JPS6183962A - Ultrasonic flaw detection of centrifugally cast pipe - Google Patents

Ultrasonic flaw detection of centrifugally cast pipe

Info

Publication number
JPS6183962A
JPS6183962A JP59206858A JP20685884A JPS6183962A JP S6183962 A JPS6183962 A JP S6183962A JP 59206858 A JP59206858 A JP 59206858A JP 20685884 A JP20685884 A JP 20685884A JP S6183962 A JPS6183962 A JP S6183962A
Authority
JP
Japan
Prior art keywords
flaw detection
wave
divided
centrifugally cast
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59206858A
Other languages
Japanese (ja)
Inventor
Masanaga Iwasaki
岩崎 全長
Sadao Kawashima
貞夫 河島
Yoshiichi Mori
森 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59206858A priority Critical patent/JPS6183962A/en
Publication of JPS6183962A publication Critical patent/JPS6183962A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the flaw detection of an internal flaw, by using a probe having a wide band frequency characteristic and subjecting the entire periphery of a centrifugally cast pipe to ultrasonic flaw detection by a longitudinal wave regular reflection method. CONSTITUTION:By using a longitudinal wave in the flaw detection of a centrifugally cast pipe 3A, an ultrasonic wave id regularly reflected at a flaw part 5 and received by a receiving probes 1a or 1B. However, because the longitudinal wave is used, the reflected wave 2 or 2' having flaw information is transmitted to the receiving probe 1a or 1B at first and forest like beam due to the scattered wave of a crystal grain boundary or traverse wave receiving mode conversion at the time of reflection reaches the receiving probe 1A or 1B so as to be delayed from the reflected wave 2 or 2'. Hereupon, a gate is provided in the vicinity of the time, which is calculated by dividing an ultrasonic beam distance by the speed of the longitudinal wave, to easily obtain flaw information.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水蒸気接触改質用加熱管等の遠心鋳造管の経
年変化により発生する内部欠陥、生として周方向の欠陥
の検出に有効となり得る超音#R傷による非破壊検査方
法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is effective in detecting internal defects, such as defects in the circumferential direction, that occur due to aging in centrifugally cast tubes such as heating tubes for steam catalytic reforming. This invention relates to a non-destructive inspection method using ultrasonic #R scratches.

この種水蒸気接触改質用加熱管は主に遠心鋳造によV製
作されたax −40(0,4096C12596Or
This type of heating tube for steam catalytic reforming is mainly manufactured by centrifugal casting.
.

20%Ni系)材等のオーステナイト系耐熱鋳鋼管を複
数本溶接接続して組立てられている。この加熱管は使用
状態では触媒が充填さt′L友管内管内部タン等のガス
と高圧水蒸気が圧送さルるとともに管外部からの加熱に
より管内部は高温高圧下にさらされる。この丸め加熱管
は使用期間の経過につれフーグ応力によるクリープフィ
ッシャーが管内部より外面に向って数対状に進展する傾
向がめり、また管内外の温度差(外熱内冷)に起因して
管内面の円周方向に欠陥を発生する怖れがるる。従って
上記加熱管の経年変化を把握し茂存痔命を推定すること
#in業安定上不可欠の事柄でるる。
It is assembled by welding and connecting multiple austenitic heat-resistant cast steel pipes such as 20% Ni based material. When this heating tube is in use, it is filled with a catalyst, and gas and high-pressure steam are fed under pressure from the inside of the tube, and the inside of the tube is exposed to high temperature and high pressure due to heating from the outside of the tube. As this rounded heating tube is used, creep fissures due to Hoog stress tend to develop in pairs from the inside of the tube toward the outside surface. There is a fear that defects may occur in the circumferential direction of the surface. Therefore, it is essential to understand the aging of the heating tube and estimate the risk of hemorrhoids existing in order to stabilize the industry.

