JPS6184048A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPS6184048A
JPS6184048A JP20654284A JP20654284A JPS6184048A JP S6184048 A JPS6184048 A JP S6184048A JP 20654284 A JP20654284 A JP 20654284A JP 20654284 A JP20654284 A JP 20654284A JP S6184048 A JPS6184048 A JP S6184048A
Authority
JP
Japan
Prior art keywords
layer
electrode
capacity
potential
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20654284A
Other languages
Japanese (ja)
Inventor
Soichi Ito
伊藤 荘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20654284A priority Critical patent/JPS6184048A/en
Publication of JPS6184048A publication Critical patent/JPS6184048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To produce a capacity element with less parasitic capacity by a method wherein, in an IC with a capacity element provided with a reverse conductive layer on one conductive Si substrate, a region not impressed with any potential connected to a conductive system is arranged between one of a pair of electrodes of a capacity element and a substrate. CONSTITUTION:An N layer 3 on a P type substrate 1 is separated by a P layer 4 and then another P layer 5 and an N layer 6 as well as an insulating film 7 and an electrode 8 are provided to form a capacity C9 by another insulating film 13 between the N layer 6 and the electrode 8 while the N layer 6 is provided with another electrode 12. At this time, a capacity C8 between the layers 6 and 5 due to a depletion layer and another capacity C7 between the layer 3 and the substrate 1 are formed in series by the P layer 5 and the N layer 3 not impressed with any forcible external potential and the P type substrate 1 impressed with the lowest potential on circuit to reduce the paracitic capacity between the electrode 12 and the lowest potential on circuit. The potential of P layer 5 and N layer 3 in case the substrate 1 and the electrode 12 are impressed with any voltage may be decided by dividing the capacity of impressed voltage. Besides, a diode D formed between the layers 3 and 5 may be made conductive depending upon the potential difference in both layers 5, 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は集積回路装置に関し、特に容量素子を含む集積
回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated circuit device, and particularly to an integrated circuit device including a capacitive element.

(従来の技術) 従来より、集積回路装置には、電位安定化の九めに容量
素子が広く用いら几ている。こ九には、PN接合を逆バ
イアス状態で用いる接合容量形のものと、チップ面上に
2NfIVC積上げた電極の間に薄い絶縁膜を挾み込ん
だものとがあり、更にチップ面上の占積効率を良くする
ために、前記のものを複合し九タイプのものも用いられ
ている。これらの容量素子は、一般に、その電極部に寄
生容量を伴う。
(Prior Art) Conventionally, capacitive elements have been widely used in integrated circuit devices for potential stabilization. There are two types of these devices: a junction capacitor type that uses a PN junction in a reverse bias state, and a type that has a thin insulating film sandwiched between electrodes stacked with 2NfIVC on the chip surface. In order to improve the product efficiency, nine types of composites of the above are also used. These capacitive elements generally have parasitic capacitance in their electrode portions.

第7図(a) 、 (blは半導体装置の容量素子の一
例の模式的断面図及びその等価回路図である。
FIG. 7(a), (bl is a schematic cross-sectional view of an example of a capacitive element of a semiconductor device and its equivalent circuit diagram.

P型半導体基板11cN型埋込み層2.N型領域3、P
型分離層4.P型領域5.N型領域6.絶縁膜7.端子
9,10.11を設けたとき、図示するように、端子9
,10間で並列接続する接合容量C1,C2が得られ、
端子10と端子11との間には接合容量C3が得られる
、接合容量C3が寄生容量である。
P-type semiconductor substrate 11cN-type buried layer 2. N-type region 3, P
Mold separation layer 4. P-type region5. N-type region6. Insulating film 7. When terminals 9, 10 and 11 are provided, as shown in the figure, terminal 9
, 10 are connected in parallel, junction capacitances C1 and C2 are obtained,
Junction capacitance C3 is obtained between terminal 10 and terminal 11, and junction capacitance C3 is a parasitic capacitance.

