JPS6183452A - Intercooler device for internal-combustion engine - Google Patents

Intercooler device for internal-combustion engine

Info

Publication number
JPS6183452A
JPS6183452A JP59204583A JP20458384A JPS6183452A JP S6183452 A JPS6183452 A JP S6183452A JP 59204583 A JP59204583 A JP 59204583A JP 20458384 A JP20458384 A JP 20458384A JP S6183452 A JPS6183452 A JP S6183452A
Authority
JP
Japan
Prior art keywords
refrigerant
air cooler
condenser
air
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59204583A
Other languages
Japanese (ja)
Inventor
Yoshinori Hirano
芳則 平野
Takao Kubotsuka
窪塚 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59204583A priority Critical patent/JPS6183452A/en
Publication of JPS6183452A publication Critical patent/JPS6183452A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To reduce pressure inside the system and make it perform boiling and cooling, by forming a circulating system of a refrigerant of an intercooler via a condenser, a pump and a solenoid selector valve, while letting a part of the refrigerant escape to a reservoir tank by means of the solenoid selector valve in time of engine starting. CONSTITUTION:A refrigerant circulating system is made up of an intercooler 1 installed in the downstream of a supercharger, a pipe 10, a condenser 2, a pipe 16, a pump 3 and solenoid selector valve 17. In time of engine stoppage, the inside the system is filled up with a refrigerant, but when charging temperature after engine starting goes up, the solenoid selector valve 17 opens in a B direction with an signal out of a detector 9, as well as when the pump 3 is driven, water inside the system is made to escape to a reservoir tank 4 whereby the system inside comes to a state of being decompressed and boiling and cooling are produced inside the intercooler 1. In order to produce the specified coolingness, a boiling water surface is detected and controlled by a first liquid level sensor 7, and a radiating state is detected by a second liquid level sensor 15. Air inside the system is drawn out with a solenoid valve 20 opened.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、過給機付内燃機関において過給機通過後の
高温化した吸気を冷却するインタークーラ装置に関し、
とりわけ冷媒の沸騰気化a熱を利用して吸気を冷却する
沸騰冷却式のインタークーラ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an intercooler device for cooling high temperature intake air after passing through a supercharger in a supercharged internal combustion engine.
In particular, the present invention relates to a boiling cooling type intercooler device that cools intake air using heat of boiling vaporization of a refrigerant.

従来の技術 周知のように過給機により圧縮され九吸気はその温度が
上昇し、実質的表充填効率の低下やノッキング(ガソリ
ン機関の場合)4の間ff1t−生じるので、吸気通路
中に空冷式もしくは水冷式のインタークーラ装置上膜け
たものがある。
As is well known in the art, the temperature of the intake air compressed by the supercharger increases, resulting in a substantial reduction in surface charging efficiency and knocking (in the case of gasoline engines), so air cooling is required in the intake passage. Type or water-cooled intercooler device with a membrane on top.

しかし、空冷式のインタークーラ装置は熱交換効率が低
く、大盤であるとともに、車両への装着性が悪い。また
水冷式の装置では空冷式に比べて溝道が著しく複雑化す
るわりには高い冷却性能を得ることができず、多量の冷
却水の循環による出力損失も大きい・ 一万1本出願人は冷却水(冷媒)の非常に大きな気化a
熱を利用して効果的表吸気冷却を行うようにしたインタ
ークー2装[−共に提案している(特開昭57−460
16号公報参照)。こnは。
However, air-cooled intercooler devices have low heat exchange efficiency, are large in size, and are difficult to install on vehicles. Furthermore, compared to air-cooled systems, water-cooled systems have significantly more complicated grooves, but high cooling performance cannot be obtained, and the output loss due to the circulation of a large amount of cooling water is large. Extremely large vaporization of water (refrigerant) a
Two intercoolers designed to effectively cool the surface intake air using heat [-both proposed (Japanese Patent Laid-Open No. 57-460
(See Publication No. 16). This is.

吸気通路に介装した熱交換器(エアクーラ)内に機関冷
却系から分岐した冷却水を貯留しておき、吸気との熱交
換により沸騰気化させて吸気を冷却するとともに、発生
した蒸気は機関冷却後の冷却水と混合して2ジエータに
導くように構成したものである。
Cooling water branched from the engine cooling system is stored in a heat exchanger (air cooler) installed in the intake passage, and is boiled and vaporized through heat exchange with the intake air to cool the intake air, and the generated steam is used to cool the engine. It is configured so that it is mixed with the subsequent cooling water and introduced into the two radiators.