(従来の技術〕 遠心鋳造管からなるこの種加熱管の非破壊検査として#
:を放射線透過検査と超音波探傷とがある。しかし放射
線透過検査は、放射線の進行方向にある程度以上の厚さ
、一般的には板厚の1%程度以上のwLさと放射線の進
行方向に対して直角方向の拡がりを持つ几欠陥でないと
検出さfLm<、それ以外の欠陥、例えばワレ状欠陥の
ような場合は検出できず、検出精度が悪い@超音波探傷
は一般に鉄鋼材料の内部欠陥に対する非破壊検査方法と
して有効であり、広く釣用されている。探傷法として、
パルス反射法、透過法、共振法などがあり、また探触子
を1個便用するもの、2個使用するもの、さらに超音波
を被検体に投入する方向Th垂直あるい#:tfI4−
角とする方法などが知られており、各種被検体の形状、
欠陥の極類その他により適宜選択便用される@ しかし本発明対象の遠心鋳造管は一般鍛圧鋼材や炭素鋼
鋳鏑材に比し超音波の減衰が大きいこと、ik結晶心大
で粒界反射による林状エフ゛−が出やすい丸め波形が複
雑となることなどに起因して、通常の超音波探傷法を遠
心鋳造管に適用することは非常に困難で6つ丸。例えば
、1探触子のパルス反射法による探傷法は結晶粒界等に
より林状エコーが生じ欠陥エコーと林状エフ−との区別
がつき難く、ま几送信パルス幅をるる程度より狭くする
ことが困難であり、従つて探傷面に近い欠陥を検出で1
!ない欠点がある。
(Prior art) As a non-destructive inspection of this type of heating tube made of centrifugally cast tube, #
:There are radiographic inspection and ultrasonic flaw detection. However, radiographic inspection can detect defects only if they have a wL of more than a certain thickness in the direction of radiation propagation, generally about 1% or more of the plate thickness, and extend perpendicular to the direction of radiation propagation. fLm<, other defects, such as crack-like defects, cannot be detected and the detection accuracy is poor.@Ultrasonic flaw detection is generally effective as a non-destructive inspection method for internal defects in steel materials, and is widely used. ing. As a flaw detection method,
There are pulse reflection methods, transmission methods, resonance methods, etc., and methods that use one or two probes, and the direction in which the ultrasound is applied to the subject: vertical or #:tfI4-
Methods such as making corners are known, and the shape of various objects,
Selection can be made as appropriate depending on the polarity of defects, etc.@ However, the centrifugally cast pipes targeted by the present invention have greater attenuation of ultrasonic waves than general forged pressed steel materials or carbon steel cast iron materials, and grain boundary reflection due to the large size of the ik crystal core. It is extremely difficult to apply the normal ultrasonic flaw detection method to centrifugally cast pipes due to the complex rounded waveforms that tend to produce forest-like effects. For example, in flaw detection using the pulse reflection method using a single probe, forest-like echoes occur due to grain boundaries, etc., making it difficult to distinguish between defective echoes and forest-like F-. Therefore, it is difficult to detect defects close to the detection surface.
! There are no drawbacks.

t72.透過法は、直接欠陥エコー’eM象とせず、減
衰の状態から欠陥の状llAt−推定する方法であり、
欠陥による超音波の減衰1を測定する。ただし、この場
合その位置での母材の減衰Iを知っておく必要があり、
母材の結晶粒が粗大で超音波の減衰が大きい遠心鋳造管
では確実性に欠ける方法である。
t72. The transmission method is a method of estimating the state of the defect from the state of attenuation, without directly considering the defect echo'eM.
Measure the ultrasonic attenuation 1 due to the defect. However, in this case, it is necessary to know the attenuation I of the base material at that position.
This is an unreliable method for centrifugally cast tubes, where the crystal grains of the base material are coarse and the ultrasonic waves are attenuated greatly.

(発明が解決しようとする時題点) 本発明は、前記性状の遠心鋳造管に対する非破壊検査に
ついての従来技術の諸問題を克服し、その内部欠陥の探
傷、主に周方向の欠陥に有効となり得る超音波探傷法を
提唱することを目的とする。
(Problems to be Solved by the Invention) The present invention overcomes the problems of the prior art regarding non-destructive testing of centrifugally cast pipes with the above properties, and is effective for detecting internal defects, mainly defects in the circumferential direction. The purpose of this study is to propose a possible ultrasonic flaw detection method.

