JPS6180716A - Power system - Google Patents

Power system

Info

Publication number
JPS6180716A
JPS6180716A JP20170384A JP20170384A JPS6180716A JP S6180716 A JPS6180716 A JP S6180716A JP 20170384 A JP20170384 A JP 20170384A JP 20170384 A JP20170384 A JP 20170384A JP S6180716 A JPS6180716 A JP S6180716A
Authority
JP
Japan
Prior art keywords
current
capacitance
shunt reactor
accident
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20170384A
Other languages
Japanese (ja)
Inventor
野原 哈夫
益雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20170384A priority Critical patent/JPS6180716A/en
Publication of JPS6180716A publication Critical patent/JPS6180716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Keying Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は静電容量の大きい送電線の母線に補償用分路リ
アクトルの設置されている系統の電流零なしの解消に好
適な方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method suitable for eliminating current zero in a system in which a compensating shunt reactor is installed on the bus bar of a power transmission line with a large capacitance.

〔発明の背景〕[Background of the invention]

例えば、特開昭54−159651号公報に示されるよ
うに、電力系統事故時に発生する直流が交流の振巾よυ
も大きいと、交流の数サイクルにわたって直流の零点が
生じないという現象の発生し得ることが知られている。
For example, as shown in Japanese Unexamined Patent Publication No. 54-159651, the amplitude of DC generated during a power system accident is υ
It is known that if the current is large, a phenomenon may occur in which the zero point of the DC does not occur for several cycles of the AC.

この電流零なし現象下においては事故によるしゃ断器の
開放指令がしゃ断器に与えられている。
Under this non-zero current phenomenon, a command to open the breaker due to an accident is given to the breaker.

この場合しゃ断器は機械的に極間を開放しているが、電
気的には直流が印加され続けておシ、アーク状態となシ
接点溶解などのしゃ断器破損、を引き起す可能性がある
。またこのこと以上に、長時間事故除去できないことに
よる電力系統の安定度悪化が問題となる。
In this case, the breaker mechanically opens the gap between the poles, but electrically, direct current continues to be applied, which may lead to an arc and damage to the breaker such as melting of the contacts. . Moreover, even more problematic is the deterioration of the stability of the power system due to the inability to eliminate faults for a long time.

この電流零なし現象の発生をいかにして阻止し、発生後
はいかにしてこれを速やかに減衰せしめ、あるいは保護
継電器をいかに対応せしめるかといった観点から種々の
検討が成されているが、これといった決めてのないのが
実情である。
Various studies have been conducted from the viewpoint of how to prevent this no-current phenomenon from occurring, how to quickly attenuate it after it occurs, and how to make protective relays respond to it. The reality is that nothing has been decided yet.

この電流零なし現象は、超高圧系統で発生し易いといわ
れている。
This non-zero current phenomenon is said to easily occur in ultra-high voltage systems.

〔発明の目的〕[Purpose of the invention]

以上のことから本発明の目的は、静電容量の大きい送電
線において、電流零なしを速やかに解消することのでき
る方式を提供することにある。
In light of the above, an object of the present invention is to provide a system that can quickly eliminate the problem of zero current in a power transmission line with a large capacitance.

〔発明の概要〕[Summary of the invention]

超高圧送電系統においては、耐圧不平衡等の補償の為に
母線や送電線と大地間に分路リアクトルを設置すること
が不可欠である。本発明では分路リアクトルに直列に静
電容量を設置することにより、送電線事故時に分路リア
クトルよシ流出する電流を低次周波振動をおこさせ、こ
の定流により、遮断器を通過する1流に零点を生ずるよ
うにしたものである。
In ultra-high voltage power transmission systems, it is essential to install a shunt reactor between the bus bar or transmission line and the ground to compensate for voltage imbalance. In the present invention, by installing a capacitance in series with the shunt reactor, the current flowing out of the shunt reactor in the event of a transmission line fault is caused to undergo low-order frequency oscillations, and this constant current causes the current flowing out of the shunt reactor to pass through the circuit breaker. It is designed to generate a zero point in the flow.