発明が解決しようとする問題点 上記のように冷媒の沸騰気化により吸気の冷却を行う方
式では、冷媒として水を主体とし友ものを用いるとする
と、60〜90℃程度で沸′mを生じさせるために熱交
換器内部七減圧下に置く必要がある。そのため上記公報
記載の装置では駆動もしくは機械駆動による真空ポンプ
や蒸気エゼクタ等からなる減圧装置Iを設けているので
あるが、このように気相冷媒を吸引して熱交換器内部t
′旗圧する構成では、実際には相当に大型の真空ポンプ
等が要求される。しかも、機関の冷却水循環経路の一部
分のみを上記減圧装置によって減圧する構成であるため
、上記減圧装置を常時電動し続ける必要があり、その駆
動に要する損失も無視できない。すなわち、この種の沸
騰冷却式インタークーラ装置を実用化するには、吸気を
冷却するに十分な減圧沸騰状態を如何にして安定的にか
つ効率良く得るかということが、解決すべき大きな問題
となっている。
Problems to be Solved by the Invention In the above-mentioned method of cooling intake air by boiling vaporization of a refrigerant, if water is used as the main refrigerant, boiling occurs at about 60 to 90°C. In order for the inside of the heat exchanger to be placed under seven reduced pressure. For this reason, the device described in the above publication is equipped with a pressure reducing device I consisting of a vacuum pump, a steam ejector, etc. driven by a drive or mechanical drive.
'In a configuration in which the pressure is increased, a fairly large vacuum pump or the like is actually required. Furthermore, since the pressure reducing device is configured to reduce the pressure of only a portion of the cooling water circulation path of the engine, the pressure reducing device must be constantly powered, and the loss required to drive it cannot be ignored. In other words, in order to put this type of boiling cooling intercooler into practical use, a major problem that must be solved is how to stably and efficiently obtain a reduced pressure boiling state sufficient to cool the intake air. It has become.

問題点t−解決するための手段 この発明に係る内燃機関のインタークー2装置は、エア
クーラとコンデンサとを生体として外部から密閉された
冷媒循環系を構成し、全体が略等しい圧力下にある系内
で冷媒の沸騰・1疑縮のサイクルを行わせるようにする
とともに、系内の余剰の液相冷媒を冷媒供給ポンプによ
シ系外のりザーバタンクにJ薫制排出することによって
系内の減圧を行なうようにし九ものである。すなわち、
この発明のインタークーラ装置は、過給機の下流に介装
され、かつ内部に液相冷媒が貯留されるエアクーラと、
このエアクーラの上部から取り出され九冷媒蒸気が導入
され、かつ下部に凝縮した液相冷媒が貯留されるコンデ
ンサと、密閉状態に保たnた上記エアクーラおよび上記
コンデンサに対し、その外部に設けらft7?:IJザ
ーバタンクと、正逆両方向へ送給可能に構成さ1、かつ
−万のポートが上記コンデンサの下部に接続され九冷媒
供給ポンプと、上記冷媒供給ポンプの他方のポート金、
上記エアクーラあるいは上記リザーバタンクに選択的に
連通させる流路切替機構と、上記エアクーラおよび上記
コンデンサからなる密閉系の最上部に接続され、かつ開
閉弁を備え7′?、空気排出通路と金備えて構成さnて
いる。
Problem t - Means for Solving The intercooler 2 device for an internal combustion engine according to the present invention constitutes a refrigerant circulation system that is sealed from the outside using an air cooler and a condenser as a living body, and the entire system is under approximately equal pressure. The pressure inside the system is reduced by causing the refrigerant to undergo a cycle of boiling and 1-condensation within the system, and by discharging excess liquid phase refrigerant within the system to a reservoir tank outside the system using a refrigerant supply pump. There are nine things you should do. That is,
The intercooler device of the present invention includes an air cooler installed downstream of a supercharger and in which a liquid phase refrigerant is stored;
A condenser into which refrigerant vapor taken out from the upper part of the air cooler is introduced and condensed liquid phase refrigerant stored in the lower part, and a ft7 ? : an IJ server tank, a refrigerant supply pump configured to be able to feed in both forward and reverse directions, and ports 1 and -10,000 connected to the lower part of the condenser, and a refrigerant supply pump at the other port of the refrigerant supply pump;
A channel switching mechanism for selectively communicating with the air cooler or the reservoir tank, connected to the top of a closed system consisting of the air cooler and the condenser, and equipped with an on-off valve 7'? , an air exhaust passage and a metal fitting.

作用 上記のインタークーラ装置は、エアクーラおよびコンデ
ンサからなる密閉系内が液相冷媒で略満たされた状態で
運転が開始される。初期は系内が常圧であるが、この状
聾からエアクーラ内の液相冷媒が吸気との熱交換に工っ
で温度上昇して行く一方で、冷媒供給ポンプの作動によ
り流路切替機構を介して系内の液相冷媒が系外のりザー
バタンクに強制的に排出される。こnによシ系内が戚圧
状聾となり、吸気から熱を受けるエアクーラ内で液相冷
媒が減圧PAIiF’a−生じる。一旦減圧状態とな!
しば、系をで閉じ几状態で運転さC1冷媒はエアクーラ
内で多量の熱t=Xつで沸騰気化し、かつコンデンサに
おいて放熱して凝縮回収される。またコンデンサ下部に
回収された液相冷媒は、冷媒供給ポンプにより再度エア
クーラに循環供給される。
Operation The intercooler device described above starts operating in a state in which the closed system consisting of an air cooler and a condenser is substantially filled with liquid phase refrigerant. Initially, the pressure inside the system is normal, but due to this condition, the liquid phase refrigerant in the air cooler exchanges heat with the intake air and the temperature rises, while the flow path switching mechanism changes due to the operation of the refrigerant supply pump. The liquid phase refrigerant inside the system is forcibly discharged to the reservoir tank outside the system. As a result, the inside of the system becomes pressure-deaf, and a liquid phase refrigerant is generated under reduced pressure in the air cooler that receives heat from the intake air. Once the pressure is reduced!
Often, the C1 refrigerant, which is operated in a closed system with the system closed, boils and vaporizes in the air cooler with a large amount of heat t=X, and radiates heat in the condenser to be condensed and recovered. Further, the liquid phase refrigerant collected in the lower part of the condenser is circulated and supplied to the air cooler again by the refrigerant supply pump.