通常、基板には、そのチップの回路の最低電位が与えら
几、従って寄生容量C3は、最低電位との間に形成され
る容量である。従って、回路上、最低電位との間に容量
を挿入したい時は、端子9゜11を最低電位とし、端子
10との間の容tit利用すルば、容tc11c2.C
3の並列接続になるので、面積効率の良い容量素子が得
られる。そして、従来より、電位安定化のために用いら
れてきた容量素子では、前述の如く容量素子に寄生する
容量Czf並列に加えることによって面積効率を良くし
てきている。
Usually, the lowest potential of the circuit of the chip is applied to the substrate, so the parasitic capacitance C3 is the capacitance formed between the substrate and the lowest potential. Therefore, if you want to insert a capacitor between the lowest potential in the circuit, set the terminal 9.11 to the lowest potential and use the capacitance between the terminal 10 and the capacitor tc11c2. C
Since 3 are connected in parallel, a capacitive element with good area efficiency can be obtained. In a capacitive element conventionally used for potential stabilization, area efficiency has been improved by adding a parasitic capacitance Czf to the capacitive element in parallel as described above.

しかしながら、−万では、寄生容量C3が付加すること
が逆に好ましくない場合もある。例えば、第8図に示す
T2L回路では、工〈知られているように、容tC<f
スピードアンプコンデンサトシて用いるが、この場合、
寄生容量C5は、入力容量と等価であり、動作速度を遅
くする方向に作用し、まに寄生容量C6は、出力トラン
ジスタQ1のベース電位v1の電位変化を妨げ、こ几も
また動作速度を遅くする。
However, at -10,000, it may not be desirable to add the parasitic capacitance C3. For example, in the T2L circuit shown in FIG. 8, the capacitance tC<f
A speed amplifier capacitor is used, but in this case,
The parasitic capacitance C5 is equivalent to the input capacitance and acts to slow down the operating speed, while the parasitic capacitance C6 prevents the change in the base potential v1 of the output transistor Q1, which also slows down the operating speed. do.

これら動作速[1−遅くする方向に作用する寄生容量の
大きさは、トラ/ラスタ等に伴われる寄生容量値に比し
て十分に小さければもとより大した問題はなく、従来の
、消費電力が犬きく、従って駆動イ/ピーダ/スが小さ
いTL回路に於ては特に入力容量と等価である寄生容@
C5をさほど問題にはしなかった。
The size of the parasitic capacitance that acts in the direction of slowing down these operating speeds is not a big problem as long as it is sufficiently small compared to the parasitic capacitance value associated with track/raster, etc., and conventional power consumption Parasitic capacitance, which is equivalent to the input capacitance, is especially important in TL circuits where the driving impedance is small and therefore the driving impedance is small.
I didn't have much of a problem with C5.

(発明が解決しようとする問題点) しかし、トラ/2スタ等の素子の小形化による低電力、
高速化に伴い、スピードアップコ/デ/すの容量値をさ
ほど犬きくしなくてもスピードアップの効果が得らnる
工うになる反面、寄生容量を相応に小さく抑えないと、
低電力化されているために駆動インビーダノスが高く、
その効果が得ら九ないという問題が起る。
(Problems to be solved by the invention) However, the reduction in power consumption due to the miniaturization of elements such as transformers/two stars, etc.
As speed increases, the speed-up effect can be obtained without increasing the capacitance of the speed-up CO/D/S too much, but on the other hand, unless the parasitic capacitance is kept small,
Drive efficiency is high due to low power consumption,
The problem arises that the effect is not obtained.

本発明の目的は、上記欠点を除去し、寄生容量が小さい
容量素子を有する集積回路装置を提供することにある。
An object of the present invention is to eliminate the above drawbacks and provide an integrated circuit device having a capacitive element with small parasitic capacitance.

