JPS6183311A - Method of spinning nylon 66 polymer - Google Patents

Method of spinning nylon 66 polymer

Info

Publication number
JPS6183311A
JPS6183311A JP20206984A JP20206984A JPS6183311A JP S6183311 A JPS6183311 A JP S6183311A JP 20206984 A JP20206984 A JP 20206984A JP 20206984 A JP20206984 A JP 20206984A JP S6183311 A JPS6183311 A JP S6183311A
Authority
JP
Japan
Prior art keywords
polymer
nylon
spinning
yarn
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20206984A
Other languages
Japanese (ja)
Inventor
Seiichiro Nagase
長瀬 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20206984A priority Critical patent/JPS6183311A/en
Publication of JPS6183311A publication Critical patent/JPS6183311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of end breakage and fluff, by controlling nylon 66 polymer extruded from a spinneret by a polymerization and a spinning processes in such a way that it has a specific fluorescent parameter, and subjecting the polymer to melt spinning at high speed. CONSTITUTION:Polymerization conditions and/or melt extrusion conditions are selected in such a way that nylon 66 polymer has <=100, preferably <=60 fluorescent parameter, and the polymer is extruded from a spinneret. Then, the spun yarn is cooled, solidified, provided with an oil by the oil feed roll or an oil feed guide of metering type, and wound round a roll at >=4,000 spinning speed m/sec, to give the aimed nylon 66 yarn.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はナイロン66重合体を4000m/分以上の高
速で溶融紡糸する方法に関するものであり、さらに詳し
くは、4000 m /分以上の高速紡糸において、ナ
イロン66繊維を収率良く得る方法に関するものである
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for melt spinning a nylon 66 polymer at a high speed of 4000 m/min or more, and more specifically, a method for melt spinning a nylon 66 polymer at a high speed of 4000 m/min or more. The present invention relates to a method for obtaining nylon 66 fibers in good yield.

〈従来技術〉 ナイロン66をはじめとする熱可塑性合成繊維を溶融紡
糸する場合、紡糸操業性力らびに製品品質を向上させる
ために、溶融重合体中に混入している夾雑物、不純物等
を濾過することは広く行なわれでいる。紡糸速度が高速
変になると、これらの夾雑物の存在が紡糸操業性に及ぼ
す影響は更に太きくなり一段と濾過を強化する必要が生
ずる。
<Prior art> When thermoplastic synthetic fibers such as nylon 66 are melt-spun, contaminants and impurities mixed in the molten polymer must be filtered out in order to improve spinning operability and product quality. It is widely practiced. When the spinning speed increases, the influence of the presence of these impurities on spinning operability becomes even greater, and it becomes necessary to further strengthen filtration.

しかしながら、単に濾過を強化する方法では、短時間で
沢過圧が大きく力る欠点があり実用性に欠    □け
るため、r過圧をあ甘す大きくせずに濾過を強化する方
法として、空隙率が犬きくて沢過径が小さい焼結金属繊
維製板状P材の適用をはじめとして種々の方法が提案さ
れている。
However, the method of simply strengthening filtration has the drawback of generating a large overpressure in a short period of time and is therefore impractical. Therefore, as a method of strengthening filtration without compromising the overpressure Various methods have been proposed, including the application of plate-shaped P material made of sintered metal fibers with a high ratio and a small diameter.

一方、紡糸速度が高速化してくると、特に、ナイロン6
6重合体を4000m/分以上の速度で紡糸する場合に
は濾過を強化しても糸切れ・毛羽が多発し、紡糸性が悪
化してくるという問題も生じてぐるのである。
On the other hand, as the spinning speed increases, especially nylon 6
When the hexapolymer is spun at a speed of 4000 m/min or more, even if filtration is strengthened, yarn breakage and fuzz occur frequently, resulting in problems such as deterioration of spinnability.

