JPS6183651A - Production of fiber-reinforced optical fiber - Google Patents

Production of fiber-reinforced optical fiber

Info

Publication number
JPS6183651A
JPS6183651A JP59203397A JP20339784A JPS6183651A JP S6183651 A JPS6183651 A JP S6183651A JP 59203397 A JP59203397 A JP 59203397A JP 20339784 A JP20339784 A JP 20339784A JP S6183651 A JPS6183651 A JP S6183651A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
resin
die
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59203397A
Other languages
Japanese (ja)
Inventor
Mitsuharu Komada
駒田 光春
Yasuro Yamamoto
山本 康郎
Masaaki Hattori
服部 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP59203397A priority Critical patent/JPS6183651A/en
Publication of JPS6183651A publication Critical patent/JPS6183651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:In a method of producing fiber-reinforced optical fiber by one process in a hot dies, to obtain the titled high-quality optical fiber, by a continuous filament group treated with a resin containing inorganic fine particles. CONSTITUTION:Reinforcing filaments (e.g., glass fiber, or polyamide fiber) are passed through a resin containing about 20wt% inorganic fine particles (e.g., calcium carbonate or glass having about <=10mu particle diameter), so that the resin composition is bonded to the filaments. The filament group coated with the resin composition and optical fiber are introduced into a hot die, the surface of optical fiber is coated with the resin composition, and the resin is cured, to produce fiber-reinforced optical fiber. By this method, optical fiber preventing microscopic bend can be prepared without causing tensile damage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は繊維強化光ファイバーの製造方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in the manufacturing method of fiber reinforced optical fibers.

先行技術と問題点 光伝送ケーブルの素線である光ファイバーまたは、この
光ファイバーの集合線すこおいては、補強層としてガラ
ス繊維強化樹脂層を被覆することが公知でちり、その被
覆方法の1つとして、本出願人は(封脂を含浸した連続
ガラスfJ!、 、Yft群と共に光ファイバーをダイ
スに引き通して光フアイバー上に繊維強化樹脂層を成形
すると共にダイス内で樹脂を硬化させる方法を既に提案
した。
Prior Art and Problems It is well known that optical fibers, which are the bare wires of optical transmission cables, or bundles of optical fibers, are coated with a glass fiber reinforced resin layer as a reinforcing layer. , the present applicant has already proposed a method of forming a fiber-reinforced resin layer on the optical fiber by passing the optical fiber through a die together with (continuous glass fJ!, Yft) impregnated with sealant, and curing the resin within the die. did.

この方法は、ダイスで成形のみを行い、而るのちに、加
熱炉に通して樹脂を硬化させる方法(特公昭56−76
1号公報)に較べて例えば、被覆の偏肉防止て有利でち
るといった利点があるが、ダイス内で樹脂を硬化させる
ためにダイス引抜きに犬なる張力を必要とし、光ファイ
バーの機械的強度が低いことを勘案すれば問題である。
In this method, only molding is performed using a die, and then the resin is hardened by passing it through a heating furnace (Japanese Patent Publication No. 56-76
Compared to Publication No. 1), for example, it has the advantage of preventing uneven thickness of the coating and is easy to tear, but it requires a large amount of tension to pull out the die in order to harden the resin in the die, and the mechanical strength of the optical fiber is low. Taking this into consideration, this is a problem.

ところで、硬化性樹脂の種類のいかん知よっては硬化収
縮の発生があり、従来、その樹脂の硬化成形に対し、硬
化収縮は否定的要因として取扱われている。しかしなが
ら、上記のダイス引抜き成形においてダイス内で樹脂を
、債嘆的に硬化収縮させれば、硬化収縮がダイス内面と
硬化樹脂との間の接着を妨げるように作用し、それだけ
硬化被覆層とダイス内面との間の拘束性をよく解除し、
それら相互間を滑り易くするから、上記引抜き張力の低
減に有利である。しかしながら、被覆層の硬化収縮に伴
い、光ファイバーの外周面江圧力が作用し、特に、光フ
ァイバーが集合線である場合は、光ファイバー素線に複
雑な応力が発生し、これがマイクロベンドの原因となっ
て、光ファイバーの伝送特性の低下が懸念される。
Incidentally, depending on the type of curable resin, curing shrinkage may occur, and curing shrinkage has conventionally been treated as a negative factor in the curing and molding of the resin. However, if the resin is curing and shrinking in the die in the die pultrusion process described above, the curing shrinkage will act to prevent adhesion between the inner surface of the die and the cured resin, and the cured coating layer and the die will be affected by the curing shrinkage. Release the restraint between the inner world,
Since it becomes easy to slide between them, it is advantageous in reducing the above-mentioned drawing tension. However, as the coating layer hardens and shrinks, stress acts on the outer peripheral surface of the optical fiber, and especially when the optical fiber is a bundled wire, complex stress is generated in the optical fiber strands, which causes micro-bending. , there is concern that the transmission characteristics of optical fibers will deteriorate.