一方、冷媒供給ポンプ金逆方向に駆動することによp系
外のリザーバタンクから系内に液相冷媒?強制導入でき
、空気排出通路を通して系内から不@縮気体である空気
を押し出すことができる。
On the other hand, by driving the refrigerant supply pump in the opposite direction, liquid phase refrigerant is transferred from the reservoir tank outside the P system into the system. It can be forcibly introduced, and air, which is a non-condensable gas, can be pushed out from the system through the air exhaust passage.

この空気排出動作は例えば始動時等において実行される
This air exhaust operation is performed, for example, at the time of startup.

実施例 第1図はこの発明に係るインタークー2装置の一実施例
を示すもので、同図において、1は過給機下流の吸気通
路に介装されたエアクーラ、2は発生蒸気を外気による
冷却によって凝縮するためのコンデンサ、3は電動式の
冷媒供給ポンプ、4は冷媒循環系の系外に設けらCた大
気開放のりザーバタンクを夫々示している。
Embodiment FIG. 1 shows an embodiment of an intercooler 2 device according to the present invention. In the figure, 1 is an air cooler installed in an intake passage downstream of a supercharger, and 2 is an air cooler that converts generated steam into external air. A condenser for condensation by cooling, 3 an electric refrigerant supply pump, and 4 a reservoir tank open to the atmosphere provided outside the refrigerant circulation system.

上記エアクーラ1は、液相冷媒が貯留されるように適宜
な容積を有するタンク状をなし、かつ内部に吸気が通流
する複数のチューブ5が列設さCているとともに、上部
に蒸気出口6が形成さnている。また上記チ二−プ5の
上端まで液相冷媒が厘う:うに冷媒液面の設定レベルを
規定する第1液面七ンサ7が、1I111面のバイパス
部8内に装着さnており、かつ比較的上部に温度センサ
9が装着さnでいる。
The air cooler 1 has a tank shape with an appropriate volume so that liquid phase refrigerant is stored, and has a plurality of tubes 5 arranged in a row through which intake air flows, and a vapor outlet 6 at the top. is formed. In addition, the liquid phase refrigerant reaches the upper end of the chip 5: A first liquid level sensor 7 that defines the set level of the refrigerant liquid level is installed in the bypass section 8 on the 1I111 surface, Moreover, a temperature sensor 9 is attached relatively to the upper part.

コンデンサ2は、エアクーラlの蒸気出口6に蒸気通路
1()を介して接続されたアッパタンク11と、上下方
向に沿った微細なチューブを主体としたコア部12と、
このコア部12にて凝縮さnfc液相冷媒金一時貯留す
るロアメ/クエ3とから構成されており、車両前部など
車両走行風全党は得る位置に設置され、更にその前面あ
るいは背面に強制冷却用の電動式冷却ファン14を備え
ている。
The condenser 2 includes an upper tank 11 connected to the steam outlet 6 of the air cooler 1 via a steam passage 1 ( ), and a core section 12 mainly consisting of a fine tube extending in the vertical direction.
This core part 12 is composed of a NFC liquid phase refrigerant temporarily stored in the core part 12, and is installed in a position such as the front of the vehicle where it can obtain all the wind when the vehicle is running, and is also forced to the front or back of the core part 12. It is equipped with an electric cooling fan 14 for cooling.

まな上記ロアタンク13は、所定レベルに第2液面七ン
サ15が装着されているとともに、こnより下方位置に
冷媒循環通路16の一端が接続さnている。
A second liquid level sensor 15 is attached to the lower tank 13 at a predetermined level, and one end of a refrigerant circulation passage 16 is connected to a position below this.

上記冷媒循環通路16は、その通路中に冷媒供給ポンプ
3i有し、かつ他端が上記エアクーラ1の下部にWc続
さCている。を九上記冷媒供給ポンプ3とエアクーラ1
との間に、三方型の第2ii磁弁17が介装さnており
、該TtfB弁17を介して補助冷媒通路18が分岐し
、その先端がリザーパタ/り4の底部に接続さnでいる
。上記第2[ffl弁17は流路切替機構を構成するも
のでおり、冷媒供給ポンプ3とエアクーラ1とを連通し
た流路Aの状態と、冷媒供給ポンプ3とリザーバタンク
4とを連通した流路Bの状態とに切替可能となっている
。そして冷媒供給ポンプ3としては、正逆両方向に液相
冷媒を圧送できるものが用いらnており、上記の流路A
の状態で冷媒供給ポンプ3fc正方向に駆動すnばロア
タンク13からエアクーラ1へ液相冷媒を循環供給でき
、また流路Bの状態で冷媒供給ポンプ3′t−正方向に
駆動すnばロアタンク13からリザーバタンク4へ液相
冷媒を強制排出できるとともに、逆方向に駆動すnばリ
ザーバタンク4からロアタンク13へ液相冷媒上強制導
入できる。
The refrigerant circulation passage 16 has a refrigerant supply pump 3i therein, and the other end thereof is connected to the lower part of the air cooler 1. 9 above refrigerant supply pump 3 and air cooler 1
A three-way type second magnetic valve 17 is interposed between the TtfB valve 17, and an auxiliary refrigerant passage 18 branches off, the tip of which is connected to the bottom of the reservoir pattern 4. There is. The second ffl valve 17 constitutes a flow path switching mechanism, and controls the state of the flow path A that communicates the refrigerant supply pump 3 and the air cooler 1, and the state of the flow path that communicates the refrigerant supply pump 3 and the reservoir tank 4. It is possible to switch to the state of road B. As the refrigerant supply pump 3, one that can pump the liquid phase refrigerant in both forward and reverse directions is used, and the above-mentioned flow path A is used.
If the refrigerant supply pump 3f is driven in the forward direction in the state of , liquid phase refrigerant can be circulated and supplied from the lower tank 13 to the air cooler 1, and if the refrigerant supply pump 3' is driven in the forward direction in the state of flow path B, the lower tank can be supplied. The liquid phase refrigerant can be forcibly discharged from the reservoir tank 13 to the reservoir tank 4, and by driving in the opposite direction, the liquid phase refrigerant can be forcibly introduced from the reservoir tank 4 to the lower tank 13.