(問題点を解決するための手段、作用および実施例〕 本発明は、超音波探傷の測定段階とその測定信号に対す
る特定の信号処理段階との関連により成立つ。
(Means for Solving the Problems, Effects, and Embodiments) The present invention is realized by the relationship between the measurement step of ultrasonic flaw detection and a specific signal processing step for the measurement signal.

すなわち(1)測定段階では、広帯域のj!i波故波性
特性つ探触子を使用し縦波正反射法により遠心鋳造管の
全周にわtり超音波探傷を行い探傷エコーを得る。帯域
幅は後述1段階の分割を可能とする充分な幅とする。
That is, (1) in the measurement stage, wideband j! Ultrasonic flaw detection is performed around the entire circumference of the centrifugally cast tube using a longitudinal wave specular reflection method using a probe with i-wave decay characteristics to obtain flaw detection echoes. The bandwidth is set to be sufficient to enable one stage of division as described below.

そして(IJ信号処理段階では次の手法を採用するO (〜 前記探傷エコーt−A/D変換素子でディジタル
値に変換する。
Then, in the IJ signal processing stage, the following method is adopted.

(b)  次に、この信号t−フーリエ変換し、周波数
w4坂に変換する。例えば信号の周i&帯域が中心円I
E&f・、帯域Bとし、周波数軸上で一定の帯域幅でm
個に分割するとし、分割範囲は(1−a) f * <
 f < (1+a) f* (ここにa=0.7〜0
.8)で分割した個々の中心周技致の差ムfが0.01
 f・くムf’(Q、if・、個々の帯域幅す轡が5ム
fりb・り20Δfの間にとるとよい。
(b) Next, this signal is subjected to t-Fourier transform and converted to a frequency w4 slope. For example, the signal circumference i & band is the center circle I
E&f・, band B, m with a constant bandwidth on the frequency axis
The division range is (1-a) f * <
f < (1+a) f* (here a=0.7~0
.. 8) The difference f between the individual center circumferential techniques divided by 0.01
f.times.f' (Q, if..). It is preferable that the individual bandwidths be between 5 mm and b.times.20 Δf.

CO)  分割した個々の周波数帯域で逆変換し、時間
軸に戻す。これらによって得らf’L 7’l−m個の
波形を各々2乗する。そして時間軸の各時間毎に麗個の
波形を比較し、最も小さい出力をその時間での出力とす
る。
CO) Inversely transform each divided frequency band and return to the time axis. The f'L 7'l-m waveforms obtained by these are each squared. Then, the multiple waveforms are compared for each time on the time axis, and the smallest output is taken as the output at that time.

(由 上記出力のうち、しきい値を越えているものを欠
陥とみなす。
(Reason) Among the above outputs, those exceeding the threshold are considered defects.

以下2本発明を具体例を伴わせて詳細に説明する。The following two aspects of the present invention will be described in detail with reference to specific examples.

一般に、超音波の縦波を用いて欠陥St−探傷する場合
、第9図け)のように、探触子(1)からの超音& (
2)を被検体(3)の底Ifi部(4)で一度反射させ
欠陥部(5)でさらに反射させ返ってくる超音mを探触
子(1)に受信するのが普通である。
Generally, when detecting defects St using longitudinal waves of ultrasonic waves, ultrasonic waves from the probe (1) & (
2) is reflected once at the bottom Ifi portion (4) of the object (3), further reflected at the defective portion (5), and the returned ultrasonic sound m is normally received by the probe (1).

第9図−)のように超fiの方向を逆にしても同じであ
る。第9図e→は縦波についての入射角(ロ)に対する
2回の音圧反射率との関係を示し、第9図に)は横波に
ついての同様関係を示す。この場合、底面部と欠陥部と
の2回の反射でエネルギー損失が大きく、−!上底面で
の反射の際モード変換して縦波の一部が横波になりエネ
ルギーの損失を生ずることが起り、九だでさえ減衰の大
きい遠心鋳造管では欠陥を検出することは困難でるる。
The same result can be obtained even if the direction of the super fi is reversed as shown in Fig. 9-). FIG. 9e→ shows the relationship between the two sound pressure reflectances and the incident angle (b) for longitudinal waves, and FIG. 9) shows the same relationship for transverse waves. In this case, energy loss is large due to two reflections at the bottom and the defect, and -! When reflected at the top surface, a part of the longitudinal wave becomes a transverse wave due to mode conversion, resulting in loss of energy, making it difficult to detect defects in centrifugally cast tubes with large attenuation.

