JPS6183952A - Carrierless continuous electro-phoresis and apparatus therefor - Google Patents

Carrierless continuous electro-phoresis and apparatus therefor

Info

Publication number
JPS6183952A
JPS6183952A JP59204002A JP20400284A JPS6183952A JP S6183952 A JPS6183952 A JP S6183952A JP 59204002 A JP59204002 A JP 59204002A JP 20400284 A JP20400284 A JP 20400284A JP S6183952 A JPS6183952 A JP S6183952A
Authority
JP
Japan
Prior art keywords
chamber
electrophoresis
carrier
liquid
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59204002A
Other languages
Japanese (ja)
Other versions
JPH0625749B2 (en
Inventor
Chikao Oda
親生 小田
Fujitsugu Nakatsui
中対 藤次
Katsumi Muroi
室井 克美
Shoji Yoshinaga
吉永 正二
Kiyoshi Fujiwara
清志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59204002A priority Critical patent/JPH0625749B2/en
Publication of JPS6183952A publication Critical patent/JPS6183952A/en
Publication of JPH0625749B2 publication Critical patent/JPH0625749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To effect a continuous processing by applying a DC voltage from both sides of a phoresis chamber, making buffer liquid in the chamber to circulate upward in the chamber center and downward on its both ends, and supplying specimen liquid to the chamber for separation of charged substances. CONSTITUTION:Buffer liquid is filled in a phoresis chamber 2, and poured for circulation in electrode chambers 3a, 3b also and a specified voltage is applied charging electrodes 5a, 5b, then Joule's heat is generated by the charging current and thus, a convection flow is caused in the buffer liquid in the phoresis chamber 2. Further, the buffer liquid at the center of the chamber 2 flows upward and that on its both ends downward to circulate in the chamber 2. When the treatment liquid provided with charges of protein, etc. is introduced into this kind of chamber 2 from an inlet nozzle 6, charged substances move to negative or positive electrode chamber 3b or 3a. On this occasion, a DC voltage is applied with a charging electrode 5a as positive and 5b as negative, charged substances charged positively or negatively displace to the electrode chamber 3b side or bottom side of the chamber 3a respectively to be concentrated and taken out from outlet nozzle 7b or 7a as the treatment liquid respectively.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、たんばく質、核酸、m泡等の荷電物質の電気
泳動法Iこよる分離精製技術(こ係わり、特に高分離性
能を有し、かつ、大量処理が可能な無担体電気泳動方法
および装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to separation and purification technology using electrophoresis method I for charged substances such as proteins, nucleic acids, and m-bubbles. The present invention also relates to a carrier-free electrophoresis method and apparatus that are capable of large-scale processing.

〔発明の背景〕[Background of the invention]

従来のたんばく質、核酸、絹鳴等の荷電物質(以下、°
代表してたんばく質と呼ぶ)の分離精製法として、電気
泳動法、膜分離法、液体クロマトグラフィ等がある。膜
分離法は、li−の孔の大きさによりたんばく質を分離
する方法で、連続処理ができるが、たんばく質の分離能
が劣るという欠点があり、液体クロマトグラフィは、た
んばく質を担体充填カラム中を通して分離する方法で、
分離能はすぐれているが、バッチ操作のため、工業規模
の大量処理には不適当である。また、電気泳動法は、た
んぽ(質の荷電量の差を゛利用して、電場中にて分離精
製する方法である。この電気泳動法には、ゲル等の担体
を用いる担体電気泳動法と、担体を用いず自由流動液中
にて行なう無担体電気泳動法がある。担体電気泳動法は
バッチ式であり、大量処理を行なうような工業化には、
連続処理ができる無担体電気泳法が適している。
Conventional charged substances such as proteins, nucleic acids, and silk (hereinafter referred to as °
Examples of separation and purification methods for proteins (typically called proteins) include electrophoresis, membrane separation, and liquid chromatography. Membrane separation is a method that separates proteins based on the pore size of the li-, and allows for continuous processing, but it has the disadvantage of poor protein separation ability.Liquid chromatography separates proteins by using a carrier A method of separation through a packed column,
Although it has excellent separation ability, it is a batch operation, making it unsuitable for large-scale processing on an industrial scale. In addition, electrophoresis is a method of separation and purification in an electric field by utilizing the difference in the amount of charge between particles. There is a carrier-free electrophoresis method that is carried out in a free-flowing liquid without using a carrier.The carrier electrophoresis method is a batch method, and for industrialization that involves mass processing,
A carrier-free electrophoresis method that allows continuous processing is suitable.

