hardness (HV) and transverse rupture strength (kli+/, ''), and were further subjected to the following cutting test.

■ 逃げ面摩耗1(、、+) 切削条件  被削材:80M455 切削速度: 18 G m/min 送  0 : α5 6 m/ reV切込み:2.O
woa 切削時間:20分 ■ 欠損発生時の送0(■/reV) 切削条件  被削材:80M455(溝付主材)切削速
度:150m/min 送 9:変化(漸次上げて、 欠損したときの送り を確認) 切込み:2.Om 切削時間: 1 min ■ 熱亀裂発生本数 切削条件(フライス試験) 被剛材:80M455 切削速度: 200 rn/ min 送  リ :(L2G、/刃 切込み:2.0IIII+ 切削時間: 40 min 以上の試験結果を表2にまとめて示す。表2から明らか
な工うに、本発明合金は従来の合金に比べ、重切削が可
能で、耐熱性に優れることがわかる。
■ Flank wear 1 (,, +) Cutting conditions Work material: 80M455 Cutting speed: 18 G m/min Feed 0: α5 6 m/reV Depth of cut: 2. O
woa Cutting time: 20 minutes■ Feed at the time of fracture 0 (■/reV) Cutting conditions Work material: 80M455 (grooved main material) Cutting speed: 150 m/min Feed 9: Change (gradually increase, (Check feed) Depth of cut: 2. Om Cutting time: 1 min ■ Cutting conditions for number of thermal cracks (milling test) Rigid material: 80M455 Cutting speed: 200 rn/min Feed rate: (L2G, /blade depth of cut: 2.0III+ Cutting time: 40 min or more test) The results are summarized in Table 2. It is clear from Table 2 that the alloy of the present invention is capable of heavy cutting and has superior heat resistance compared to conventional alloys.

〔発明の効果〕 以上説明の如く、本発明は従来に比して、工9多量の窒
素を含有する高N、含有サーメット合金でありエリ高靭
性かつ耐熱性が向上した優れた焼結硬質合金お工びその
製造法であり、高温での強度低下が少なく重切削や強い
衝撃全骨ける切削に使用可能な焼結硬質合金を提供でき
る。
[Effects of the Invention] As explained above, the present invention is a high N-containing cermet alloy that contains a large amount of nitrogen, and is an excellent sintered hard alloy with high toughness and improved heat resistance. This manufacturing method allows us to provide a sintered hard alloy that can be used for heavy cutting and strong impact cutting with little loss of strength at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明サーメットの硬質相である炭窒化物の組
成範囲を示すグラフである。 第2図は特公昭56−51201号公報記載のサーメッ
トの炭窒化物相組成範囲の1例を示すグラフである。
FIG. 1 is a graph showing the composition range of carbonitride, which is the hard phase of the cermet of the present invention. FIG. 2 is a graph showing an example of the carbonitride phase composition range of the cermet described in Japanese Patent Publication No. 56-51201.

Claims (4)