これに対し、本発明では、第1図ば)および(ロ)に示
すように、被検体(5A)が管であることを利用し、1
つの探触子(1A)で欠陥(5)に超音#l (りを当
てその正反射(2)t−もう1つの探触子(1B)で受
信する配置構成とする。・このことでエネルギーの損失
を少くすることができる。
On the other hand, in the present invention, as shown in FIGS.
One probe (1A) emits ultrasonic sound #1 to the defect (5), and its specular reflection (2) is received by the other probe (1B). Energy loss can be reduced.

次に、本発明では、縦fIL″f:使用することから次
の事が可能となる。
Next, in the present invention, by using the vertical fIL″f:, the following becomes possible.

ナなわら、欠陥(5)がある場合、超音波は欠陥部で正
反射し受信探触子(IB)で受信されるが、縦波を使用
している丸め、欠陥着報1に持つ九反射波(2)が一番
最初に受信探触子(1B)に伝わり、結晶粒界等の飲乱
波あるいは反射時モード変換しZat技等による林状エ
コーはそれより遅れることになる。そこで超音波ビーム
路程を縦波の速度で別って哀めm時間の近傍のダートを
かけてお、くと、欠陥清報t−持つt出力を得ることが
可能となる。
However, when there is a defect (5), the ultrasonic wave is specularly reflected at the defect and received by the receiving probe (IB). The reflected wave (2) is transmitted to the receiving probe (1B) first, and the forest-like echoes due to disturbance waves such as grain boundaries or mode conversion at the time of reflection, such as the Zat technique, are delayed. Therefore, by dividing the ultrasonic beam path by the velocity of the longitudinal wave and applying darts in the vicinity of m time, it becomes possible to obtain an output of t with defect information t-.

探触子CIA)(IB)の配置は想定する欠陥ff (
5)に対し、超音波ビーム路程が可能な限り短かいこと
が減衰の点から有利であることは言うまでもない。しか
し現実には、管の溶接部周辺に機械加工の段付部(テー
バS)があるという幾何学的制約がるり、まt第2図に
示すように2つの探触子CIA)(1B)を想定した欠
陥(5)位置に対しあまり近すけ過ぎると、超音波ビー
ム(2)が円周方向に近づくため、送信探触子(1A)
からの送信波の−fEJ (2)が欠陥で正反射せずと
も直接受信探触子(1B)に入射しS/IN t?低下
させることから、探触子配置に限界がある。実検による
と、第1図(4)17)図中記号テ、Lt = 15−
40g 、  Lx = 15−40 ” %L=L 
I+ L x = 50〜80 ” %W = 50−
100曙の範囲で艮好なS/Nが得ら九る。
The arrangement of the probe CIA) (IB) is based on the expected defect ff (
5), it goes without saying that it is advantageous in terms of attenuation for the ultrasonic beam path to be as short as possible. However, in reality, there is a geometrical constraint that there is a machined stepped part (Taber S) around the welded part of the tube, and two probes (CIA) (1B) are used as shown in Figure 2. If the position is too close to the assumed defect (5) position, the ultrasonic beam (2) will approach in the circumferential direction, causing the transmitting probe (1A)
-fEJ (2) of the transmitted wave from S/IN t? directly enters the receiving probe (1B) without being specularly reflected due to a defect. There are limits to probe placement because of the According to the actual inspection, Fig. 1 (4) 17) Symbol Te in the figure, Lt = 15-
40g, Lx = 15-40”%L=L
I+Lx=50~80''%W=50-
Excellent S/N can be obtained within a range of 100 degrees.

またビームの太さt−、音響レンズで絞ることにより管
壁等で反射される正体不明のエコーの発生を少なくする
Furthermore, by adjusting the beam thickness t- and narrowing it down with an acoustic lens, the generation of unidentified echoes reflected from tube walls, etc., is reduced.