無担体電気泳動法については、Blectr。For carrier-free electrophoresis, Blectr.

phoresis  1982,3..235−243
におけるKurt  Hannlgによる@Newas
pects  in  preparative  a
nd  analytical  cont[nuou
s  free−flovr  cell  eIec
trophoresls’″と題する文献において論じ
られている。また、この原理に基いた装置が、***Hi
 r s h m a n n社ですでに製造されてい
る。
phoresis 1982, 3. .. 235-243
@Newas by Kurt Hannlg in
pects in preparative a
nd analytical cont[nuou
s free-flovr cell eIec
trophoresls'''. A device based on this principle was also developed in West Germany
It is already manufactured by R.S.H.M.A.N.

この無担体電気泳動法によるたんばく質の分離精製方法
について説明する。分離角チャンバ内で電場を横切りて
一定速度で流下する分離バッファー液中に、注入口から
連続的に分離すべきたんばく質の混合物を注入すと、各
たんばく質はそれぞれ荷電量が異なるため、電場中での
移動速度が異なり、そのため、分離バッファー液中を流
下中に、分離バッファー液流速との兼合いで、それぞれ
に偏向されて分離される。このように、本方法は連続的
に分離することができるため、工業規模のたんばく質の
分離精製に対して有効である。
A method for separating and purifying proteins using this carrier-free electrophoresis method will be explained. When a mixture of proteins to be separated is continuously injected from an injection port into a separation buffer solution flowing at a constant speed across an electric field in a separation angle chamber, each protein has a different amount of charge. Their movement speeds in the electric field are different, and therefore, while flowing through the separation buffer solution, they are deflected and separated depending on the flow rate of the separation buffer solution. As described above, since the present method can perform continuous separation, it is effective for industrial-scale protein separation and purification.

本方法で分離性能を高めるためには、分離用チャンバ内
の分離バッファー液の流速を常に一定に保つことが重要
であるが、分離バッファー液には電流を流すため、ジュ
ール熱が必ず発生し、この熱により分離バッファー液に
対流現象を生じ、分離バッファー液の流れが乱れるため
、たんぽ(質の分離性能が低下する。この問題を解決す
るため、従来の無担体電気泳動法では、分離バッファー
液の温度や流速を±0.2%と極めて高精度にコントロ
ールし、また、装置を小形化してジュール熱に対応させ
ているが、たんぼ(質の分離性能はあまりよくなってい
ない。
In order to improve the separation performance with this method, it is important to keep the flow rate of the separation buffer solution in the separation chamber constant at all times, but since a current is passed through the separation buffer solution, Joule heat is always generated. This heat causes a convection phenomenon in the separation buffer solution, which disrupts the flow of the separation buffer solution, resulting in a decrease in separation performance.To solve this problem, in conventional carrier-free electrophoresis, the separation buffer solution is Although the temperature and flow rate of the rice grains have been controlled with extremely high precision of ±0.2%, and the equipment has been miniaturized to handle Joule heat, the separation performance for rice fields has not improved much.

さらにまた、この熱対流の影響をなくするため、電気泳
動装置を宇宙空間に持って行き、無重力状態下で電気泳
動を行なわせる計画もあり、この対流がいかに大きな問
題かがうかがえる。
Furthermore, in order to eliminate the effects of this thermal convection, there are plans to take an electrophoresis device into space and perform electrophoresis in zero gravity, which shows how big a problem this convection is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高分離性能を有し、かつ、大量処理が
可能な無担体連続電気泳動方法および装置を提供するこ
とにある。
An object of the present invention is to provide a carrier-free continuous electrophoresis method and apparatus that have high separation performance and are capable of mass processing.