【特許請求の範囲】[Claims] (1)Tiを生成分とする炭窒化物の硬質相と、鉄族金
属およびクロム族金属の1種又は2種以上からなり合金
全体の30〜40重量%である結合金属とからなる焼結
硬質合金において、該炭窒化物組成が、下記式 {Ti_x(Moおよび/又はW)_y}(C_uN_
v)_z(式中、x、yは金属元素のモル分率、u、v
は非金属元素のモル分率、x+y=1.0、u+v=1
.0、zは化学量論的パラメーターであり0.80≦z
≦1.02である。また、yの値は0.04から0.4
0であり、vの値は第1図のイ、ロ、ハ、ニ、によつて
限定される。)で表されることを特徴とする焼結硬質合
金。
(1) Sintering consisting of a hard carbonitride phase containing Ti as a product and a bonding metal consisting of one or more of iron group metals and chromium group metals and making up 30 to 40% by weight of the entire alloy. In the hard alloy, the carbonitride composition is expressed by the following formula {Ti_x(Mo and/or W)_y}(C_uN_
v)_z (where x, y are the molar fraction of the metal element, u, v
is the molar fraction of nonmetallic elements, x+y=1.0, u+v=1
.. 0, z are stoichiometric parameters and 0.80≦z
≦1.02. Also, the value of y is from 0.04 to 0.4
0, and the value of v is limited by A, B, C, and D in FIG. ) A sintered hard alloy characterized by:
(2)特許請求の範囲第(1)項記載の焼結硬質合金に
おいて、(Moおよび/又はW)をモル比で0.01〜
0.50までTa、Nb、Zr、Vのうちの1種又は2
種以上で置換したことを特徴とする上記焼結硬質合金。
(2) In the sintered hard alloy according to claim (1), the molar ratio of (Mo and/or W) is from 0.01 to
One or two of Ta, Nb, Zr, V up to 0.50
The above-mentioned sintered hard alloy, characterized in that it is substituted with at least one species.
(3)Tiを生成分とする炭窒化物の硬質相と、鉄族金
属およびクロム族金属の1種又は2種以上からなり合金
全体の30〜40重量%である結合金属とからなる焼結
硬質合金であつて、該炭窒化物組成が、下記式 {Ti_x(Moおよび/又はW)_y}(C_uN_
v)_z(式中、x、yは金属元素のモル分率、u、v
は非金属元素のモル分率、x+y=1.0、u+v=1
.0、zは化学量論的パラメーターであり0.80≦z
≦1.02である。また、yの値は0.04から0.4
0であり、vの値は第1図のイ、ロ、ハ、ニ、によつて
限定される。)で表される焼結硬質合金の製造方法であ
つて、B/(A+B)(モル比)が0.5以上のTi(
C_AN_B)および/又は、D/(C+D)(モル比
)が0.3以下で、F/(E+F)(モル比)が0.5
以上の{Ti_C(Moおよび/又はW)_D}(C_
EN_F)の炭窒化物固溶体粉末に、結合金属として鉄
族金属およびクロム族金属の1種又は2種以上を混合し
た後、所定の形状にプレスし、その後窒素分圧0.1〜
500Torrの窒素雰囲気中にて、温度1400〜1
500℃にて焼結することを特徴とする上記焼結硬質合
金の製造方法。
(3) Sintering consisting of a hard carbonitride phase containing Ti as a product and a bonding metal consisting of one or more of iron group metals and chromium group metals and making up 30 to 40% by weight of the entire alloy. It is a hard alloy, and the carbonitride composition is expressed by the following formula {Ti_x(Mo and/or W)_y}(C_uN_
v)_z (where x, y are the molar fraction of the metal element, u, v
is the molar fraction of nonmetallic elements, x+y=1.0, u+v=1
.. 0, z are stoichiometric parameters and 0.80≦z
≦1.02. Also, the value of y is from 0.04 to 0.4
0, and the value of v is limited by A, B, C, and D in FIG. ) is a method for producing a sintered hard alloy represented by Ti(
C_AN_B) and/or D/(C+D) (molar ratio) is 0.3 or less and F/(E+F) (molar ratio) is 0.5
{Ti_C(Mo and/or W)_D}(C_
EN_F) carbonitride solid solution powder is mixed with one or more of iron group metals and chromium group metals as bonding metals, then pressed into a predetermined shape, and then nitrogen partial pressure is 0.1~
In a nitrogen atmosphere of 500 Torr, at a temperature of 1400 to 1
The method for producing the sintered hard alloy described above, characterized by sintering at 500°C.
(4)(Moおよび/又はW)をモル比で0.01〜0
.50までTa、Nb、Zr、Vのうちの1種又は2種
以上で置換した特許請求の範囲第(3)項に記載の焼結
硬質合金の製造方法。
(4) (Mo and/or W) in a molar ratio of 0.01 to 0
.. The method for producing a sintered hard alloy according to claim 3, wherein up to 50% of the sintered hard alloy is replaced with one or more of Ta, Nb, Zr, and V.
JP59206380A 1984-10-03 1984-10-03 Sintered hard alloy and its manufacture Granted JPS6184350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206380A JPS6184350A (en) 1984-10-03 1984-10-03 Sintered hard alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206380A JPS6184350A (en) 1984-10-03 1984-10-03 Sintered hard alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS6184350A true JPS6184350A (en) 1986-04-28
JPH0471986B2 JPH0471986B2 (en) 1992-11-17