(問題点を解決するための手段〉 本発明の集積回路装置は、−導電型半導体基板に少くと
も一つの反対導電型領域を設けて形成される容量素子を
有する集積回路装置において、前記容量素子の電極対の
少くとも一方の電極と前記半導体基板との間に、導電系
の接続による電位が印加されない領域が配置されている
ことを特徴として構成嘔れる。
(Means for Solving the Problems) An integrated circuit device of the present invention has a capacitive element formed by providing at least one region of an opposite conductivity type on a -conductivity type semiconductor substrate. The structure is characterized in that a region to which no potential is applied due to connection of a conductive system is arranged between at least one electrode of the electrode pair and the semiconductor substrate.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の第1の実施例の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a first embodiment of the present invention.

P型半導体基板1にN型領域3.P型分離層4゜P型領
域5.N型領域6.絶縁膜7.上層の電極8を設ける。
An N-type region 3. is formed on a P-type semiconductor substrate 1. P-type separation layer 4° P-type region 5. N-type region6. Insulating film 7. An upper layer electrode 8 is provided.

N型領域6と電極8との間の絶縁膜13によって容量C
9を形成する。N型領域6は電極12に引出される。こ
の時、外部から強制的に電位が加えられていないP型領
域5とN型領域3、及び回路上の最低電位が与えられる
P型半導体基板1の存在によII)、N型領域6とP型
領域5との間に空乏層による容量C8が形成され、また
N型領域3とP型半導体基板1との間にも空乏層による
容量C7が形成され、こ几らはN型領域3とP型半導体
基板1との間に直列に形成さルるのでその間の容量値、
すなわち電極12と回路上の最低電位間に寄生する容量
値を低減することができる。尚、P型半導体基板1と電
極12との間に電圧が印加された時のP型領域5及びN
型領域3の電位は、印加電圧の容量分割によって定まる
が、その容1c7.e11の値は″1友印加電圧に依存
する空乏層の大きさによって決まるので当該電圧値を求
めるのは一般に複雑である。また、P型領域5とN型領
域3との間にはPN接合ダイオードDが形成されており
、両領域の電位差に依存するイノビーダンスで相互に導
通している。
The capacitance C is increased by the insulating film 13 between the N-type region 6 and the electrode 8.
form 9. N-type region 6 is drawn out to electrode 12 . At this time, due to the existence of the P-type region 5 and the N-type region 3 to which no potential is forcibly applied from the outside, and the P-type semiconductor substrate 1 to which the lowest potential on the circuit is applied, the N-type region 6 and A capacitance C8 due to a depletion layer is formed between the N-type region 5 and the P-type semiconductor substrate 1, and a capacitance C7 due to a depletion layer is also formed between the N-type region 3 and the P-type semiconductor substrate 1. and the P-type semiconductor substrate 1, so the capacitance value between them is
That is, the parasitic capacitance value between the electrode 12 and the lowest potential on the circuit can be reduced. Note that when a voltage is applied between the P-type semiconductor substrate 1 and the electrode 12, the P-type region 5 and the N
The potential of the mold region 3 is determined by capacitance division of the applied voltage, and the capacitance 1c7. Since the value of e11 is determined by the size of the depletion layer which depends on the applied voltage, it is generally complicated to determine the voltage value.Furthermore, there is a PN junction between the P-type region 5 and the N-type region 3. A diode D is formed and conducts with each other with an innovidance depending on the potential difference between the two regions.

第2図は本発明の第2の実施例の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a second embodiment of the invention.

第2の実施例は、電極8の上に絶縁膜14を設けて容量
媒体とし、その上に電極15を設けて、電極8と電極1
5との間に容量C1Oを形成したものである。その他は
第1の実施例とほぼ同じである。
In the second embodiment, an insulating film 14 is provided on the electrode 8 to serve as a capacitive medium, an electrode 15 is provided on the insulating film 14, and the electrode 8 and the electrode 1
A capacitor C1O is formed between the capacitor 5 and the capacitor C1O. The rest is almost the same as the first embodiment.