〔発明の概要〕[Summary of the invention]

未発明は、従来の無担体電気泳動装置における問題点が
、泳動室内で発生するジュール熱によるバッファ液の対
流混合である点に着目し、このジュール熱によるバッフ
ァ液の対流を利用して荷電物質を分離し、かつ、分離濃
縮した荷電物質をすべて重力方向に取出すようにしたも
ので、泳動室内で発生するジュール熱によるバッファ液
の泳動室中央部で上昇し両端部で下降する循環流に被処
理液を供給して荷電物質を分離し、処理液を泳動室2端
下部より取出すようにしたものである。
The uninvented invention focused on the fact that a problem with conventional carrier-free electrophoresis devices was the convective mixing of buffer solutions due to Joule heat generated in the electrophoresis chamber. The separated and concentrated charged substances are all taken out in the direction of gravity, and are exposed to the circulating flow of buffer solution that rises in the center of the migration chamber and descends at both ends due to Joule heat generated in the migration chamber. A processing liquid is supplied to separate charged substances, and the processing liquid is taken out from the bottom of the two ends of the migration chamber.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図により説明す
る。第1図、第2図において、1は垂直に設置された泳
動装置本体、2は泳動装置本体1内中央部Iζ設けられ
た泳動室、3a、3bは泳動装置本体1内の泳動室2両
端に形成された電極室で、泳動室2とは半透膜4で仕切
られている。5a、5bは電極室3a、3b内に設けら
れた白金線等の荷電用電極、6は泳動室2のほぼ中央部
側面に設けられた荷電物質を含む被処理液の入口ノズル
、7a、7bは泳動室2の両端下部1こ設けられた泳動
分離した処理液の出口ノズル、8a、8bおよび9a、
9bは電極室3a、3bの下端および上端にそれぞれ設
けられた電極液の入口ノズルおよび出口ノズルである。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIGS. 1 and 2, 1 is a vertically installed electrophoresis device main body, 2 is a migration chamber provided in the central part Iζ of the electrophoresis device main body 1, and 3a and 3b are both ends of the migration chamber 2 inside the migration device main body 1. The electrophoresis chamber 2 is separated from the electrophoresis chamber 2 by a semipermeable membrane 4. 5a and 5b are charging electrodes such as platinum wires provided in the electrode chambers 3a and 3b; 6 is an inlet nozzle for a liquid to be processed containing a charged substance provided on the side surface of the approximately central portion of the migration chamber 2; 7a and 7b; 8a, 8b and 9a are outlet nozzles for the electrophoretically separated treatment liquid provided at the bottom of both ends of the electrophoresis chamber 2;
Reference numerals 9b denote an inlet nozzle and an outlet nozzle for the electrode solution provided at the lower and upper ends of the electrode chambers 3a and 3b, respectively.