一方、エアクーラ1とコンデンサ2とからなる冷媒循環
系の最上部となるエアクーラ1の蒸気出ロ6上磯部に、
空気排出通路19の一端が接続さnており、かつ空気排
出時に同時にan出る液相冷媒を回収するために、その
先端はリザーバタンク4に接続さnている。また上記空
気排出通路19には常開型の第1電出弁2oが介装さn
ている。
On the other hand, at the uppermost part of the steam outlet 6 of the air cooler 1, which is the top of the refrigerant circulation system consisting of the air cooler 1 and the condenser 2,
One end of the air discharge passage 19 is connected to the air discharge passage 19, and its tip is connected to the reservoir tank 4 in order to recover the liquid phase refrigerant that is discharged at the same time when air is discharged. Further, a normally open first electric valve 2o is interposed in the air discharge passage 19.
ing.

上記の各電磁弁20,17.冷媒供給ポンプ3および冷
却ファン14は、所謂マイクロコンビエータシステムを
用いた制御回路21により所定のプログ2ムに従って制
御されるもので69、以下その制御の内容を機関の始動
がら停止までの流nに沿って説明する。尚、第2図〜第
8図のフローチャートにおいては、第1電磁弁2oおよ
び第2電磁弁17ftr電磁弁■」、「電磁弁■」と略
記し、またエアクーラ1内の冷媒液面をV A / c
内液面」と略記する。
Each of the above solenoid valves 20, 17. The refrigerant supply pump 3 and the cooling fan 14 are controlled according to a predetermined program 21 by a control circuit 21 using a so-called micro combinator system. I will explain along. In the flowcharts of FIGS. 2 to 8, the first solenoid valve 2o and the second solenoid valve 17ftr are abbreviated as "Solenoid valve ■" and "Solenoid valve ■," and the refrigerant liquid level in the air cooler 1 is referred to as VA. /c
It is abbreviated as "inner fluid level".

第2図は制御の(既要を示す70−チャートであって、
機関の始動(イグニッションキー○N)Kより制御が開
始すると、先ず系内温度が所定温度(例えば45°C)
より高いか否かを判断しくステップ1)、所定温度以下
の場合はステップ2の空気排出側@を経てからステップ
3の暖機制御へ進み、以後、温度制御、′6!L面制御
等のステップ4〜ステツプ8の制御ループをキーOFF
時まで繰り返し実行する。一方、所定温度以上であれば
、再始動であることを意味し、経時的な空気の侵入が考
えられないので空気排出制御(7,テップ2)を省略す
る。
FIG. 2 is a 70-chart showing the control (already required),
When control starts from engine start (ignition key ○N) K, the system temperature first reaches a predetermined temperature (for example, 45°C)
If the temperature is lower than a predetermined temperature, the process proceeds to step 3, warm-up control, after passing through step 2, the air discharge side @, and thereafter, temperature control, '6! Key off the control loop of steps 4 to 8 such as L-plane control.
Repeat until the end. On the other hand, if the temperature is higher than the predetermined temperature, it means that the engine is being restarted, and air intrusion over time is not considered, so air exhaust control (7, step 2) is omitted.

また制御実行中にキーOFFの信号が入力されると、第
3図に示す割込処理の判断(ステップ9)に基づきt源
がOFFとなって一連の制御が終了する。
Further, when a key OFF signal is input during control execution, the t source is turned OFF based on the judgment of the interrupt processing shown in FIG. 3 (step 9), and the series of control ends.