この第2の実施例において、電極8とP型半導体基板1
との間の寄生容量は、接合容量C7,C[1と、絶縁膜
7が形成する容量C9との直列接続によって低減される
In this second embodiment, the electrode 8 and the P-type semiconductor substrate 1
The parasitic capacitance between the two is reduced by the series connection of the junction capacitance C7, C[1 and the capacitance C9 formed by the insulating film 7.

第3図は本発明の第3の実施例の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a third embodiment of the present invention.

この実施例は、第1の実施例におけるN型領域6とP型
領域5とを持たない構造である。容量C9と07とが直
列接続されるので電極12と半導体基板lとの間の寄生
容量は低減逼れる。上記第2゜第3の実施例の両方にお
いて、N型領域3,6゜P型領域5は外部から強制的に
電位が加えられていない領域であることは言うまでもな
い。尚、第2図の第2の実施例のダイオードDは第1図
のダイオードDで説明したのと同様である。
This embodiment has a structure that does not have the N-type region 6 and P-type region 5 in the first embodiment. Since the capacitors C9 and 07 are connected in series, the parasitic capacitance between the electrode 12 and the semiconductor substrate l is reduced. It goes without saying that in both of the second and third embodiments, the N-type regions 3, 6 and P-type regions 5 are regions to which no potential is forcibly applied from the outside. Note that the diode D in the second embodiment shown in FIG. 2 is the same as that described for the diode D in FIG. 1.

第4図は本発明の第4の実施例の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a fourth embodiment of the present invention.

この実施例は、アイソプレーナ構造の場合を示すもので
、電極26と電極28との間の絶縁膜27を容量媒体と
して容flc1sを形成し、電極26は電極29に引出
される。この構造において、絶縁膜25は第1図、第2
図に示した絶縁膜13,7エりも通常厚く、従って同郷
が形成する寄生容量成分014はかなり不妊い。このた
めその下のN型領域22及びP型半導体基板21との間
に形成される接合容t013との直列接続で決まる、電
極29とP型半導体基板21との間の寄生容量は、大幅
に小さくすることができる。尚、この実施例に於てもN
型領域22は、外部から強制的に電位が加えらnでおら
ず、まt同領域はその両側に示すN型領域24と同一工
程で形成されるものである。
This embodiment shows the case of an isoplanar structure, in which a capacitance flc1s is formed using an insulating film 27 between an electrode 26 and an electrode 28 as a capacitance medium, and the electrode 26 is led out to an electrode 29. In this structure, the insulating film 25 is
The insulating films 13 and 7 shown in the figure are also usually thick, and therefore the parasitic capacitance component 014 formed by the same layer is quite infertile. Therefore, the parasitic capacitance between the electrode 29 and the P-type semiconductor substrate 21, which is determined by the series connection with the junction capacitance t013 formed between the N-type region 22 and the P-type semiconductor substrate 21 below, is significantly reduced. Can be made smaller. Furthermore, in this example, N
The type region 22 is not forcibly applied with an external potential, and is formed in the same process as the N type regions 24 shown on both sides thereof.

更に、上述した如く絶縁膜25は厚いので、特にN型領
域22を省き、同領域がP型半導体基板21そのもので
あっても電極29とP型半導体基板21との間の寄生容
量削減効果は大きい。
Furthermore, since the insulating film 25 is thick as described above, even if the N-type region 22 is omitted and the same region is the P-type semiconductor substrate 21 itself, the effect of reducing the parasitic capacitance between the electrode 29 and the P-type semiconductor substrate 21 is big.

第5図は本発明の第5の実施例の模式的断面図である。FIG. 5 is a schematic cross-sectional view of a fifth embodiment of the present invention.

この実施例は、第4図の絶縁膜25とほぼ同等の厚さの
絶縁膜45t−有するものであるが、絶縁膜45の形成
方法が異なっており、またN型領域42はエピタキシャ
ル層であり、それに隣接するN型領域44はN型領域4
2エリも高7塁度のN型不純物を有する領域である。そ
れ以外の本発明に係わる本質的な機能は第4図のものと
同等である。
This embodiment has an insulating film 45t- which is approximately the same thickness as the insulating film 25 in FIG. 4, but the method of forming the insulating film 45 is different, and the N-type region 42 is an epitaxial layer. , the N-type region 44 adjacent thereto is the N-type region 4
The second area is also a region containing N-type impurities with a high degree of 7th base. Other essential functions of the present invention are the same as those in FIG. 4.