上述した構成1ζおいて、泳動室2内Iζ泳動用のバッ
ファ液を張込み、電極室3a、3b内化もバッフ1液を
外部より流入循環させて、荷電用電極5a、5bに所定
電圧をかけると、荷電電流によりジニール熱が発生し、
第1図に示すよう化泳動室2内のバッファ液に対流が生
じる。しかして、ジュール熱は泳動室2内で一様Iこ発
生するが、泳動室2の中央部では放熱し難いため、泳動
室2内中央部と両端部のバッファ液1こ温度差を生じ、
最も高温となる泳動室2内中央部のバッフ1液は上昇流
となり、泳動室2内両端部のバッファ液は下降流となっ
て泳動室2内を循環する。このようなバッファ液の循環
流れのある泳動室2内に、入口ノズル6よりたん白質な
どの電荷を持つ被処理液を供給すると、荷電物質の帯電
の正、負に応じて泳動室2内を対流により流動しながら
、負又は正の電極室3b又は3aの方向に移動する。こ
の場合、荷電用電極5aを正、5bを負として直流電圧
をかけると、正に帯電した荷電物質は電極室3b側に移
動・して、泳動室2内の電極室3b側下部にWkmされ
、処理液として出口ノズル7bより取出される。同様に
負薯こ帯電した荷電物質は電極室3a側に移動して、泳
動室2内の電極室3a側下部に濃縮され、処理液として
出口ノズル7aより取出される。この結果、複数の荷電
物質の帯電状態、すなわち、帯電の正又は負に応じて連
続的に分離することができる。
In the configuration 1ζ described above, a buffer solution for Iζ migration is filled in the migration chamber 2, and a buffer 1 solution is introduced from the outside and circulated in the electrode chambers 3a and 3b, and a predetermined voltage is applied to the charging electrodes 5a and 5b. When applied, the charged current generates ginyl heat,
Convection occurs in the buffer solution in the electrophoresis chamber 2 as shown in FIG. Therefore, although Joule heat is generated uniformly within the migration chamber 2, it is difficult to dissipate the heat in the center of the migration chamber 2, so a temperature difference occurs between the buffer solution at the center and both ends of the migration chamber 2.
The buffer solution at the center of the migration chamber 2, which has the highest temperature, flows upward, and the buffer solution at both ends of the migration chamber 2 flows downward, circulating within the migration chamber 2. When a charged liquid such as protein is supplied from the inlet nozzle 6 into the electrophoresis chamber 2 where the buffer solution circulates, the inside of the electrophoresis chamber 2 changes depending on whether the charged substance is positively or negatively charged. It moves in the direction of the negative or positive electrode chamber 3b or 3a while flowing due to convection. In this case, when the charging electrode 5a is positive and the charging electrode 5b is negative and a DC voltage is applied, the positively charged charged substance moves to the electrode chamber 3b side and is deposited Wkm in the lower part of the electrode chamber 3b side in the migration chamber 2. , is taken out from the outlet nozzle 7b as a processing liquid. Similarly, the negatively charged charged substance moves to the electrode chamber 3a side, is concentrated in the lower part of the electrode chamber 3a side in the migration chamber 2, and is taken out from the outlet nozzle 7a as a processing liquid. As a result, it is possible to continuously separate the plurality of charged substances according to their charged states, that is, whether they are positively or negatively charged.

また、荷電物質は泳動室2内中央より両端に向って循環
するバッファ液の対流により、泳動室2内両端部を下向
きに移動しながら濃縮され、泳動室2の両端下部より取
出されるので、荷電物質の濃度が高くなった場合でも、
容易に分離することができ、高濃縮することができる。
In addition, the charged substance is concentrated while moving downward at both ends of the migration chamber 2 due to the convection of the buffer solution circulating from the center of the migration chamber 2 toward both ends, and is taken out from the bottom of both ends of the migration chamber 2. Even when the concentration of charged substances increases,
It can be easily separated and highly concentrated.

このような複数の荷電物質を含む被処理液より、電気泳
動法により荷電物質を分離するためには、分離すべき荷
電物質の帯電を逆にする必要があるが、例えば等電点7
・2のミオグロビンと、等電点11のリゾチームとを分
離する場合Ieは、泳′動用バッファ液のPHを9・O
とすることにより、それぞれのたんばく質の帯電を正、
負両極Iこ分けることができる。
In order to separate a charged substance from a liquid to be processed containing a plurality of charged substances by electrophoresis, it is necessary to reverse the charge of the charged substances to be separated.
・When separating myoglobin (2) and lysozyme (isoelectric point 11), the pH of the electrophoresis buffer solution should be adjusted to 9.0
By setting the charge of each protein to positive,
It can be divided into two negative poles.

第3図は本発明の他の実施例を示したもので、第1図、
第2図と同一部分は同一符号で示し、説明を省略する。
FIG. 3 shows another embodiment of the present invention, and FIG.
The same parts as in FIG. 2 are indicated by the same reference numerals, and their explanation will be omitted.