身上の探触子配置および関連配備によって遠心鋳造管を
探傷して得m探傷波形の一例を第6図に示す。こtl−
は、仮検体として管周180の位置に肉jJ (t)の
1/2の深さの人工欠陥を設けt遠心鋳造管の試験片を
使用し、単−周波数で゛探傷し丸もので横軸には管の円
周方向の角度をと9縦軸には反射波のダートをかけた範
囲内のピーク値の電圧を反射強度としてプロットし几も
ので、ある。この探傷波形でも欠陥らしきものが得らn
ているが、欠陥信号、パッククランドノイズともに場所
により振幅が大きくBlM ti略々1の程度である。
FIG. 6 shows an example of a flaw detection waveform obtained by flaw detection of a centrifugally cast tube using the probe arrangement on the body and related arrangements. Kotl-
As a temporary specimen, an artificial defect with a depth of 1/2 of the wall jJ (t) was created at a position of 180 mm around the tube circumference, and a specimen of a centrifugally cast tube was used. The angle in the circumferential direction of the tube is plotted on the axis, and the voltage at the peak value within the range multiplied by the reflected wave dart is plotted on the vertical axis as the reflected intensity. Even with this flaw detection waveform, something that looks like a defect was obtained.
However, both the defect signal and the packed noise have large amplitudes depending on the location, and are approximately equal to BlM ti of 1.

従ってこのままでは前記性状の遠心鋳造管の欠陥検出法
としては充分に確実なものとするに足りない。
Therefore, as it stands, it is insufficient to be a sufficiently reliable method for detecting defects in centrifugally cast tubes having the above properties.

第4図は、本発明方法t−測定段階、信号処理段階を通
じてグロック図的に示すものである。
FIG. 4 is a block diagram showing the t-measurement step and signal processing step of the method of the present invention.

第4図において、(1〕では広帯域の同波数帯域を持つ
探触子を採用し、上記正反射法により遠心鋳造管からな
る被検体を探傷する。
In FIG. 4, in (1), a probe with a broadband same wave number band is employed, and a test object made of a centrifugally cast tube is flaw-detected by the specular reflection method described above.

(1−a)では、探傷エコー t−A/D 9f、 換
R子テデイジタル値に変換する。
In (1-a), the flaw detection echo t-A/D 9f is converted into a digital value.

第5図は横軸の測定範囲と縦軸の振幅との関係で示す探
傷エコー信号ディジタル値のW、波形である。
FIG. 5 shows the waveform of the flaw detection echo signal digital value W shown in the relationship between the measurement range on the horizontal axis and the amplitude on the vertical axis.

CM−b)では、この信号をフーリエ変換し、周波敗饋
域に変換する。この場合、第6図全参照して、信号の周
波数帯域が中心周波& f s、帯域幅Bであるとする
。そしてこf′Lヲ図示のように周波数柵上で一定の帯
#、幅でm個に分割するにつき、例えば1分割範囲は(
1−a) f o (f< (1+a ) f+ (こ
こにa = 0.7 ” 0.8 )で公印Jした個々
の中心周波数の差Δfが肌01f・くムf<0−1fs
、個々の分割帯域b@が5Δf (、be r 20a
fの間にと9、広帯域受信信号がm個の分割スペクトラ
ムの個別の信号にすらさ九るようにする。
In CM-b), this signal is Fourier transformed and converted into a frequency loss region. In this case, with full reference to FIG. 6, it is assumed that the frequency band of the signal is the center frequency &fs and the bandwidth B. When f'L is divided into m pieces with a certain band # and width on the frequency fence as shown in the figure, for example, one division range is (
1-a) f o (f < (1+a) f+ (here a = 0.7 ” 0.8) The difference Δf of the individual center frequencies marked with the official seal is skin 01f・kum f<0-1fs
, each subband b@ is 5Δf (, be r 20a
Between f and 9, the broadband received signal is evenly divided into m separate signals of the spectrum.

第7図「)は分割帯域の中−心向波数fk z 4.6
4MHz分割帯域幅be =500KHzの波形を例示
し、第7図(ロ)は中心IN!il技& fk = 5
.86 MHz 、同分割帯域幅の波形を例示し几もの
であるが、人工欠陥エコーに較べて粒界エコーが著しく
変化していることが知られる。
Figure 7 ") is the center-directed wave number fk z 4.6 of the divided band.
A waveform with a 4 MHz divided bandwidth be = 500 KHz is illustrated, and FIG. 7 (b) shows the center IN! il technique & fk = 5
.. Although the waveform of 86 MHz and the same division bandwidth is shown as an example, it is known that the grain boundary echo is significantly changed compared to the artificial defect echo.