〈発明の目的〉 本発明者は、ナイロン66重合体を特別に濾過を強化し
なくても収率良く高速紡糸可能な方法について鋭意検討
を行ない、溶融重合体のけい光バラメータが高速紡糸工
程における糸切れ・毛羽と直接に関係する変数であるこ
とを見出し、本発明に到達したのである。
<Object of the Invention> The present inventor has conducted intensive studies on a method that allows high-yield high-speed spinning of nylon 66 polymer without particularly strengthening filtration, and has determined that the fluorescence parameters of the molten polymer can be determined in the high-speed spinning process. They discovered that this is a variable directly related to thread breakage and fluff, and arrived at the present invention.

〈問題点を解決するための具体的手段〉第1図および第
2図から明らかなように、ナイロン66重合体を400
0 m /分以上の速度で溶融紡糸する場合には、紡糸
口金から吐出されるナイロン66ポリマのけい光パラメ
ータ’1lo(lt下にすることにより、糸切れ・毛羽
の少ない円滑な高速紡糸が可能になるのである。麿お、
図中の数字は吐出されるポリマのけい光パラメータを示
す。
<Specific means for solving the problem> As is clear from Figures 1 and 2, nylon 66 polymer is
When melt-spinning at a speed of 0 m/min or more, the fluorescence parameter of the nylon 66 polymer discharged from the spinneret is lower than 1lo (lt), which enables smooth high-speed spinning with less yarn breakage and fluff. It will become.
The numbers in the figure indicate the fluorescence parameters of the dispensed polymer.

本発明の特徴は紡糸口金から吐出されるナイロン66ポ
リマのけい光パラメータが100以下である点にあるが
、従来のナイロン66ポリマの重合方法や溶融方法を用
いる限りにおいては到底これを満足することができない
のである。
The feature of the present invention is that the fluorescence parameter of the nylon 66 polymer discharged from the spinneret is 100 or less, but this is completely satisfied as long as conventional polymerization and melting methods for nylon 66 polymer are used. It is not possible.

けい光パラメータと高速紡糸工程における糸切れ・毛羽
との関係については必ずしも明確では々いが、次のよう
に推定できる。すなわち、紡糸操業性に大きな影響を及
はすと考えられる溶融重合体中の夾雑物、不純物等の大
半は、ポリマの劣化物、あるいは分解物からなると考え
られるが、けい光パラメータはとhらの量を示している
と思わわる。ポリマの劣化物、いわゆるゲルには、ハー
ドタイプ(以後、ハードゲルと称する)とソフトタイプ
(以後、ソフトゲルと称する)の2種があや、ハードゲ
ルh濾過の強化で取り除ぐことが可能であるが、もう一
方のソフトゲルはその性質からf材中をすり抜けてポリ
マと共に紡糸孔から吐出−ghでしまい、ポリマ中の欠
陥部となると考えられる。又、ポリマの分解物(熱また
は機械的な影響によって生ずる分解物)も、上記ソフト
ゲルと同様に、f材では除去できずポリマ中の欠陥部を
形成すると考えられる。高速紡糸においては、紡糸時の
ポリマの伸張流動によって、あるいは各種ガイドとの摩
擦抵抗によって、生ずる太き々応力の集中が、このソフ
トゲル及び分解物からなると考えられるポリマ中の欠陥
部に生じて、糸切れ・毛羽となることが考えられる。け
い光パラメータが1、OOを越えるポリマには、これら
のソフトゲルや分解物が多く含まれるために、高速紡糸
においては、糸切れ・毛羽が多発すると考えら釣る。
Although the relationship between the fluorescence parameter and yarn breakage and fuzz in the high-speed spinning process is not necessarily clear, it can be estimated as follows. In other words, most of the contaminants and impurities in the molten polymer, which are thought to have a large effect on spinning operability, are considered to be degraded or decomposed products of the polymer, but the fluorescence parameters are It seems to indicate the amount of There are two types of polymer deterioration products, so-called gels: hard type (hereinafter referred to as hard gel) and soft type (hereinafter referred to as soft gel), which can be removed by strengthening hard gel filtration. However, due to its nature, the other soft gel slips through the f-material and is discharged from the spinning hole together with the polymer -gh, which is considered to become a defective part in the polymer. Furthermore, similar to the above-mentioned soft gel, polymer decomposition products (decomposition products caused by thermal or mechanical influence) cannot be removed by the f-material and are thought to form defects in the polymer. During high-speed spinning, large concentrations of stress occur at defects in the polymer, which are thought to be composed of soft gels and decomposition products, due to the elongation flow of the polymer during spinning or due to frictional resistance with various guides. , thread breakage and fuzz may occur. Polymers with a fluorescence parameter exceeding 1.OO contain a large amount of these soft gels and decomposed products, and are thought to cause frequent thread breakage and fluff during high-speed spinning.