第3図において、10a、10bは電極室3a、3b内
の温度を調節するための温度調節器、11a、11bは
温度調節器10a。
In FIG. 3, 10a and 10b are temperature regulators for adjusting the temperature inside the electrode chambers 3a and 3b, and 11a and 11b are temperature regulators 10a.

10bで温度調節されたバッファ液をそれぞれ電極室3
a、3bに循環させる送液ポンプであって、電極室3a
、3b内のバッファ液を抜出し、温度調節器10a、1
0bで所定温度に冷却した後、電極室3a、3bに循環
させて、電極室3a、3bを強制冷却することにより、
泳動室2内のノイツファ液および被処理液の対流を助長
すると共に、泳動室2内の液温を所定温度1こ保持して
、対流1こよる循環流を安定させることができる。
10b, the temperature-controlled buffer solution is transferred to the electrode chamber 3.
a, 3b, and is a pump for circulating liquid to electrode chamber 3a.
, 3b is extracted, and the temperature controllers 10a, 1
After cooling to a predetermined temperature at 0b, it is circulated to the electrode chambers 3a, 3b to forcefully cool the electrode chambers 3a, 3b.
It is possible to promote convection between the Neutffer liquid and the liquid to be processed in the migration chamber 2, maintain the liquid temperature in the migration chamber 2 at a predetermined temperature, and stabilize the circulating flow due to the convection.

本実施例においては、荷電物質の分離に必要な泳動室2
内の対流を、電極室3a、3b内のバッファ液温度を調
節することによって得ることができ、荷電物質の分離効
率を向上させることができる。
In this example, the electrophoresis chamber 2 necessary for separating charged substances is
The convection within the electrode chambers 3a and 3b can be obtained by adjusting the temperature of the buffer solution within the electrode chambers 3a and 3b, thereby improving the separation efficiency of charged substances.

第4図は本発明の更に他の実施例を示したもあで、泳動
室2内の下部中央1こ垂直方向に仕切板12を設置して
、泳動室2内の上昇対流を安定させると共に、泳動室2
内の電極室3a、3b側下部に泳動分離された荷電物質
の一部が中央部に流動して再混合れるのを防止して、荷
電物質の分離効率向上させるようにしたものである。
FIG. 4 shows still another embodiment of the present invention, in which a partition plate 12 is installed vertically in the center of the lower part of the migration chamber 2 to stabilize the upward convection within the migration chamber 2. , migration chamber 2
This prevents a part of the charged substances electrophoretically separated in the lower part of the electrode chambers 3a and 3b from flowing to the center and being remixed, thereby improving the separation efficiency of the charged substances.

第5図は本発明の更に他の実施例を示したもので、泳動
室2内の下部中央に垂直方向にジャケット付仕切板13
を設置し、ジャケット付仕切板13内に熱媒を流通させ
て泳動室2内中央部の液温を所定温度に保持することに
より、安定した対流を得るよう番こしたものであり、こ
れによって、分離効率を更に向上させるものである。す
なわち、泳動室2内の中央部と両端部の温度差を常時一
定値に保つことにより、一定した流速の対流を得ること
ができ、泳動室2内の液の乱れを小さくして分離性能を
高めることができる。
FIG. 5 shows still another embodiment of the present invention, in which a jacketed partition plate 13 is arranged vertically at the center of the lower part of the migration chamber 2.
The liquid temperature in the center of the migration chamber 2 is maintained at a predetermined temperature by distributing a heat medium through the jacketed partition plate 13 to obtain stable convection. , which further improves separation efficiency. In other words, by keeping the temperature difference between the center and both ends of the migration chamber 2 at a constant value, convection with a constant flow rate can be obtained, reducing turbulence of the liquid in the migration chamber 2 and improving separation performance. can be increased.