すなわち第5図の41.46,47,48.49は、そ
れぞnそ几から20を引いた第4図の21゜26.27
,28.29に対応し、第4図の実施例と同様、電極4
9とP型半導体基板41間に形成される寄生8W’rを
大幅に小さくすることができる。
In other words, 41.46, 47, and 48.49 in Figure 5 are 21°26.27 in Figure 4, which is obtained by subtracting 20 from the n solution.
, 28, 29, and similar to the embodiment of FIG. 4, the electrode 4
The parasitic 8W'r formed between the P-type semiconductor substrate 9 and the P-type semiconductor substrate 41 can be significantly reduced.

尚、以上の第2図〜第5図に於て説明した、外部から強
制的1c電位が加えられない領域の電位は、いづ扛も詳
生容惜として作用するとき、その寄生容量両端の電圧の
容量分割にて定まることは言うまでもない。
Furthermore, as explained in Figures 2 to 5 above, the potential in the area where the forced 1C potential is not applied from the outside is the voltage across the parasitic capacitance when the capacitance acts as a capacitance. Needless to say, it is determined by the capacity division.

さて、以上では、本発明による容lを形成する′r11
mの一端と対半導体基板間に形成される寄生容度低減効
果を諸実流側で述べてキ友が、本発明のもう一つの特徴
は、もう−万〇省極とその上層配線との間に形成される
寄生容量削減のための方法を同時に提供することである
。すなわち多層配線で形成される集積回路テップに於て
、第1図の電極8,12.第2図の電極15,12.第
4図の電極28,29.第5図の電極48.49の上部
に、当該電極と同電位でない配線を設置しないか、又は
設置する場合、当該各電極の上層配線層のうち、1層を
隔てfc2層目以上の配線層にてそれを行うことにより
、上層配線との間に形成さnる寄生容量を低減すること
ができる。
Now, in the above, 'r11 forming the volume l according to the present invention
Another feature of the present invention is the reduction in parasitic capacitance formed between one end of the semiconductor substrate and the semiconductor substrate. Another object of the present invention is to simultaneously provide a method for reducing parasitic capacitance formed between the two. That is, in an integrated circuit chip formed of multilayer wiring, the electrodes 8, 12 . Electrodes 15, 12 in FIG. Electrodes 28, 29 in FIG. Above the electrodes 48 and 49 in Fig. 5, do not install wiring that does not have the same potential as the electrode, or if it is installed, the fc second or higher wiring layer is separated by one layer among the upper wiring layers of each electrode. By doing so, it is possible to reduce the parasitic capacitance formed between the upper layer wiring and the upper layer wiring.

第6図は本発明の第6の実施例の模式的断面図である。FIG. 6 is a schematic cross-sectional view of a sixth embodiment of the present invention.

この実施例は第4図に示す第4の実施例の構造に上述の
寄生容量低減の構造を加えたものである。
This embodiment is obtained by adding the above-described parasitic capacitance reduction structure to the structure of the fourth embodiment shown in FIG.