なお、ここで言うけい光パラメータとは以下の方法で測
定した値である。
Note that the fluorescence parameter referred to here is a value measured by the following method.

けい光パラメータの測定法 試料1.000±0.003.9を塩酸(7N ) 5
0 ccに溶解して作成した試料溶液を、島津製作所製
のディジタル分光けい光光度計IRF−FIIOにて、
励起波長を340 nmに設定し7てけい光分析を行な
い、けい光波長が420nm近辺に生ずるピークのけい
光強度を読み取り、けい光パラメータとする。なお、試
料溶液温度は30±2℃とする・けい光パラメータが1
00を越える従来のナイロン66ポリマを用いる限りに
おいては、紡糸速度が4000 m 7分を越えると濾
過を強化しても防ぐことができなかった紡糸性の悪化が
、ポリマのけい光パラメータを小さくすることにより、
大巾に改善されるのである。
Measuring method of fluorescence parameters Sample 1.000±0.003.9 was dissolved in hydrochloric acid (7N) 5
The sample solution prepared by dissolving it in 0 cc was analyzed using a digital spectrofluorescence photometer IRF-FIIO manufactured by Shimadzu Corporation.
Fluorescence analysis is performed with the excitation wavelength set to 340 nm, and the fluorescence intensity of the peak that occurs near the fluorescence wavelength of 420 nm is read and used as the fluorescence parameter. In addition, the sample solution temperature is 30±2℃・The fluorescence parameter is 1
As long as conventional nylon 66 polymers exceeding 0.00 are used, when the spinning speed exceeds 4000 m 7 minutes, the deterioration of spinnability, which could not be prevented even with enhanced filtration, reduces the fluorescence parameter of the polymer. By this,
This is a huge improvement.

本発明で言うけい光パラメータが100以下のナイロン
66ポリマは、例えば、1)重合温度を従来(270℃
以上)よシ低ぐすること、2)M金時間が従来30分以
上であったものを25分以下に短縮すること、3)重合
後一旦冷却固化してチップ化することなくそのまま引き
続いて溶融押出しを行なうこと、4)重合後一旦冷却固
化してチップ化した後特別に乾燥することなく直接ベン
ト式押出機を用いて溶融押出しを行なうこと、5)本件
出願人の出願にかかる第3図、第4図に示すような、一
方のスクリューフライトと他方のスクリューフライトの
間の距離がスクリュー径の1/15以下であり、かつス
クリューフライトトップと他方のスクリュー溝底部との
間の距離がスクリュー径の1/15以下である2本のス
クリューA、Bで構成され、かつ水分除去のための少な
くとも1つの開口部1,2.又は3を有する異方向回転
2軸押出機を用いて溶融ポリマを水分を除去しながら進
行させ且つその後配管5中をゆっくりと進行させて重合
を完成する等の方法でもっであるいはこれらの方法を組
み合わせて、重合以降紡糸口金から吐出されるまでの間
におけるポリマの熱履歴や機械的履歴を従来より少なく
することによって得ることができる。
In the present invention, the nylon 66 polymer having a fluorescence parameter of 100 or less can be used, for example, at: 1) a polymerization temperature of 270° C.
2) Shortening the M-gold time from 30 minutes or more to 25 minutes or less; 3) After polymerization, the polymerization time must be cooled and solidified, and then melted without turning into chips. 4) After polymerization, once cooled and solidified to form chips, melt extrusion is performed directly using a vented extruder without special drying; 5) Figure 3 according to the applicant's application. , the distance between one screw flight and the other screw flight is 1/15 or less of the screw diameter, and the distance between the top of the screw flight and the bottom of the other screw groove is as shown in FIG. Consisting of two screws A, B having a diameter of 1/15 or less, and at least one opening 1, 2 . Alternatively, the molten polymer is allowed to proceed while removing water using a twin-screw extruder rotating in opposite directions, and then slowly made to proceed through the pipe 5 to complete the polymerization. In combination, this can be achieved by reducing the thermal and mechanical history of the polymer from polymerization to discharge from a spinneret compared to conventional methods.