このように、ダイス引抜硬化成形法による繊維強化光フ
ァイバーの製造方法においては、ダイス内での樹脂の硬
化収縮は引抜力の低減に有利に作用するが、光ファイバ
ーのマイクロベンドには不利に作用する。
As described above, in the method for manufacturing fiber-reinforced optical fibers using the die pultrusion curing method, curing and shrinkage of the resin within the die has an advantageous effect on reducing the drawing force, but has a disadvantageous effect on the microbending of the optical fiber.

発明の目的 本発明の目的は、これらの相反する事項を調和させるだ
めに上記硬化性樹脂に無機系微粒子を添加し、その硬化
収縮率を調整することにある。
OBJECTS OF THE INVENTION An object of the present invention is to add inorganic fine particles to the above-mentioned curable resin and adjust its curing shrinkage rate in order to reconcile these contradictory matters.

発明の構成 本発明に係る繊維強化光ファイバーの製造方法は、無機
系微粒子を添加せる樹脂を含浸した連続繊維群と共に光
ファイバーをダイスに引き通して樹脂含浸繊維層を成形
すると共にダイス内において樹脂を硬化収縮させつつ硬
化させることを特徴とする方法である。
Structure of the Invention The method for manufacturing a fiber-reinforced optical fiber according to the present invention includes forming a resin-impregnated fiber layer by passing an optical fiber through a die together with a group of continuous fibers impregnated with a resin to which inorganic fine particles are added, and curing the resin in the die. This method is characterized by curing while shrinking.

実施例の説明 本発明において、連続繊維群には、ガラス繊維、カーボ
ン繊維またはポリアミド繊維(単繊維直径5〜25μ)
を使用できる。樹脂には、ポリエステル不飽和樹脂、エ
ポキン樹脂等の熱硬化性樹脂を使用できる。無機系微粒
子には炭酸カルシウム、タルク、水利アルミナ、ガラス
微粉末の一種または二種以上を使用でき、その粒径は、
上記補強繊維(繊維径:5〜25μ)の配列を乱さない
ように10μ以下とすることが望ましい。樹脂に対する
無機系微粒子の添加割合は、通常、20重量Φ以下であ
る。
Description of Examples In the present invention, the continuous fiber group includes glass fiber, carbon fiber, or polyamide fiber (single fiber diameter 5 to 25μ).
can be used. As the resin, thermosetting resins such as polyester unsaturated resins and Epoquine resins can be used. One or more of calcium carbonate, talc, alumina, and glass fine powder can be used as the inorganic fine particles, and the particle size is as follows:
The thickness is preferably 10 μm or less so as not to disturb the arrangement of the reinforcing fibers (fiber diameter: 5 to 25 μm). The ratio of inorganic fine particles added to the resin is usually 20 weight Φ or less.

本発明において、1f1脂含浸繊維層を被覆すべき光フ
ァイバーとしては、光ファイバーの単線(コア上に1@
次クラッド層、シリコーン樹脂等の保獲層を被覆したも
の)、この単線を数本撚合せ、その外部に外皮材(シリ
コーン摺す旨、アクリルウレタン樹脂)を被覆したもの
を用いることができる。
In the present invention, the optical fiber to be coated with the 1f1 fat-impregnated fiber layer is a single optical fiber (1@1 on the core).
(covered with a secondary cladding layer or a retention layer such as silicone resin), or by twisting several of these single wires and coating the outside with an outer skin material (silicone sliding, acrylic urethane resin).

本発明により繊維強化光ファイバーを製造するてば、無
機系微粒子を添加した樹脂浴に連続繊維群を通過させ、
この樹脂含浸繊維群と光ファイバーとを加熱ダイスで一
括引抜き成形すると共にダイス内で樹脂を加熱硬化させ
る。このダイス内での樹脂の硬化時、樹脂が硬化収縮す
るから、ダイス内面と硬化層との接着力が減少し、それ
らの間の拘束力が小さくなり、ダイス引抜力を低減でき
る。この樹脂の硬化収縮により光ファイバーが加圧され
るが、樹脂には無機系微粒子を添加してあり、その硬化
収縮率を小さくできるので、光ファイバーへの加圧力を
充分に低減して、光ファイバーが撚線タイプであっても
、そのマイクロベンドをよく防止できる。
To produce a fiber-reinforced optical fiber according to the present invention, a group of continuous fibers is passed through a resin bath containing inorganic fine particles,
The resin-impregnated fiber group and the optical fiber are collectively pultruded using a heating die, and the resin is heated and hardened within the die. When the resin hardens within the die, the resin hardens and shrinks, so the adhesive force between the inner surface of the die and the cured layer decreases, the binding force between them becomes smaller, and the force for pulling out the die can be reduced. The optical fiber is pressurized due to curing shrinkage of this resin, but since inorganic fine particles are added to the resin, the curing shrinkage rate can be reduced, so the pressure applied to the optical fiber is sufficiently reduced and the optical fiber is twisted. Even if it is a wire type, microbending can be well prevented.