第4図はステップ2の空気排出制御のフローチャートt
−示している。この始動の際には、エアクーラ1および
コンデンサ2からなる系内は1通常級相冷媒(例えば水
と不床液の混合液)で殆ど満足された状態にあるが、空
気排出側@は、この状態から更に系内金完全に満水状態
とすることによって不凝縮気体である空気の排出を行う
ものでちる。具体的ICH,第1ta弁20’ir[i
J、第2電磁弁1yir流路B」とした状態(ステップ
11)で冷媒供給ポンプ3を一定時間、例えば数秒ない
し数十程度度、逆方向へ駆動しくステップ12゜1j)
、リザーバタンク4から系内へ液相冷媒を強制導入する
。こAKより系内に残存していた空気は、系上部に果め
らnた後、空気排出通路19?介して系外に排出される
。その後、第1電占弁20全「閉」、冷媒供給ポンプ3
 ′f、OFF (y、テップ14.15)とし、第5
図の暖機制御(ステップA)へ進む。
Figure 4 is a flowchart of air exhaust control in step 2.
- Shows. At this startup, the inside of the system consisting of the air cooler 1 and the condenser 2 is almost completely satisfied with 1 normal phase refrigerant (for example, a mixture of water and bed liquid), but the air discharge side @ Furthermore, by completely filling the system with water, air, which is a non-condensable gas, is discharged. Specific ICH, first ta valve 20'ir[i
J, second solenoid valve 1yir flow path B'' (step 11), drive the refrigerant supply pump 3 in the opposite direction for a certain period of time, for example, several seconds to several tens of degrees (step 12゜1j)
, the liquid phase refrigerant is forcibly introduced into the system from the reservoir tank 4. After the air remaining in the system is discharged to the upper part of the system, it is discharged through the air exhaust passage 19. is discharged from the system through the After that, the first electronic valve 20 is fully closed, and the refrigerant supply pump 3
'f, OFF (y, step 14.15) and the fifth
Proceed to warm-up control (step A) in the figure.

暖機制御は、第1?IE磁弁20t−r閉」、第2電磁
弁17を「流路B」とした状態(ステップ16)でエア
クーラ1内の温度が所定温度に上昇するまで待機するも
のであり、この段階ではエアクーラ1内で沸騰を生じて
いないので、機関が冷間始動された場合に、始動初期に
おいて吸気に対し冷却効果?与える不具合がない。機関
の暖機進行に伴い、エアクーラl内の温度が「設定温度
十αs ℃Jとなると、第2を磁弁17t−「流路A」
に切替えて、この制御を終了する(ステップ17.19
)。
Is warm-up control the first thing? The process waits until the temperature inside the air cooler 1 rises to a predetermined temperature with the IE solenoid valve 20t-r closed and the second solenoid valve 17 set to the flow path B (step 16). Since boiling does not occur within 1, when the engine is cold started, does it have a cooling effect on the intake air in the early stage of startup? There are no problems caused. As the engine warms up, when the temperature inside the air cooler l reaches the set temperature 10 αs ℃J, the second magnetic valve 17t - flow path A
to end this control (step 17.19
).

上記の設定温度は、過給機の性能、過給圧と点火進角特
性、出力性能等の諸要因にょシ決定されるが1通常は6
 fl〜9 (] ’C程度に設定される。またα、は
例えばλ()℃程度の値であり、第2図のステップ6の
判別における値と等しく与えられている。尚、再始動の
場合などに、エアクーラ1内の冷媒液面あるいはロアタ
ンク13内の冷媒液面が過度に低下していることがあり
、この場合には直ちに暖機制御を終了する(ステップ1
8)。
The above set temperature is determined by various factors such as turbocharger performance, boost pressure and ignition advance characteristics, output performance, etc. 1 Normally 6
fl~9(]'C is set to about C. Also, α is a value of about λ()C, for example, and is given equal to the value in the determination in step 6 in Fig. 2. In some cases, the refrigerant liquid level in the air cooler 1 or the refrigerant liquid level in the lower tank 13 may drop excessively, and in this case, warm-up control is immediately terminated (step 1).
8).

暖機制御の終了後は、前述したようにステップ4〜ステ
ツプ80制御ループが繰ジ返されることになるが、この
制御ループは、冷却7ア/14の0N−OFF  によ
りItMAな温度制御を行うステップ4のファン制御(
第6図)と、液相冷媒の循環供給によりエアクーラ1内
の冷媒液面を設定レベル以上に保つステップ5の液rr
J制#(第7図)と、エアクーラ1内温度が巨像とする
設定温度を比較的大きく上廻った場合に、コンデンサ2
における実質的放熱面積の拡大全行うステップ8の液相
冷媒排出側#(コンデンサ水位低下制御)(第8図)と
に大別さCる。
After the warm-up control is completed, the control loop from step 4 to step 80 is repeated as described above, but this control loop performs ItMA temperature control by turning the cooling 7A/14 ON-OFF. Step 4 fan control (
(Fig. 6) and the liquid rr in step 5, which maintains the refrigerant liquid level in the air cooler 1 at a set level or higher by circulating and supplying the liquid phase refrigerant.
J system # (Figure 7), when the temperature inside the air cooler 1 is relatively large above the set temperature for the colossus, the capacitor 2
The liquid phase refrigerant discharge side # (condenser water level lowering control) (FIG. 8) in step 8, in which the substantial heat dissipation area is completely expanded (FIG. 8), is broadly divided into C.