本発明においては、けい光パラメータが100以下、好
ま]7くは60以下であることが必要であり、と21を
越えると紡糸工程における糸切h・毛羽の発生が多くな
るので好ましくない。
In the present invention, it is necessary that the fluorescence parameter is 100 or less, preferably 7 or 60 or less, and if it exceeds 21, thread breakage and fuzz will occur frequently in the spinning process, which is not preferred.

本発明方法の概要について説明すると、重合条件および
7才た妊2溶融押出し条件を適切に選択したナイロン6
6ポリマを、紡糸口金がら吐出し、冷却固化をせ、給油
ロール捷たに計量式の給油ガイドにて給油后、その才捷
、あるいは1個以上のゴデツトロールを設置して該ロー
ルで一旦糸条を引き取るか、または引き続いて延伸後、
ワインダーにて巻増る。
To give an overview of the method of the present invention, nylon 6
6. The polymer is discharged from a spinneret, cooled and solidified, and after being refueled with an oil supply roll or a metered oil supply guide, one or more godet rolls are installed and the roll is used to form a yarn. or after subsequent stretching,
The winder increases the volume.

本発明方法によれば、ナイロン66ポリマのけい光パラ
メータを100以下にすることにより、4000 m 
/分以上の高速紡糸において特別な涙過を行なうことな
くナイロン66繊維を極めて収率良く、低コストで得る
ことが可能となるのである。
According to the method of the present invention, by reducing the fluorescence parameter of nylon 66 polymer to 100 or less,
It becomes possible to obtain nylon 66 fibers in extremely high yield and at low cost without performing any special tear filtration during high-speed spinning at speeds of 1/min or more.

つぎに、実施例によって本発明を説明する。Next, the present invention will be explained by examples.

実施例1 第1表に示す条件にて、重合後一旦冷却固化してチップ
化することなくその貰壕引き続いて溶融させたナイロン
66ポリマを、1過面積が28ばであり、1材として1
90メソシユのふるいは通過するが220メツシユのふ
るいは通過しない範囲の粒径(190/220と表示)
をもったサンド5011かつ16メノシユのふるいケよ
通過するが25メツシユのふるいは通過しない範囲の粒
径(16/25と表示)をもったサンド50.9とから
なる混合物を使用した1層を通過させて;1−1過後、
孔径が0.46mmの細孔を10個有する紡糸口金から
、11.5〜21.(1/分の吐出量で押出し、含水油
剤を給油したのち、3000〜5F100 rn /分
の引き取り遠回で巻取り、35デニール10フイラメン
トの糸条を得た。このときの糸切れ状況(紡糸時間は各
条件共100時間、以下同様)、および得られた糸をワ
ーパにて毛羽評価(測定糸長は各条件共1千万m、以下
同様)した結果に第2表の通りであった。なお、紡糸口
金から吐出したポリマの相対粘度(90%の蟻酸溶液に
8.4重量%のポリマを溶解し、25℃において常法に
より測定)(l−r40(以下同様)、濾過圧は140
〜260 K9/ otlであった。寸だ、重合条件と
は常圧重縮合(後重合)条件を言いC以下同様)、溶融
条件とは常圧重縮合以降紡糸口金から吐出する寸でのポ
リマ浴融条件をいう。
Example 1 Under the conditions shown in Table 1, nylon 66 polymer, which was once cooled and solidified after polymerization and subsequently melted without being made into chips, had an overarea of 28 mm and was used as one material.
Particle size range that passes through a 90 mesh sieve but not a 220 mesh sieve (displayed as 190/220)
One layer using a mixture consisting of Sand 5011 with a 16-mesh sieve and Sand 50.9 with a particle size in the range (indicated as 16/25) that passes through a 16-mesh sieve but does not pass through a 25-mesh sieve. Let it pass; After passing 1-1,
From a spinneret with 10 pores with a pore diameter of 0.46 mm, 11.5 to 21. (After extruding at a discharge rate of 1/min, and lubricating with a water-containing oil agent, winding was carried out at a winding speed of 3000 to 5F100 rn/min, to obtain a yarn of 35 denier and 10 filaments.The yarn breakage at this time (spinning The time was 100 hours for each condition, the same applies hereafter), and the obtained yarn was evaluated for fluff using a warper (the measured yarn length was 10 million m under each condition, the same applies below).The results are as shown in Table 2. In addition, the relative viscosity of the polymer discharged from the spinneret (8.4% by weight of polymer dissolved in 90% formic acid solution, measured by a conventional method at 25°C) (l-r40 (the same applies hereinafter), the filtration pressure is 140
~260 K9/otl. The polymerization conditions refer to normal pressure polycondensation (postpolymerization) conditions (same as below), and the melting conditions refer to polymer bath melting conditions at the point where the polymer is discharged from a spinneret after atmospheric pressure polycondensation.