発明の効果 本発明に係る繊維強化光ファイバーの製造方法Vユ上述
した通りの方法であり、樹脂含浸繊維層の硬化収縮率を
無機系微粒子の添加により調整し、ダイス内での樹脂硬
化時での硬化収縮量を減じて光ファイバーに作用する圧
力を小さくしているから、光ファイバーのマイクロベン
ドをよく防止できる。まだ、ダイス内での樹脂硬化時に
樹脂をある程度で収縮させているから、ダイス内での樹
脂硬化にもかかわらず、ダイス引抜力を小さくでき、光
ファイバーの引張損傷を確実に排除できる。
Effects of the Invention Method V for producing a fiber-reinforced optical fiber according to the present invention This method is as described above, and the curing shrinkage rate of the resin-impregnated fiber layer is adjusted by adding inorganic fine particles, and the Since the amount of curing shrinkage is reduced and the pressure acting on the optical fiber is reduced, microbending of the optical fiber can be effectively prevented. However, since the resin is contracted to some extent during resin curing within the die, the die pulling force can be reduced despite the resin curing within the die, and tensile damage to the optical fiber can be reliably eliminated.

Claims (1)

【特許請求の範囲】[Claims] (1)無機系微粒子を添加せる樹脂を含浸した連続繊維
群と共に光ファイバーをダイスに引き通して樹脂含浸繊
維層を成形すると共にダイス内において樹脂を硬化収縮
させつつ硬化させることを特徴とする繊維強化光ファイ
バーの製造方法。
(1) Fiber reinforcement characterized by forming a resin-impregnated fiber layer by passing an optical fiber through a die together with a group of continuous fibers impregnated with a resin to which inorganic fine particles can be added, and curing the resin while curing and shrinking the resin in the die. Method of manufacturing optical fiber.
JP59203397A 1984-09-27 1984-09-27 Production of fiber-reinforced optical fiber Pending JPS6183651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203397A JPS6183651A (en) 1984-09-27 1984-09-27 Production of fiber-reinforced optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203397A JPS6183651A (en) 1984-09-27 1984-09-27 Production of fiber-reinforced optical fiber

Publications (1)

Publication Number Publication Date
JPS6183651A true JPS6183651A (en) 1986-04-28

Family

ID=16473367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203397A Pending JPS6183651A (en) 1984-09-27 1984-09-27 Production of fiber-reinforced optical fiber

Country Status (1)

Country Link
JP (1) JPS6183651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215603A (en) * 2004-02-02 2005-08-11 Omron Corp Optical waveguide module and optical fiber
JP2013537124A (en) * 2010-09-17 2013-09-30 スリーエム イノベイティブ プロパティズ カンパニー Nanoparticle pultrusion processing aid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215603A (en) * 2004-02-02 2005-08-11 Omron Corp Optical waveguide module and optical fiber
JP2013537124A (en) * 2010-09-17 2013-09-30 スリーエム イノベイティブ プロパティズ カンパニー Nanoparticle pultrusion processing aid
US9162398B2 (en) 2010-09-17 2015-10-20 3M Innovative Properties Company Nanoparticle pultrusion processing aide
US9682518B2 (en) 2010-09-17 2017-06-20 3M Innovative Properties Company Nanoparticle pultrusion processing aide

Similar Documents

Publication Publication Date Title
KR900002554B1 (en) Coated optical fiber
US4725453A (en) Method of production of a reinforced optical fiber
JPS6128092A (en) Composite wire body and its production
CA2077019C (en) Optical glass fiber
US4211591A (en) Production of optical fiber cables
JPS6183651A (en) Production of fiber-reinforced optical fiber
JPH09113773A (en) Coated optical fiber ribbon
CA1240870A (en) Coated optical fibers
JPS61221714A (en) Manufacture of fiber reinforced optical fiber
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
CA2096451C (en) Light transmitting glass fiber
JPH0333285A (en) Cable-like composite material and production thereof
JPH0217497B2 (en)
JP3421956B2 (en) Method for producing flexible structural material
JPS6014208A (en) Coated optical fiber
JPS60171246A (en) Manufacture of covered optical fiber
JPS6075810A (en) Reinforced optical fiber
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
JPS62174134A (en) Continuous manufacture of fiber reinforced plastic wire
JP2024061005A (en) Fiber reinforced resin filament
JPS59213647A (en) Preparation of cable core of optical fiber
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JPS6180118A (en) Production of fiber-reinforced multi-core optical fiber
DE3009406A1 (en) Thin cable cord - contg. longitudinal glass fibres cemented to one another with moisture-hardenable one-component pref. cyano-acrylate adhesive
JPH0428082Y2 (en)