電極28′を電極28と同一層に同じ材料で形成し、そ
の上に絶縁膜35を形成する。絶縁膜35に開孔を設け
て、上層第1層目配線36f!:設け、電極28.28
’と接続する。更に、その上に絶縁膜37を設けて開孔
し、上層第2層目配線38゜38′を形成する。配線3
8′は上層第1層目配線36と接続する。−万、配線3
8は、容量を形成する電極28の上部’に!い、従って
、そnらの間に寄生容量C16が伴わルるが、同容歇の
媒体は層間絶縁膜35.及び37の2層!S造になって
おり、従って蚕生容黴C16を小ぜく抑えている。同媒
体部絶縁膜層が、更に上層間絶縁膜t?積むことで厚く
なれば更にそれだけ寄生容量が不埒くなることは明白で
あり、又、上層第2層目配線38゜あるいは更にその上
層の配線が電極28.29上を覆っていなければ、実質
的に容量C16が消滅することも明らかである。
The electrode 28' is formed in the same layer and of the same material as the electrode 28, and the insulating film 35 is formed thereon. An opening is provided in the insulating film 35, and the upper first layer wiring 36f! : Provided, electrode 28.28
Connect with '. Furthermore, an insulating film 37 is provided thereon and holes are formed to form upper second layer interconnections 38° and 38'. Wiring 3
8' is connected to the upper first layer wiring 36. - 10,000, wiring 3
8 is at the top of the electrode 28 that forms the capacitor! Therefore, a parasitic capacitance C16 is involved between them, but the same medium has an interlayer insulating film 35. And 37 2 layers! It is made of S construction, which suppresses silkworm C16 mold. The same medium part insulating film layer is further provided with an upper interlayer insulating film t? It is obvious that the parasitic capacitance becomes worse as the thickness increases due to stacking, and if the upper layer second layer wiring 38° or the wiring further above it does not cover the electrodes 28 and 29, It is also clear that the capacitance C16 disappears.

(発明の効果) 以上説明したように、本発明によれば、寄生容量の小路
い容量素子が得られ、集積回路に於て従来以上に容量素
子の適用範囲を広めることができる効果が得らnる。
(Effects of the Invention) As explained above, according to the present invention, a capacitive element with a small parasitic capacitance can be obtained, and the range of application of capacitive elements in integrated circuits can be expanded more than ever before. nru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明の第1乃至第6の実施例の模
式的断面図、第7図(a) 、 fb)は従来の半導体
装置の容量素子の一例の模式的断面図及びその等価回路
図、第8図は従来のTL 回路の一例の回路図である。 1・・・・・・P型半導体基板、2・・・・・・N型埋
込み層、3・・・・・・N型領域、4・・・・・・P型
分離層、5・・・・・・P型領域へ 6・・・・・・N
型領域、7・・・・・・絶縁膜、8・・・・・・電極、
9,10.11・・・・・・端子、12・・・・・・電
極、13゜14・・・・・・絶縁膜、15・・・・・・
電極、21・・・・・・P型半導体基板、22・・・・
・・N型領域、24・・・・・・N型領域、25・・・
・・・絶縁膜、26・・・・・・電極、27・・・・・
・絶縁膜、28.28’  、29・・・・・・電極、
35.36・・・・・・上層第1層目配線、37・・・
・・・絶縁膜、38.38’・・・・・・上層第2層目
配線、41・・・・・・P型半導体基板、42・・・・
・・N型領域、44・・・・・・N型領域、45・・・
・・・絶縁膜、46・・・・・・電極、47・・・・・
・絶縁膜、48゜49・・・・・・電極、01〜C16
・・・・・・容量、D・・・・・・ダイオード。 第1図 竿zTif 年3田 ¥4図 栢左旧 卆 2 列
1 to 6 are schematic sectional views of first to sixth embodiments of the present invention, and FIGS. 7(a) and 7(fb) are schematic sectional views of an example of a capacitive element of a conventional semiconductor device. Its equivalent circuit diagram, FIG. 8, is a circuit diagram of an example of a conventional TL circuit. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... N-type buried layer, 3... N-type region, 4... P-type isolation layer, 5... ...to P-type region 6...N
mold region, 7... insulating film, 8... electrode,
9,10.11...terminal, 12...electrode, 13°14...insulating film, 15...
Electrode, 21... P-type semiconductor substrate, 22...
...N-type region, 24...N-type region, 25...
...Insulating film, 26...Electrode, 27...
・Insulating film, 28.28', 29... Electrode,
35.36... Upper layer first layer wiring, 37...
... Insulating film, 38.38' ... Upper second layer wiring, 41 ... P-type semiconductor substrate, 42 ...
...N-type region, 44...N-type region, 45...
...Insulating film, 46...Electrode, 47...
・Insulating film, 48°49... Electrode, 01~C16
...Capacity, D...Diode. Figure 1 Rod zTif Year 3 fields ¥ 4 Figure left old book 2 rows