本発明方法を用いたときには、糸切れ・毛羽が極めて少
なく、紡糸性ならびに糸品質が非常に良好であった。
When the method of the present invention was used, yarn breakage and fuzz were extremely small, and the spinnability and yarn quality were very good.

第1表 第2表 比較例1 第3表に示す条件にて、重合后いったん冷却固化してチ
ップ化し乾燥を行なった后押出機にて溶融させたナイロ
ン66ポリマを、粒径が190/220のサンド80g
、かつ粒径が16/25のサンド20gとからなる混合
物を使用したf層でf過後、紡糸口金から吐出する以外
は実施例1と同じ条件で35デニール10フイラメント
の糸条を得た。このときの糸切わ状況および毛羽評価は
第4表の通りであった。このときの溶融条件とは押出機
にて溶融してから紡糸口金から吐出するまでのポリマの
溶融条件をいう。また、このときの濾過圧は220〜4
1oKy/m?を示した。
Table 1 Table 2 Comparative Example 1 Under the conditions shown in Table 3, after polymerization, nylon 66 polymer was cooled, solidified, chipped, and dried, and then melted in an extruder with a particle size of 190/220. sandwich 80g
A 35-denier 10-filament yarn was obtained under the same conditions as in Example 1 except that the mixture was filtrated with an F-layer using a mixture consisting of , and 20 g of sand having a particle size of 16/25, and then discharged from a spinneret. The yarn cut condition and fuzz evaluation at this time were as shown in Table 4. The melting conditions at this time refer to the melting conditions of the polymer from when it is melted in an extruder until it is discharged from a spinneret. Also, the filtration pressure at this time is 220~4
1oKy/m? showed that.

第4表から明らかなように、けい光パラメータが太きい
と、r過を強化しても、引き取り速度が4000 m 
/分以上になると糸切りおよび毛羽が増加してくる。
As is clear from Table 4, when the fluorescence parameter is large, even if the r-passage is strengthened, the take-up speed is 4000 m.
/ min or more, thread breakage and fluffing increase.

第3表 第4表 実施例2 粒径が190/220のサンド80g1かっ粒径が16
/25のサンド20&とからなる混合物を使用したf層
で濾過後、紡糸口金からポリマを吐出する以外は実施例
1と同様にして35デニール10フイラメントの糸条を
得た。このときの糸切れ状況および毛羽評価の結果を第
5表に示した。
Table 3 Table 4 Example 2 80g of sand with a particle size of 190/220 per particle size of 16
A yarn of 35 denier 10 filaments was obtained in the same manner as in Example 1, except that the polymer was discharged from the spinneret after filtration through the f-layer using a mixture of Sand 20 & Sand 20 & 35 denier. Table 5 shows the yarn breakage situation and the results of fuzz evaluation at this time.

実施例1と比較すると、濾過の強弱の差による紡糸性お
よび糸品質の差は極めて小さく、けい光パラメータの小
さいナイロン66ポリマを用いhげ、引き取り速度が4
000 m /分以上になっても、特別な濾過を行なわ
なくとも病状率で高品質の糸条が得られることが明らか
である。
Compared with Example 1, the difference in spinnability and yarn quality due to the difference in filtration strength is extremely small.
000 m/min or more, it is clear that a high quality yarn with a disease rate can be obtained without special filtration.