第6図は本発明の更1こ他の実施例を示したもので、泳
動室2内の下部中央1こ垂直方向に仕切板12を設置し
、仕切板1.2の両側に気泡発生用ノズル14a、14
bを設け、泳動室2の上端に気体出口ノズル15を設け
て、気泡発生用ノズル14a。
FIG. 6 shows another embodiment of the present invention, in which a partition plate 12 is installed vertically in the lower center of the migration chamber 2, and air bubble generation is provided on both sides of the partition plate 1.2. Nozzles 14a, 14
b, and a gas outlet nozzle 15 is provided at the upper end of the migration chamber 2 to form a bubble generating nozzle 14a.

14bより泳動室2内番こ連続的に気泡16を発生させ
、泳動室2内中央部を上昇させることにより、泳動室2
内の循環流れを促進させて分離性能を高めるよう1こし
たものである。
By continuously generating air bubbles 16 in the migration chamber 2 from 14b and raising the central part of the migration chamber 2, the migration chamber 2
It is strained to promote circulation flow within the tank and improve separation performance.

木実施例では気泡ポンプ作用による泳動室2内の対流促
進について説明したが、泳動室2内の対流を強制的に促
進させる手段としては、水中ポンプなど機械的な液体移
送装置を用いることもできる。
In the embodiment described above, the promotion of convection within the migration chamber 2 through the action of a bubble pump has been described, but as a means for forcibly promoting convection within the migration chamber 2, a mechanical liquid transfer device such as a submersible pump may also be used. .