(1−C)ではm分割した個々の周波数帯域で各波形を
逆変換しそ几らを時11(+@に戻す〇(1−C’)で
これらによって得らnたm個の波形を各々2乗する。そ
して(1−c)で時間軸の各時間毎にm個の波形を比較
し、最も小さ1ミ”出力をその時間での出力とする。第
4図は以上のデータ信号の変換処理および算法処理を経
て得几各時間区間の最小値を重ね合せて得几最終出力波
形を示す。
In (1-C), each waveform is inversely transformed in each frequency band divided into m, and then returned to 11 (+@).In (1-C'), each of the n and m waveforms obtained by Then, in (1-c), m waveforms are compared for each time on the time axis, and the smallest 1" output is taken as the output at that time. Figure 4 shows the above data signal. The minimum value of each time interval obtained through the conversion process and algorithm process is superimposed to show the final output waveform.

こうして(1−d)で上記出力のうち、しきい値を越え
ているものを欠陥とみなす。
In this way, in (1-d), among the above outputs, those exceeding the threshold are regarded as defects.

本発明方法は上記(υ(1)の過程にさらに付加的処理
(りを加えて実施することができ゛る。すなわち欠陥+
iろる拡がDfc持つことから、探傷位置を連続t!1
1*は離散的に数位置に変更して超音技探傷(υを行い
、上記(1)過程の処理を行いながらその孜ケ分の出力
を加え合わせそれらがあるしきい値を越えt場合を欠陥
とやJ定する。
The method of the present invention can be carried out by adding additional processing to the process (υ(1)) above.
Since iRorukou has Dfc, the flaw detection position is continuous! 1
1*: Perform ultrasonic flaw detection (υ) by discretely changing several positions, and adding up the outputs of the above while processing the process (1) above, and if the output exceeds a certain threshold value. is determined to be a defect.