先ず、前述したように、暖機制御(第5図)において検
出温度が「設定温度十α3℃」となった状態でこの制御
ループに進んで来几場合について説明すると、第6図の
ステップ21.22で冷却ファン14iONとするとと
もに、既にステップ6の上限温度を越えているので直ち
に第8図の液相冷媒排出制御に入る。
First, as mentioned above, in the warm-up control (Fig. 5), we will explain the case where the detected temperature is "set temperature 10 α3°C" and the control loop is proceeded to when the ship arrives at the ship. Step 21 in Fig. 6 At .22, the cooling fan 14i is turned on, and since the upper limit temperature in step 6 has already been exceeded, the liquid phase refrigerant discharge control shown in FIG. 8 is immediately started.

この液相冷媒排出制御は、コンデンサ2内のl色相冷媒
を冷媒供給ポンプ3によりリザーバタンク4へ強制的に
排出しくステップ31.;42)、コンデンサ2内の液
面を低下させて放熱能力を高めようとするものである。
This liquid-phase refrigerant discharge control is performed in step 31 by forcibly discharging the l-color refrigerant in the condenser 2 to the reservoir tank 4 by the refrigerant supply pump 3. ;42), the liquid level inside the capacitor 2 is lowered to improve the heat dissipation ability.

ここで系内は当初液相冷媒で満九された状態にあるから
、冷媒供給ポンプ3の作動により系内の液相冷媒が強制
排出されると、系内の圧力が徐々に低下する。従って、
そのときのエアクーラ1内温度つまり「設定温度十α1
℃」の温度下で沸騰が起こり得る値にまで圧力が低下し
てくるとエアクー−)1内で減圧沸譜が開始する。すな
わち、吸気に対する積極的な冷却が行わn始める。、ま
た熱交換によフ発生した蒸気はコンデンサ2に流入し、
ここで凝噛される、系内からある程度の量の液相冷媒が
排出され、沸騰開始によりエアクーラ1内の温度がステ
ップ37の「設定温度十α4℃」以下となnば、上記の
冷媒排出は終了する(ステップ38.ステップ25)。
Since the system is initially filled with liquid phase refrigerant, when the liquid phase refrigerant in the system is forcibly discharged by the operation of the refrigerant supply pump 3, the pressure in the system gradually decreases. Therefore,
At that time, the temperature inside the air cooler 1, that is, the "set temperature 10 α1
When the pressure decreases to a value at which boiling can occur at a temperature of 15°C, reduced pressure boiling begins in the air cooler 1. That is, active cooling of the intake air begins. , and the steam generated by heat exchange flows into the condenser 2,
A certain amount of the liquid phase refrigerant that is coagulated here is discharged from the system, and if the temperature inside the air cooler 1 falls below the "set temperature 4 degrees Celsius" in step 37 due to the start of boiling, the refrigerant is discharged as described above. ends (step 38. step 25).

尚、上記のα4は、液面下降に対する温度変化の応答遅
れを考慮して与えらnた値であり、1.0’C程度に設
定される。また、上記の冷媒排出中にエアクーラ1内で
の沸騰によって冷媒液面が設定レベル以下となつ九場合
には、第21E!弁17を一時「流路A」に切替えてコ
ンデンサ2からエアクーラ1へ液相冷媒の補給を行い(
ステップ33〜35)、第1液面センサ7の設定レベル
に維持する。尚、万一コンデンサ3内の液面を最大限に
低下させても放熱能力不足が回避できずに、第2液面七
ンサ15による設定レベルにまで液面が下降してしまっ
た場合には、蒸気の流出を防止するために、直ちにこの
制御を終了する(ステップ36)。
Note that the above α4 is a value given in consideration of the response delay of temperature change to a drop in the liquid level, and is set to about 1.0'C. In addition, if the refrigerant liquid level falls below the set level due to boiling within the air cooler 1 during the above-mentioned refrigerant discharge, the 21st E! Temporarily switch the valve 17 to "flow path A" to replenish liquid phase refrigerant from the condenser 2 to the air cooler 1 (
Steps 33 to 35), maintaining the level set by the first liquid level sensor 7. In addition, in the event that even if the liquid level in the condenser 3 is lowered to the maximum level, insufficient heat dissipation capacity cannot be avoided and the liquid level falls to the level set by the second liquid level sensor 15. , this control is immediately terminated in order to prevent steam from escaping (step 36).

また同様の理由からステップ7でコンデンサ2内の液面
が第2液面センサ15の設定レベルJE下である場合に
は液相冷媒排出制御は行わない、上記の液相冷媒排出制
御は、始動後一旦試圧沸騰が開始し九後も、負荷の増大
などによりエアクーラ1内温度が「設定温度十α5°C
」以上となnば、再度行わnるのであるが、エアク―う
1の受熱量とコンデン?2の放熱量とが略平衡した定常
状態においては、系内は密閉状悪とされ、単に第6図に
示し次ファン制御(ステップ4)と第7図に示した液面
制御(ステップ5)とを繰り返し行う。上記ファン制御
においては、エアクーラ1内の温度を「設定温度十α1
℃」〜「設定温度−α。
For the same reason, if the liquid level in the condenser 2 is below the set level JE of the second liquid level sensor 15 in step 7, the liquid phase refrigerant discharge control is not performed. Even after test pressure boiling has started, the internal temperature of air cooler 1 remains below the set temperature of 5°C due to an increase in load, etc.
If the above is reached, we will repeat the process again, but the heat received by the air cooler and the condensation? In a steady state where the amount of heat dissipated in step 2 is approximately balanced, the inside of the system is considered to be poorly sealed, and the following fan control (step 4) shown in Fig. 6 and the liquid level control (step 5) shown in Fig. 7 are performed. Repeat. In the above fan control, the temperature inside the air cooler 1 is set to "set temperature + α1".
°C" to "Set temperature - α.