〔発明の効果〕〔Effect of the invention〕

未発明は以上述べたように、泳動室の両側より直流電圧
を荷電し、泳動室内のバッファ液に泳動室中央部で上昇
し両端部で下降する循環流を形成させ、泳動室内に被処
理液を供給して電気泳動1こより荷電物質を分離し、処
理液を泳動室両端下部より取出すようにしたものである
から、バッファ液中Iと電流を流すことにより発生する
ジュール熱によるバッファ液の対流を利用することがで
き、かつ、荷電物質を安定して連続的に処理することが
できるため、荷電物質の分離性能を向上させることがで
きると共に大量処理が可能である。また、処理液を泳動
室両端下部から取出すことにより、荷電物質の対流拡散
を防止して高濃縮することができる。
As described above, in the uninvention, a DC voltage is applied from both sides of the electrophoresis chamber to form a circulating flow in the buffer solution in the electrophoresis chamber, which rises in the center of the electrophoresis chamber and descends at both ends. Charged substances are separated from electrophoresis chamber 1 by supplying I, and the processing solution is taken out from the bottom of both ends of the electrophoresis chamber, so convection of the buffer solution due to Joule heat generated by flowing current between I in the buffer solution can be used and charged substances can be processed stably and continuously, so that separation performance of charged substances can be improved and large-scale processing is possible. Further, by taking out the processing liquid from the lower part of both ends of the electrophoresis chamber, it is possible to prevent the charged substance from convection diffusion and to highly concentrate it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実を例を示す電気泳動装置の正面図
、第2図は第1図のII−n断面図、第3図ないし第6
図はそれぞれ本発明の他の実施例を示す電気泳動装置の
正面図である。 1・・・・・・泳動装置本体、2・・・・・・泳動室、
3a、3b・・・・・・電極室、4・・・・・・半透膜
、5a、5b・・・・・・荷電用電極、6,8a、8b
・・・・・・入口ノズル、7a。 7 b、  9 a、  9 b−出口ノズル、10a
、10b・・・・・・温度調節器、lla、llb・・
・・・・送液ポンプ、12・・・・・・仕切板、13・
・・・・・ジャケット付仕切板、14a、14b・・・
・・・ネ泡発生用ノズル、15・・・・・・気体出口ノ
ズル、16・・・・・・気泡才1図 第3図
FIG. 1 is a front view of an electrophoresis device showing an example of the present invention, FIG. 2 is a sectional view taken along line II-n in FIG. 1, and FIGS.
Each figure is a front view of an electrophoresis apparatus showing other embodiments of the present invention. 1...Migration device main body, 2...Migration chamber,
3a, 3b... Electrode chamber, 4... Semipermeable membrane, 5a, 5b... Charging electrode, 6, 8a, 8b
...Inlet nozzle, 7a. 7b, 9a, 9b - outlet nozzle, 10a
, 10b...Temperature controller, lla, llb...
...Liquid pump, 12...Partition plate, 13.
...Partition plate with jacket, 14a, 14b...
...Bubble generation nozzle, 15...Gas outlet nozzle, 16...Bubble generation Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、複数の荷電物質を含む被処理液を無担体電気泳動法
により処理して荷電物質を分離する無担体連続電気泳動
方法において、泳動室の両側より直流電圧を荷電し、泳
動室内のバッファ液を泳動室中央部で上昇し両端部で下
降するように循環させながら、泳動室内に被処理液を供
給して荷電物質を分離し、処理液を泳動室両端下部より
取出すことを特徴とする無担体連続電気泳動方法。 2、前記泳動室の両端部を冷却するようにした特許請求
の範囲第1項記載の無担体連続電気泳動方法。 3、複数の荷電物質を含む被処理液を無担体電気泳動法
により処理して荷電物質を分離する無担体連続電気泳動
装置において、泳動室の両端に半透膜を介して電極室を
形成した泳動装置本体を垂直に設置し、前記泳動室に被
処理液の入口ノズルを設け、前記泳動室両端下部に処理
液の出口ノズルを設けたことを特徴とする無担体連続電
気泳動装置。 4、前記両電極室にそれぞれ冷却されたバッファ液を循
環させる温度調節器と送液ポンプを設けた特許請求の範
囲第3項記載の無担体連続電気泳動装置。 5、前記泳動室内下部中央に垂直方向に仕切板を設置し
た特許請求の範囲第3項又は第4項記載の無担体連続電
気泳動装置。 6、前記泳動室の仕切板両側下部に気泡発生用ノズルを
設置した特許請求の範囲第5項記載の無担体連続電気泳
動装置。 7、前記泳動室の下部中央に垂直方向に内部に熱媒を流
通させるジャケット付仕切板を設置した特許請求の範囲
第3項又は第4項記載の無担体連続電気泳動装置。
[Claims] 1. In a carrier-free continuous electrophoresis method in which a liquid to be processed containing a plurality of charged substances is processed by a carrier-free electrophoresis method to separate charged substances, a DC voltage is applied from both sides of the electrophoresis chamber. While circulating the buffer solution in the electrophoresis chamber so that it rises in the center of the electrophoresis chamber and descends at both ends, the liquid to be processed is supplied into the electrophoresis chamber to separate charged substances, and the treated liquid is taken out from the bottom of both ends of the electrophoresis chamber. A carrier-free continuous electrophoresis method characterized by: 2. The carrier-free continuous electrophoresis method according to claim 1, wherein both ends of the electrophoresis chamber are cooled. 3. In a carrier-free continuous electrophoresis device in which a liquid to be processed containing multiple charged substances is processed by carrier-free electrophoresis to separate the charged substances, electrode chambers were formed at both ends of the electrophoresis chamber via semipermeable membranes. 1. A continuous carrier-free electrophoresis device, characterized in that a main body of the electrophoresis device is installed vertically, an inlet nozzle for a liquid to be processed is provided in the electrophoresis chamber, and outlet nozzles for a process liquid are provided at the bottom of both ends of the electrophoresis chamber. 4. The carrier-free continuous electrophoresis apparatus according to claim 3, further comprising a temperature controller and a liquid sending pump for circulating cooled buffer solutions in both electrode chambers. 5. The carrier-free continuous electrophoresis apparatus according to claim 3 or 4, wherein a partition plate is installed vertically in the center of the lower part of the electrophoresis chamber. 6. The carrier-free continuous electrophoresis apparatus according to claim 5, wherein bubble generating nozzles are installed at the bottom of both sides of the partition plate of the migration chamber. 7. The carrier-free continuous electrophoresis device according to claim 3 or 4, wherein a jacketed partition plate is installed at the center of the lower part of the migration chamber to allow a heating medium to flow therein in a vertical direction.
JP59204002A 1984-10-01 1984-10-01 Carrier-free continuous electrophoresis method and apparatus Expired - Lifetime JPH0625749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204002A JPH0625749B2 (en) 1984-10-01 1984-10-01 Carrier-free continuous electrophoresis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204002A JPH0625749B2 (en) 1984-10-01 1984-10-01 Carrier-free continuous electrophoresis method and apparatus