(発明の効果) 以上のように本発明方法によると、水蒸気接触改質用加
熱管等の結晶粒が粗大で超音波の減衰が大きい遠心鋳造
管に対し、経年変化により発生する内部欠陥を超音技探
傷により非破壊横五する場合に、超音波の減衰および散
乱によるノイズの影響′t−減じて欠陥信号七億実に検
出することが可能となり、t7′cその変換、算法の過
程はコンピュータ処理により容易に行うことができ、送
信波と反射波とで相開をとる必要もないので、格別の手
数、負担が加わらず、そして探傷の員実性により使用中
の管の信頼性、伐存痔命を的確に把握してその保守文換
を合理的最小限にすることができる等の効果がある。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to eliminate internal defects that occur due to aging in centrifugally cast tubes with coarse crystal grains and large attenuation of ultrasonic waves, such as heating tubes for steam catalytic reforming. When performing non-destructive horizontal flaw detection using acoustic flaw detection, it is possible to detect 700 million defect signals by subtracting the effects of noise due to ultrasonic attenuation and scattering, and the process of conversion and calculation is performed by a computer. It can be easily carried out through processing, and there is no need to take a phase difference between the transmitted wave and the reflected wave, so there is no extra effort or burden, and the practicality of flaw detection improves the reliability of the pipe in use. There are effects such as being able to accurately grasp existing hemorrhoids and minimizing the need for maintenance and translation to a reasonable minimum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図り)は本発明方法の実施に使用する探傷子配置を
示す側面図、第1図(ロ)はその端面図、第27Fiそ
の不適当配置を示す側面図、第6図(c4)ilt横軸
に管周角度位置、縦軸に反射強度をとって示す単一周波
数の探傷波形図、第4図は本発明方法の段階過程を示す
グロ7り図、第5図は4ii軸に測定範囲、縦軸に振幅
をとって示す本発明のディジタル変換を経た原技形図、
第6図は本始明における広帯域周波数帯域の分割思様を
示す図、第7図ば)は分割帯域に番目の波形図第7図(
句は分割帯域に+5番目の波形図、第8図は本発明方法
による最終出力波形図、第9図は)は従来の探触子配置
の1例を示す図、第9図(mはその超音波ビームが反対
の図、第9図←→は横軸の角度に対する縦軸の縦波反射
tLg1度を示す図、第9図に)は同じく横波反射波g
i度を示す図である。 (1)(1ムXIB)・・探触子、(2) (2) (
2)・・超音波ビーム、(3)(5A)・・被検体、(
4)・・底面部。 (5)・・欠陥部s  Cr・)・・中心局i&、(躇
・・帯域幅%  (j:hf)・・分割帯域中心周波数
差h  (be)・・分割帯域幅、(θ]・・入射角、
(1)・・肉厚。 蕗5121 篤81図 に11
Figure 1) is a side view showing the flaw detector arrangement used in carrying out the method of the present invention, Figure 1 (b) is its end view, Figure 27 is a side view showing its inappropriate placement, Figure 6 (c4) ilt A single-frequency flaw detection waveform diagram with the horizontal axis representing the circumferential angular position and the vertical axis representing the reflection intensity, Figure 4 is a diagram showing the step process of the method of the present invention, and Figure 5 is the measurement along the 4ii axis. An original technical shape diagram that has undergone digital conversion of the present invention, showing the range and amplitude on the vertical axis,
Fig. 6 is a diagram showing how the wide frequency band is divided in the present invention, and Fig. 7 (b) is a diagram showing the waveform diagram of the divided band.
Figure 8 is the final output waveform diagram according to the method of the present invention, Figure 9 is a diagram showing an example of the conventional probe arrangement, Figure 9 (m is The diagram in which the ultrasonic beam is opposite, Figure 9 ← → is a diagram showing the longitudinal wave reflection tLg 1 degree on the vertical axis against the angle on the horizontal axis, and the figure (in Figure 9) also shows the shear wave reflected wave g
It is a figure which shows i degrees. (1) (1μXIB)... Probe, (2) (2) (
2)... Ultrasonic beam, (3) (5A)... Subject, (
4)...Bottom part. (5)...Defective part s Cr)...Center station i&, (hesitation...Bandwidth % (j:hf)...Divided band center frequency difference h (be)...Divided bandwidth, (θ]... ·Angle of incidence,
(1) Thickness. Fuki 5121 Atsushi 81 figure 11

Claims (3)

【特許請求の範囲】[Claims] (1)広帯域の周波数帯域をもつ探触子を使用して縦波
正反射法により遠心鋳造管の全周にわたり超音波探傷を
行い、探傷エコーをA/D変換素子でディジタル値に変
換し、次にこのディジタル値信号をフーリエ変換し複数
の等分帯域幅の中心周波数差のある分割周波数帯域に変
換し、次に分割した個々の周波数帯域で逆変換して時間
軸に戻し、これらによつて得られた個々の波形を各々2
乗し、そして時間軸の各時間毎に周波数分割波形を比較
し最も小さい出力をその時間での出力とし、この出力の
うちしきい値を越えているものを欠陥と判定する遠心鋳
造管の超音波探傷法。
(1) Using a probe with a wide frequency band, perform ultrasonic flaw detection over the entire circumference of the centrifugally cast tube using the longitudinal wave specular reflection method, and convert the flaw detection echoes into digital values with an A/D conversion element. Next, this digital value signal is Fourier-transformed into divided frequency bands with center frequency differences of multiple equally divided bandwidths, and then inversely transformed in each divided frequency band and returned to the time axis. Each waveform obtained by
Then, the frequency-divided waveforms are compared for each time on the time axis, the smallest output is taken as the output at that time, and any output that exceeds the threshold is determined to be defective. Sonic flaw detection method.
(2)探傷信号の周波数帯域を中心周波数fo.帯域幅
Bとし、前記フーリエ変換の周波数軸上での変換を一定
の帯域幅で分割し、分割範囲は(1−a)fo<f<(
1+a)fo(ここにa=0.7〜0.8)で、分割し
た個々の中心周波数の差Δfが0.01fo≦Δf≦0
.1fo、個々の帯域幅boが5Δf≦bo≦20Δf
の間にとる特許請求の範囲第1項記載の遠心鋳造管の超
音波探傷法。
(2) Set the frequency band of the flaw detection signal to the center frequency fo. Assuming that the bandwidth is B, the Fourier transform on the frequency axis is divided by a constant bandwidth, and the division range is (1-a)fo<f<(
1+a)fo (here a=0.7 to 0.8), the difference Δf between the divided individual center frequencies is 0.01fo≦Δf≦0
.. 1fo, individual bandwidth bo is 5Δf≦bo≦20Δf
An ultrasonic flaw detection method for centrifugally cast tubes according to claim 1, taken between
(3)測定段階での超音波探傷を、位置を離散的を含め
連続的にずらせて行い、判定過程前でその数ケ分の出力
を加え合わせ、それがあるしきい値を越える場合を欠陥
と判定する特許請求の範囲第1項記載の遠心鋳造管の超
音波探傷法。
(3) At the measurement stage, ultrasonic flaw detection is performed by continuously shifting the position, including discrete positions, and before the judgment process, the outputs of several are added together, and if the output exceeds a certain threshold, it is detected as a defect. The ultrasonic flaw detection method for centrifugally cast pipes according to claim 1, which determines that.
JP59206858A 1984-10-01 1984-10-01 Ultrasonic flaw detection of centrifugally cast pipe Pending JPS6183962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206858A JPS6183962A (en) 1984-10-01 1984-10-01 Ultrasonic flaw detection of centrifugally cast pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206858A JPS6183962A (en) 1984-10-01 1984-10-01 Ultrasonic flaw detection of centrifugally cast pipe