’CJ内に維持するように冷却ファン14のみiON・
OFF制御する。上記α1.α、は夫々0,5℃程度に
設定される。また上記液面制御においては、エアクーラ
1内の液面が第1液面センサ7の設定レベル以下となっ
た場合に、コンデンサ2 gJ+からエアクーラ1へ液
相冷媒を補給し、その液面を設定レベルに維持する。
'In order to maintain the cooling fan 14 in the CJ, only the iON
OFF control. Above α1. α and are set at about 0.5°C, respectively. In addition, in the liquid level control described above, when the liquid level in the air cooler 1 falls below the level set by the first liquid level sensor 7, liquid phase refrigerant is supplied from the condenser 2 gJ+ to the air cooler 1, and the liquid level is set. maintain at the level.

一方1機関のイグニッションキーがOFF操作されると
、ステップ1()の電源OFF Kよって常開型電磁弁
である第1電磁弁20が「開」となるため。
On the other hand, when the ignition key of one engine is turned OFF, the first solenoid valve 20, which is a normally open solenoid valve, becomes "open" due to the power OFF K in step 1().

系内の@度低下つまり圧力低下に伴ってリザーバタンク
4から空気排出通路19t−介して液相冷媒が自然に導
入さn%最終的には系全体が液相冷媒で満たされた状態
となって停止中の空気侵入を防止することができる。
As the temperature in the system decreases, that is, the pressure decreases, liquid refrigerant is naturally introduced from the reservoir tank 4 through the air discharge passage 19t, and eventually the entire system is filled with liquid refrigerant. This can prevent air from entering while the vehicle is stopped.

上記のように、このインタークーラ装置においては、始
動時に液相冷媒で満たさnていた系内から冷媒供給ポン
プ3により液相冷媒をリザーバタンク4に排出すること
によって、エアクーラ1における減圧状at影形成るの
で、比較的小型な小容量のポンプによって十分な減圧を
行うことが可能であり、かつ応答性にも憂nたものとな
る。また、一旦減圧沸騰が開始した後、エアクーラ1の
受熱量とコンデンサ2の放熱量とが平置した状態におい
ては、密閉さn友系内で冷媒の沸騰・凝縮のサイクルが
繰り返されることになるので、減圧状態t−維持するた
めに冷媒供給ポンプ3を作動させる必要はない。
As mentioned above, in this intercooler device, by discharging the liquid phase refrigerant from the system filled with liquid phase refrigerant into the reservoir tank 4 by the refrigerant supply pump 3 at the time of startup, the depressurized state of the air cooler 1 is Therefore, sufficient pressure reduction can be achieved with a relatively small, small-capacity pump, and the responsiveness is also satisfactory. Furthermore, once boiling under reduced pressure has started, when the amount of heat received by the air cooler 1 and the amount of heat released by the condenser 2 are placed parallel to each other, the cycle of boiling and condensation of the refrigerant will be repeated in the closed system. Therefore, there is no need to operate the refrigerant supply pump 3 to maintain the reduced pressure state t-.

尚、上記実施例では冷却ファン14を備えているが、自
動車用機関ではこれを省略して車両走行風のみに依存す
ることも十分に可能である。またエアクーラ1の温度が
過度に低下してもインタークーラ装置としては何ら問題
がないので上記実施例では過度の温度低下に対し何ら対
処していないが、過度の圧力低下によるシールの損傷等
を回避するために、過冷却時にコンデンサ2内の冷媒液
面を高めて放熱量を抑制するようにしても良い。
Although the above embodiment includes a cooling fan 14, it is entirely possible to omit this in an automobile engine and rely solely on the wind when the vehicle is running. Furthermore, even if the temperature of the air cooler 1 drops excessively, there is no problem with the intercooler device, so in the above embodiment, no measures are taken against excessive temperature drops, but damage to seals due to excessive pressure drops can be avoided. In order to do so, the amount of heat dissipation may be suppressed by increasing the refrigerant liquid level in the condenser 2 during supercooling.

こnは例えば冷媒供給ポンプ3の逆方向駆動によって容
易に実現できる。
This can be easily achieved, for example, by driving the refrigerant supply pump 3 in the reverse direction.

祐明の効果 以上の説明で明らかなように、この発明に係る内燃機関
のインタークーラ装喧においては、大型の真空ポンプや
過大な出力損失などt−要さずに、極めて容易にかつ安
定的に所定温度下で減圧沸騰を生じさせることができ1
例えば水上主体とし几冷媒の有する非常に大きな気化潜
熱を利用し九効率の良い吸気冷却を実現することが可能
となる。
Effect of Yumei As is clear from the above explanation, the intercooler installation for an internal combustion engine according to the present invention can be achieved extremely easily and stably without requiring a large vacuum pump or excessive output loss. It is possible to cause reduced pressure boiling at a predetermined temperature in 1
For example, it is possible to realize highly efficient intake air cooling by utilizing the extremely large latent heat of vaporization of a water-based refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成説明図。 第2図、第3図、第4図、第5図、第61・る、第7図
および第89はこの実施例における制御の内容を示す7
0−チャートである。  。 1゛パエアクーラ、2・・・コンデンサ、3・・・冷媒
供給ポンプ、4・・・リザーバタンク、7・・・第1′
H,面センサ、9・・・温度センサ、13・・・ロアタ
ンク、14・・・冷却ファ/、15・・・第2液面セン
サ、16・・・冷媒循環通路、17・・・第2電磁弁、
18・・・補助冷媒通路、19・・・空気排出通路、2
0・・・第1ta弁。 21・・・制御回路。 外2名 第2図 第3図 第6図 第7図
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention. Figures 2, 3, 4, 5, 61, 7, and 89 show the details of control in this embodiment.
0-Chart. . 1. Air cooler, 2. Condenser, 3. Refrigerant supply pump, 4. Reservoir tank, 7. 1'
H, surface sensor, 9... temperature sensor, 13... lower tank, 14... cooling fan/, 15... second liquid level sensor, 16... refrigerant circulation passage, 17... second solenoid valve,
18... Auxiliary refrigerant passage, 19... Air discharge passage, 2
0...1st ta valve. 21...Control circuit. 2 people Figure 2 Figure 3 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)過給機の下流に介装され、かつ内部に液相冷媒が
貯留されるエアクーラと、このエアクーラの上部から取
り出された冷媒蒸気が導入され、かつ下部に凝縮した液
相冷媒が貯留されるコンデンサと、密閉状態に保たれた
上記エアクーラおよび上記コンデンサに対し、その外部
に設けられたリザーバタンクと、正逆両方向へ送給可能
に構成され、かつ一方のポートが上記コンデンサの下部
に接続された冷媒供給ポンプと、上記冷媒供給ポンプの
他方のポートを、上記エアクーラあるいは上記リザーバ
タンクに選択的に連通させる流路切替機構と、上記エア
クーラおよび上記コンデンサからなる密閉系の最上部で
接続され、かつ開閉弁を備えた空気排出通路を備えてな
る内燃機関のインタークーラ装置。
(1) An air cooler that is installed downstream of the supercharger and stores liquid phase refrigerant inside, and the refrigerant vapor taken out from the top of this air cooler is introduced, and the condensed liquid phase refrigerant is stored at the bottom. The air cooler is kept in a sealed state, and the reservoir tank is provided outside of the condenser, and the condenser is configured to be able to feed in both forward and reverse directions, and one port is located at the bottom of the condenser. A connected refrigerant supply pump and a flow path switching mechanism that selectively communicates the other port of the refrigerant supply pump with the air cooler or the reservoir tank are connected at the top of a closed system consisting of the air cooler and the condenser. An intercooler device for an internal combustion engine, comprising an air exhaust passageway equipped with an on-off valve.
JP59204583A 1984-09-29 1984-09-29 Intercooler device for internal-combustion engine Pending JPS6183452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204583A JPS6183452A (en) 1984-09-29 1984-09-29 Intercooler device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204583A JPS6183452A (en) 1984-09-29 1984-09-29 Intercooler device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6183452A true JPS6183452A (en) 1986-04-28

Family

ID=16492869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204583A Pending JPS6183452A (en) 1984-09-29 1984-09-29 Intercooler device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6183452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562258A (en) * 2010-11-10 2012-07-11 株式会社电装 Intake Air Cooling Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562258A (en) * 2010-11-10 2012-07-11 株式会社电装 Intake Air Cooling Device
CN102562258B (en) * 2010-11-10 2015-05-06 株式会社电装 Intake air cooling device

Similar Documents

Publication Publication Date Title
US9341087B2 (en) Arrangement and method for converting thermal energy to mechanical energy
US10232702B2 (en) Thermal management system
US20130067910A1 (en) Waste heat recovery system
KR101704340B1 (en) Hybrid intercooler system integrated with air conditioning system and control method thereof
US3141293A (en) Method and apparatus for refrigerating combustion air for internal combustion engines
JPS61275522A (en) Evaporative cooling device for engine
JPS6093116A (en) Evaporative cooling type intercooler
CN107246739A (en) Hydrogen internal combustion engine automobile high pressure hydrogen refrigerating plant
JPS6183452A (en) Intercooler device for internal-combustion engine
JPS60122223A (en) Evaporative cooler of internal-combustion engine
CN106988863A (en) Use the water cooling intercooler system and its control method of air handling system
WO2019073769A1 (en) Intake air cooling system
JPS6183426A (en) Evaporative cooling apparatus for internal-combustion engine
JPS61101660A (en) Fuel cooling device for motorcar
US10830122B2 (en) Intake and charge air cooling system
EP3168442B1 (en) Boiling cooling device
JPS6183437A (en) Evaporative cooling device for internal-combustion engine
JP2001050055A (en) Engine system and engine charge cooling method
CN110071344A (en) The direct-cooled system of battery case and its control method, medium and electronic equipment
JPS62247123A (en) Intake air cooling device for internal combustion engine
JP2001193563A (en) Intake air cooling method of engine in exhaust heat recovery system
US20240175412A1 (en) Hydrogen engine system
GB2105456A (en) Cooling system
JPS6258018A (en) Intercooler device for engine with supercharger
JPS60132026A (en) Inter-cooler device for engine with supercharger