Claims (2)

【特許請求の範囲】[Claims] (1)一導通型半導体基板に少くとも一つの反対導電型
領域を設けて形成される容量素子を有する集積回路装置
において、前記容量素子の電極対の少くとも一方の電極
と前記半導体基板との間に、導電系の接続による電位が
印加されない領域が配置されていることを特徴とする集
積回路装置。
(1) In an integrated circuit device having a capacitive element formed by providing at least one region of an opposite conductivity type on a semiconductor substrate of one conductivity type, at least one electrode of a pair of electrodes of the capacitive element and the semiconductor substrate An integrated circuit device characterized in that a region to which no potential is applied due to conductive connections is arranged in between.
(2)容量素子の電極の上層に該電極の上層第1層目配
線が存在しない特許請求の範囲第(1)項記載の集積回
路装置。
(2) The integrated circuit device according to claim (1), in which there is no first layer wiring above the electrode of the capacitive element.
JP20654284A 1984-10-02 1984-10-02 Integrated circuit device Pending JPS6184048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20654284A JPS6184048A (en) 1984-10-02 1984-10-02 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20654284A JPS6184048A (en) 1984-10-02 1984-10-02 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6184048A true JPS6184048A (en) 1986-04-28

Family

ID=16525101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20654284A Pending JPS6184048A (en) 1984-10-02 1984-10-02 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6184048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557428B2 (en) 2005-01-18 2009-07-07 Kawasaki Microelectronics, Inc. Semiconductor integrated circuit having a reduced parasitic capacitance and short start-up time
CN101866919A (en) * 2009-04-15 2010-10-20 中国台湾积体电路制造股份有限公司 Integrated circuit structure
JP2013546237A (en) * 2010-10-15 2013-12-26 ザイリンクス インコーポレイテッド Tunable resonant circuit in integrated circuits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557428B2 (en) 2005-01-18 2009-07-07 Kawasaki Microelectronics, Inc. Semiconductor integrated circuit having a reduced parasitic capacitance and short start-up time
CN101866919A (en) * 2009-04-15 2010-10-20 中国台湾积体电路制造股份有限公司 Integrated circuit structure
JP2013546237A (en) * 2010-10-15 2013-12-26 ザイリンクス インコーポレイテッド Tunable resonant circuit in integrated circuits

Similar Documents

Publication Publication Date Title
JP3057661B2 (en) Semiconductor device
US11908799B2 (en) Semiconductor integrated circuit device
TWI246096B (en) Decoupling capacitor design
US11894303B2 (en) Circuit wiring techniques for stacked transistor structures
JPS63170971A (en) Semiconductor device
JPS5994849A (en) Semiconductor integrated circuit device
US20210366902A1 (en) Semiconductor integrated circuit device
KR860003666A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS6184048A (en) Integrated circuit device
JP2001036073A (en) Semiconductor integrated circuit
CN100446254C (en) Semiconductor capacity
JPH10256395A (en) Layout structure of semiconductor storage device
KR930015014A (en) Semiconductor memory device and its manufacturing method
JPS63204655A (en) Mis transistor
KR100230117B1 (en) Silicon on insulator master slice semiconductor integrated circuit
JPH04320063A (en) Thin film transistor
US20220415885A1 (en) Semiconductor integrated circuit device
JPH02126665A (en) Semiconductor device
JP5401056B2 (en) Semiconductor device
JPH0787219B2 (en) Semiconductor memory device
JPH09246476A (en) Power supply lines and method of planning layout of them in semiconductor integrated circuit
JPH02240958A (en) Semiconductor integrated circuit device
JPH03138962A (en) Semiconductor integrated circuit
US7157752B2 (en) Semiconductor device
JPS58151052A (en) Mos type semiconductor device