〔発明の実施例〕[Embodiments of the invention]

本発明の適用される超高圧系統の一例を第2図により説
明する。同図は電気所Slが変圧器T71゜T r 2
、送電線L l−L sを介して電気所S2に電力を送
っている例を示したものでめシ、送電線Ll−Lsの両
端には遮断器CBt〜CB sが設置されている。その
上、送電線の静電容量を補償するため、上記遮断器CB
の母線側に分路リアクトルLhI−Lhsが設置されて
いる。このような系統において、送電線Lt〜L3の受
電側の点、この図ではたとえば地点Fで2線短絡が生ず
ると、送1毬側の遅れ相、遮断器CB2を通過する電流
に電流零なしが生ずる。この理由は、事故潮流によシ定
まる直流分及び事故発生時の電圧により定まる直流及び
送電線の静電容量により生ずる直流分が相加わる方向に
作用するためである。母線側に分路リアクトルを設置し
た場合には、第4図に示すように、過渡的には、分路リ
アクトルLに事故時に流れていた電流が事故点Fを介し
て流出する(図中のiz)ため、事故発生位相によって
は、過渡直流分電流の増大をまねき、電流零なしは発生
しやすくなる。同図でE、L、は各々等価電源及び電源
側の等価リアクタンスを示す。このため、事故の検出に
よシ遮断器CBに遮断指令を発しても、遮断器は開放で
きず、遮断器が破損することも懸念されている。本発明
は前記の欠点を補なおうとするものである。第1図は、
本発明の実施例を示したものであり、分路リアクトル以
外は、第1図と同一である。この図において、分路リア
クトルLhI−Lhaに直列に静電容量C,−C,を設
けであることが本発明の特徴である。
An example of an ultra-high pressure system to which the present invention is applied will be explained with reference to FIG. In the same figure, the electric station Sl has a transformer T71°T r 2
, which shows an example in which power is sent to the electric station S2 via the power transmission line Ll-Ls, and circuit breakers CBt to CBs are installed at both ends of the power transmission line Ll-Ls. Moreover, in order to compensate for the capacitance of the transmission line, the circuit breaker CB
Shunt reactors LhI-Lhs are installed on the busbar side. In such a system, if a two-wire short circuit occurs at a point on the power receiving side of the power transmission lines Lt to L3, for example at point F in this figure, the current passing through the lagging phase on the transmission side and the circuit breaker CB2 will have no current zero. occurs. The reason for this is that the DC component determined by the accident power flow, the DC component determined by the voltage at the time of the accident, and the DC component generated by the capacitance of the power transmission line act in the direction in which they are added to each other. When a shunt reactor is installed on the busbar side, as shown in Figure 4, the current that was flowing through the shunt reactor L at the time of the accident flows out through the fault point F (as shown in Figure 4). iz) Therefore, depending on the phase in which the fault occurs, the transient DC current increases, making it more likely that the current will not reach zero. In the figure, E and L indicate an equivalent power supply and an equivalent reactance on the power supply side, respectively. For this reason, even if a shutdown command is issued to the circuit breaker CB upon detection of an accident, the circuit breaker cannot be opened, and there is a concern that the circuit breaker may be damaged. The present invention seeks to compensate for the aforementioned drawbacks. Figure 1 shows
This figure shows an embodiment of the present invention, and is the same as FIG. 1 except for the shunt reactor. In this figure, the feature of the present invention is that capacitances C and -C are provided in series with the shunt reactors LhI-Lha.

第3図は本発明で提案する分路リアクトルの効果を説明
するためのものであシ、同図でCは静電容量である。事
故時に分路リアクトルを流れていた電流によシ事故点F
を介して過渡直流分電流itが流れるのは第4図と同様
である。第3図の場合には、この外、静電容量Cに充電
されていた電圧により、低次調波電流が生ずる。この時
の周波数fは f=          ・・・・・・・・・・・・α
)2π辺− で定まり、この直流の大きさは、次のように定まる。事
故前の静電容量Cの社流工。は となる。ここで、■は分路リアクトル端子電圧、ω。は
商用角周波数とする。この電流よυ、静電容量の電圧V
。は となる。(1)、 (3)式より、事故時に生ずる低次
調波電流ifiは となる。このように静電容量によシ定まる周波数と大き
さを有する電流となる。
FIG. 3 is for explaining the effect of the shunt reactor proposed by the present invention, and in the same figure, C is the capacitance. Fault point F caused by the current flowing through the shunt reactor at the time of the fault
As in FIG. 4, the transient DC current it flows through . In the case of FIG. 3, in addition to this, a lower harmonic current is generated due to the voltage charged in the capacitance C. The frequency f at this time is f= ・・・・・・・・・α
)2π side−, and the magnitude of this direct current is determined as follows. Company-style engineering of capacitance C before the accident. Hato becomes. Here, ■ is the shunt reactor terminal voltage, ω. is the commercial angular frequency. This current υ, capacitance voltage V
. Hato becomes. From equations (1) and (3), the low-order harmonic current ifi that occurs during an accident is as follows. In this way, the current has a frequency and magnitude determined by the capacitance.