Family

ID=16522378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206380A Granted JPS6184350A (en) 1984-10-03 1984-10-03 Sintered hard alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS6184350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170452A (en) * 1986-01-22 1987-07-27 Hitachi Carbide Tools Ltd Ticn-base cermet
JPS6357732A (en) * 1986-08-27 1988-03-12 Sumitomo Electric Ind Ltd Cermet sintering method
JPH0273945A (en) * 1988-09-08 1990-03-13 Toyo Kohan Co Ltd Cermet tool for drawing-ironing can forming
CN109053191A (en) * 2018-08-17 2018-12-21 中南大学 A kind of soap-free emulsion polymeization phase base titanium carbonitride and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146509A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries Niobu ofukumu chokoshitsugokin
JPS5146508A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries
JPS5146510A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries Banajiumu ofukumu chokoshitsugokin
JPS5146511A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries
JPS613853A (en) * 1984-06-18 1986-01-09 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146509A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries Niobu ofukumu chokoshitsugokin
JPS5146508A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries
JPS5146510A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries Banajiumu ofukumu chokoshitsugokin
JPS5146511A (en) * 1974-10-18 1976-04-21 Sumitomo Electric Industries
JPS613853A (en) * 1984-06-18 1986-01-09 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170452A (en) * 1986-01-22 1987-07-27 Hitachi Carbide Tools Ltd Ticn-base cermet
JPS6357732A (en) * 1986-08-27 1988-03-12 Sumitomo Electric Ind Ltd Cermet sintering method
JPH0273945A (en) * 1988-09-08 1990-03-13 Toyo Kohan Co Ltd Cermet tool for drawing-ironing can forming
CN109053191A (en) * 2018-08-17 2018-12-21 中南大学 A kind of soap-free emulsion polymeization phase base titanium carbonitride and preparation method thereof
CN109053191B (en) * 2018-08-17 2021-11-30 中南大学 Titanium carbonitride based cermet without binder phase and preparation method thereof

Also Published As

Publication number Publication date
JPH0471986B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US4049876A (en) Cemented carbonitride alloys
JP2011503361A (en) Method for producing powder injection molded body
JPS5823457B2 (en) Tough cermet
KR20170042617A (en) Hard material, sintered body, tool using sintered body, manufacturing method of hard material and manufacturing method of sintered body
JP2775955B2 (en) Manufacturing method of coating cermet with excellent wear resistance
KR20120086457A (en) Complete solid-solution powder for cemented carbide, cemented carbide containing platelet carbides, coated cemented carbides and processes for preparing thereof
JPS6184350A (en) Sintered hard alloy and its manufacture
CN1180109C (en) Metal-ceramic cutting tool material and its preparation method
KR20150025196A (en) Manufacturing method of composit materials using injection molding powder
JPS6043461A (en) Boron nitride-base sintered body having high-density phase and its manufacture
CN110616357B (en) Carbonitride-based cermet and preparation process thereof
JPS613853A (en) Manufacture of sintered hard alloy
JPS62193731A (en) Manufacture of cutting tool made of cermet and having high wear-resistance
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS5914534B2 (en) Tough cermet with a softened surface layer
KR101410490B1 (en) Injection molding method using powder
JP3496135B2 (en) Hard alloy and method for producing the same
JPS58213842A (en) Manufacture of high strength cermet
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPS5915970B2 (en) Tough cermet with a softened surface layer
JPS60152650A (en) Sintered hard alloy having superior wear resistance and superior characteristic at high temperature and its manufacture
JPS5935644A (en) Manufacture of sintered hard material for cutting tool
JPS5928542A (en) Manufacture of sintered hard material for cutting tool
JPS58189345A (en) Manufacture of tough cermet
JPS6056781B2 (en) Cermets for cutting tools and hot working tools