Publications (1)

Publication Number Publication Date
JPS6183962A true JPS6183962A (en) 1986-04-28

Family

ID=16530208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206858A Pending JPS6183962A (en) 1984-10-01 1984-10-01 Ultrasonic flaw detection of centrifugally cast pipe

Country Status (1)

Country Link
JP (1) JPS6183962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318085A (en) * 2000-05-08 2001-11-16 Daido Steel Co Ltd Padding pipe inspecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318085A (en) * 2000-05-08 2001-11-16 Daido Steel Co Ltd Padding pipe inspecting method

Similar Documents

Publication Publication Date Title
JP4747172B2 (en) Scratch height measuring method and apparatus in ultrasonic flaw detection test
WO2008007460A1 (en) Ultrasonic scanning device and method
Liu et al. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe
US9372176B2 (en) Ultrasonic inspection method
US6925881B1 (en) Time shift data analysis for long-range guided wave inspection
CA2856738A1 (en) Signal processing of lamb wave data for pipe inspection
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
Kupperman et al. Ultrasonic NDE of cast stainless steel
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
Robert et al. Assessment of real-time techniques for ultrasonic non-destructive testing
Date et al. Crack height measurement—an evaluation of the accuracy of ultrasonic timing methods
JPS6183962A (en) Ultrasonic flaw detection of centrifugally cast pipe
Nagai et al. Determination of shape profile by SAFT for application of phased array technique to complex geometry surface
Haldipur et al. Ultrasonic attenuation measurements in jet-engine nickel alloys
Baev et al. Features of the reflection of an acoustic beam from a surface with nonuniform boundary conditions. I. Theoretical analysis
Ogilvy Identification of pulse-echo rays in austenitic steels
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
Smith et al. Ultrasonic C-scan standardization for polymer-matrix composites-Acoustic considerations
Akgün Investigating the reliability of ultrasound phased array method and conventional ultrasonic testing for detection of defects in austenitic stainless steels
MIRCHEV Ultrasonic testing for general corrosion of metals and alloys
Liu Phased Array Ultrasonic Testing of Corrosive Resistant Alloy Girth Weld of Cladded Pipes using the Total Focusing Method
Bazulin Two approaches to the solution of problems of ultrasonic flaw metering: Analysis of a high-quality image of reflectors and correlation analysis of measured echo signals
Moysan et al. Ultrasounds Back-Scattering Measurements for New Anisotropy Indicator Construction
Raiutis et al. Application of time-frequency analysis in the case of ultrasonic imaging in a background of structural noise
Tu et al. Nondestructive/Destructive Test Correlations and Fracture Mechanics Analysis