(4)式に示す電流が遮断器を通過するため、零なしは
急速に消滅する。
Since the current shown in equation (4) passes through the circuit breaker, the non-zero state rapidly disappears.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分路リアクトルに直列に静電容量を設
置するのみで、電流零なしを解消することができ、経済
的効果は極めて大きい。
According to the present invention, by simply installing a capacitance in series with the shunt reactor, it is possible to solve the problem of zero current, and the economic effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超高圧送電系統、第2図は従来の
系統、第31図は本発明に係る解析図、第4図は従来の
解析図である。 SL+″S2・・・電気所、Tri l Trffi 
・・・変圧器、LI〜L3・・・送電線、CB I−C
B s・・・遮断器、Lhl〜Lbs 、 Lb1′〜
Lh6′・・・分路リアクトル、F・・・事故点を示す
FIG. 1 is an ultra-high voltage power transmission system according to the present invention, FIG. 2 is a conventional system, FIG. 31 is an analysis diagram according to the present invention, and FIG. 4 is a conventional analysis diagram. SL+''S2...Electric station, Tri l Trffi
...Transformer, LI~L3...Power line, CB I-C
Bs...Breaker, Lhl~Lbs, Lb1'~
Lh6'...Shunt reactor, F...Indicates the accident point.

Claims (1)

【特許請求の範囲】[Claims] 1、送電線の静電容量を補償するために設置する分路リ
アクトルに直列に静電容量を設けることを特徴とする電
力系統。
1. An electric power system characterized in that a capacitance is provided in series with a shunt reactor installed to compensate for the capacitance of a power transmission line.
JP20170384A 1984-09-28 1984-09-28 Power system Pending JPS6180716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20170384A JPS6180716A (en) 1984-09-28 1984-09-28 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20170384A JPS6180716A (en) 1984-09-28 1984-09-28 Power system

Publications (1)

Publication Number Publication Date
JPS6180716A true JPS6180716A (en) 1986-04-24

Family

ID=16445517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20170384A Pending JPS6180716A (en) 1984-09-28 1984-09-28 Power system

Country Status (1)

Country Link
JP (1) JPS6180716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529227A (en) * 2005-01-31 2008-07-31 シーメンス アクチエンゲゼルシヤフト Method and apparatus for determining the closing time of an electrical switchgear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529227A (en) * 2005-01-31 2008-07-31 シーメンス アクチエンゲゼルシヤフト Method and apparatus for determining the closing time of an electrical switchgear

Similar Documents

Publication Publication Date Title
JPS60255012A (en) Protecting relay
JPS6126428A (en) Method of reducing dynamic overvoltage in ac power source line
JPS6180716A (en) Power system
CN110299704A (en) A kind of the power distribution network intelligent trouble processing unit and method of grid type
Sannino Power quality improvement in an industrial plant with motor load by installing a static transfer switch
JPS62104427A (en) Branching reactor
Henville Power quality impacts on protective relays-and vice versa
JP3317373B2 (en) Overvoltage protection device for reactive power compensator
US2378800A (en) Protective system
RU2284084C2 (en) Device for limiting parameters of electromagnetic processes in high-voltage networks
Jones et al. A 10,000-kVA series capacitor improves voltage on 66-kV line supplying large electric furnace load
Report EHV protection problems
US1997597A (en) System of a. c. distribution
Zulaski Shunt capacitor bank protection methods
JP2000092708A (en) Harmonic current suppression device
JPH0356099A (en) Field test method for generator
JP2005192337A (en) Transformer protecting relay device
JP3107594B2 (en) Control device for winding induction machine
JP5389065B2 (en) Isolated operation detection system and isolated operation detection method for distributed power supply
US2386035A (en) Protective system
SU1385184A1 (en) Device for relay protection against short circuits of power transmission lines in non-full phase mode
JPS58139634A (en) Device for protecting branch reactor
US2973461A (en) Single-compensator three-phase relays
RU1836774C (en) Internal surge and ferroresonance process limiting arrangement for systems with compensated capacitive fault-to earth current
SU1078528A1 (en) Device for protecting three-phase electrical installation against open phase