第5表 実施例3 第6表に示す条件にて、第3図、第4図に示す装置を用
いて、水分を除去し力から重合後一旦冷却固化してチッ
プ化し乾燥を行なった後、押出機にて溶融させたナイロ
ン66ポリマを使用する以外は実施例1と同じ条件で3
5デニール10フイラメントの糸条を得た。このときの
糸切れ状況および毛羽評価は第7表の通りであった。本
発明方法を用いたときには、紡糸性ならびに糸品質が良
好であることが明らかである。
Table 5 Example 3 Under the conditions shown in Table 6, using the apparatus shown in FIGS. 3 and 4, water was removed and polymerization was performed, which was then cooled and solidified to form chips and dried. 3 under the same conditions as Example 1 except for using nylon 66 polymer melted in an extruder.
A yarn of 5 denier and 10 filaments was obtained. The yarn breakage situation and fuzz evaluation at this time were as shown in Table 7. It is clear that the spinnability and yarn quality are good when the method of the invention is used.

第6表 第7表 なお重合時の工程条件は次の通りであった。Table 6 Table 7 The process conditions during polymerization were as follows.

1、押出し機 スクリュー径: D=65朋 スクリューの長さ/直径: L/D=38溝深さ+12
11+11 フライトピッチ:55闘 間隙11 、11’: 0.5朋 間隙12 : 0.5朋 開口部1の長さ:L/D=3 開口部2の長さ: L/D=6 スクリュー径端から開口部2捷での長さ:L/D=52
、配管5:熱媒により加熱可能な二重管で内径25闘×
長さ3m 3、蟻酸相対粘IJ(’VR=20のポリヘキサメチレ
ンアジパミドの溶融ポリマをギアポンプにて計量し方か
ら供給口3より供給した。開口部1.2の内部圧力は4
00トルに保持し、又押出機及び配管の熱媒温度は28
0℃に保持した。
1. Extruder screw diameter: D = 65 mm Screw length/diameter: L/D = 38 groove depth + 12
11+11 Flight pitch: 55 Gap 11, 11': 0.5 Gap 12: 0.5 Length of opening 1: L/D=3 Length of opening 2: L/D=6 Screw diameter end Length from 2-way opening: L/D=52
, Piping 5: Double pipe that can be heated with a heating medium, inner diameter 25 ×
A molten polymer of polyhexamethylene adipamide having a length of 3 m 3 and a formic acid relative viscosity IJ ('VR = 20) was metered using a gear pump and supplied from the supply port 3.The internal pressure of the opening 1.2 was 4
The temperature of the heating medium in the extruder and piping was 28.0 Torr.
It was kept at 0°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は紡糸速度と発生する糸切れ回数・
毛羽個数との関係に及はすけい光パラメータの影響を示
したグラフである。第3図および第4図は、本発明の実
施に好適に使用される重合装置の一例である成力向回転
2軸押出機を示す3.1i−よび2・・・開口部、3・
・・ポリマ供給口、4・・・スクリュー、5・・・配管
、 11:l、−よび11′・・・一方のスクリューフライ
トと他方のスクリューフライトとの隙間、 12・・・スクリューフライトトップと他方のスクリー
ー溝底部の間の隙問い 第1図 紡糸速度
Figures 1 and 2 show the spinning speed and the number of yarn breakages that occur.
It is a graph showing the influence of the flashlight parameter on the relationship with the number of fuzz. 3 and 4 show a force-directed rotating twin-screw extruder, which is an example of a polymerization apparatus suitably used in carrying out the present invention. 3.1i- and 2... openings, 3.
...Polymer supply port, 4...Screw, 5...Piping, 11:l, - and 11'...Gap between one screw flight and the other screw flight, 12...Screw flight top and Gap between the bottom of the other scree groove Figure 1 Spinning speed

Claims (1)