Publications (2)

Publication Number Publication Date
JPS6183952A true JPS6183952A (en) 1986-04-28
JPH0625749B2 JPH0625749B2 (en) 1994-04-06

Family

ID=16483145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204002A Expired - Lifetime JPH0625749B2 (en) 1984-10-01 1984-10-01 Carrier-free continuous electrophoresis method and apparatus

Country Status (1)

Country Link
JP (1) JPH0625749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002771A (en) * 2010-06-21 2012-01-05 Hitachi Chem Co Ltd Method of concentrating ion substance of liquid extract provided for simple microanalysis in environmental field and liquid extract concentration kit therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168290B1 (en) * 2014-07-07 2021-12-08 Logos Biosystems, Inc. Apparatus for clearing tissue using electrophoresis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814048A (en) * 1981-07-20 1983-01-26 Atoo Kk Clinical inspection with carrier-free electrophoresis apparatus
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS5952743A (en) * 1982-09-20 1984-03-27 Atoo Kk Method and apparatus for imparting hydrogen ion concentration gradient, migrating and dispensing hydrogen ion in noncarrier thin laminar flow isoelectric point electrophresis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814048A (en) * 1981-07-20 1983-01-26 Atoo Kk Clinical inspection with carrier-free electrophoresis apparatus
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS5952743A (en) * 1982-09-20 1984-03-27 Atoo Kk Method and apparatus for imparting hydrogen ion concentration gradient, migrating and dispensing hydrogen ion in noncarrier thin laminar flow isoelectric point electrophresis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002771A (en) * 2010-06-21 2012-01-05 Hitachi Chem Co Ltd Method of concentrating ion substance of liquid extract provided for simple microanalysis in environmental field and liquid extract concentration kit therefor

Also Published As

Publication number Publication date
JPH0625749B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US4698142A (en) Free-flow electrophoretic separation method and apparatus therefor
EP0475555B1 (en) Multi-modality electrical separator apparatus and method
US5080770A (en) Apparatus and method for separating particles
EP0630473A1 (en) Electrical separator apparatus and method of counterflow gradient focusing
WO1979000942A1 (en) Apparatus and process for continuous flow isoelectric focusing
Ivory The prospects for large-scale electrophoresis
US4834862A (en) Ampholyte separation method and apparatus
Philpot The use of thin layers in electrophoretic separation
JPS58147639A (en) Separation by continuous electric migration and its device
US3451918A (en) Electrophoretic fractionation apparatus
Prusik Free-flow electromigration separations
US5032247A (en) Method and apparatus for electrophoretic separations
JPS6183952A (en) Carrierless continuous electro-phoresis and apparatus therefor
JPS6259853A (en) Separator for electric charge material
JPH022920A (en) Method and apparatus for separating substance due to electrophoresis
JPS62175498A (en) Method for separating protein
JPH0317295B2 (en)
JPS6367557A (en) Non-carrier continuous electrophoresis apparatus
US3479277A (en) Electrophoretic fractionating apparatus
JPS6138457A (en) Method and apparatus for separating and purifying charged substance
EP0443024A1 (en) Method and apparatus for electrophoretic separations.
US3520793A (en) Electrophoretic separator
JPS6177751A (en) Continuous electrophoresis apparatus
JPS6270748A (en) Method for separating charged substance
JPS63196845A (en) Separation of charged substance