【特許請求の範囲】[Claims] 1、紡糸口金から吐出されるナイロン66ポリマが10
0以下のけい光パラメータを有するように重合工程及び
/又は紡糸工程でポリマを制御し、これを4000m/
分以上の紡糸速度で溶融紡糸することを特徴とするナイ
ロン66重合体の紡糸方法。
1. The nylon 66 polymer discharged from the spinneret is 10
The polymer is controlled in the polymerization and/or spinning process to have a fluorescence parameter of less than 0, and is
A method for spinning a nylon 66 polymer, characterized by performing melt spinning at a spinning speed of 1 minute or more.
JP20206984A 1984-09-28 1984-09-28 Method of spinning nylon 66 polymer Pending JPS6183311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20206984A JPS6183311A (en) 1984-09-28 1984-09-28 Method of spinning nylon 66 polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20206984A JPS6183311A (en) 1984-09-28 1984-09-28 Method of spinning nylon 66 polymer

Publications (1)

Publication Number Publication Date
JPS6183311A true JPS6183311A (en) 1986-04-26

Family

ID=16451429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20206984A Pending JPS6183311A (en) 1984-09-28 1984-09-28 Method of spinning nylon 66 polymer

Country Status (1)

Country Link
JP (1) JPS6183311A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160813A (en) * 1978-06-02 1979-12-19 Toray Ind Inc Melt spinning method of nylon 66
JPS5860012A (en) * 1981-10-06 1983-04-09 Toray Ind Inc Polyhexamethylene adipamide fiber and its preparation
JPS5926517A (en) * 1982-07-31 1984-02-10 Asahi Chem Ind Co Ltd Preparation of nylon 66 yarn having high strength and high modulus
JPS5938042A (en) * 1982-08-09 1984-03-01 フイリツプス・ペトロリユ−ム・コンパニ− Method and device for manufacturing polymer substance at grade of extrusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160813A (en) * 1978-06-02 1979-12-19 Toray Ind Inc Melt spinning method of nylon 66
JPS5860012A (en) * 1981-10-06 1983-04-09 Toray Ind Inc Polyhexamethylene adipamide fiber and its preparation
JPS5926517A (en) * 1982-07-31 1984-02-10 Asahi Chem Ind Co Ltd Preparation of nylon 66 yarn having high strength and high modulus
JPS5938042A (en) * 1982-08-09 1984-03-01 フイリツプス・ペトロリユ−ム・コンパニ− Method and device for manufacturing polymer substance at grade of extrusion

Similar Documents

Publication Publication Date Title
US4551296A (en) Producing high tenacity, high modulus crystalline article such as fiber or film
EP0213208B1 (en) Polyethylene multifilament yarn
US4413110A (en) High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
US4536536A (en) High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
KR100272028B1 (en) Method for spinning a polybenzazole fiber.
CA1174818A (en) Process of producing high tenacity, high modulus crystalline thermoplastic article, and novel product fibers
US6902804B2 (en) Lyocell multifilament
KR100210294B1 (en) Method for the production of a shaped cellulose articles
KR100412246B1 (en) Non-crimping polyester monofilament and process for producing same
US4560743A (en) Poly(P-phenyleneterephthalamide) fibers
EP0660888B1 (en) Process for the production of fine denier cellulose acetate fibers
JP4593667B2 (en) Industrial cellulose fiber
EP2171138B1 (en) Spinning method
JP2922327B2 (en) Extra fine aramid fiber
JPS6183311A (en) Method of spinning nylon 66 polymer
NO20023310L (en) Apparatus for the production of optical fibers made of semi-crystalline polymers
JPH07508317A (en) Polyketone yarn and method of manufacturing it
US3506753A (en) Melt-spinning low viscosity polymers
KR100311966B1 (en) Industrial polyester fiber and preparation method thereof
JP3234295B2 (en) Method for producing polyhexamethylene adipamide fiber
JP2001518152A (en) Production of monofilament made of polyamide and monofilament for industrial fiber
KR100231195B1 (en) Spinning spinneret device for fineness mono filament
EP1520066B1 (en) A process for making stable polytrimethylene terephthalate packages
JPS62125011A (en) Production of poly(p-phenyleneterephthalamide) multifilament yarn
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus