JPS6179942A - Method and device for geothermal electric power generation - Google Patents

Method and device for geothermal electric power generation

Info

Publication number
JPS6179942A
JPS6179942A JP59200961A JP20096184A JPS6179942A JP S6179942 A JPS6179942 A JP S6179942A JP 59200961 A JP59200961 A JP 59200961A JP 20096184 A JP20096184 A JP 20096184A JP S6179942 A JPS6179942 A JP S6179942A
Authority
JP
Japan
Prior art keywords
heat
power generation
underground
geothermal
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200961A
Other languages
Japanese (ja)
Inventor
Tadashi Hane
義 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP59200961A priority Critical patent/JPS6179942A/en
Publication of JPS6179942A publication Critical patent/JPS6179942A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)

Abstract

PURPOSE:To make a water circulating system for taking out geotherm unnecessary and reduce the installation cost of the plant by a method wherein one end of a heat pipe is inserted into a geotherm reserving layer under the ground and the geothermal is taken out to converter the heat energy thereof into an electric energy. CONSTITUTION:The heat pipe 15 is consisting of heat absorbing fins 16, heat radiating fins 17 and a heat insulating member 18. Heat, absorbed from the geotherm reserving layer B by heat absorbing fins 16, is transferred to heat transfer medium through the heat radiating fins 17 and the heat exchanger 20 of a steam cycle 13 and rotates a turbine 21 to operate an electric generator 14 and generate electric power. The working fluid, effected an adiabatic expansion in the turbine 21, is sent into a condenser 22 and, thereafter, is sent into the heat exchanger 20 by a pump 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、地中の熱エネルギを地上へ取り出しこれを
心気エネルギに変換する地熱発電方法Sよび装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a geothermal power generation method S and apparatus for extracting thermal energy from underground to the ground and converting it into aerobic energy.

〔従来の技術〕[Conventional technology]

従来の地熱発電手段としては、地中の高温蒸気および熱
水を直接利用する地熱発電手段と、地中の乾燥高温岩体
に水を注入しこれによって高温になった蒸気S工び熱水
を利用する地熱発電手段とがある。
Conventional geothermal power generation methods include geothermal power generation methods that directly utilize high-temperature steam and hot water underground, and geothermal power generation methods that use hot water directly by injecting water into dry, high-temperature rock underground. There are geothermal power generation methods that can be used.

前者は、地中σ〕マグマ等により加熱された高温蒸気S
よび熱水を含む層に対して井戸を翔り、この層から地上
へ噴出してくる高温蒸気および熱水の熱エネルギを電気
エネルギに変換して発電″fるもので、主に温泉地帯で
実用比されている。
The former is high-temperature steam S heated by underground σ] magma, etc.
This is a method that generates electricity by running a well into a layer containing hot springs and hot water, and converting the thermal energy of high-temperature steam and hot water that gushes out from this layer to the ground into electrical energy, and is mainly used in hot spring areas. Practical comparison has been made.

後者は、第2図に示しにもので、これについて説明する
と、まず、水は含んでいないが高温に加熱されている地
中の就床高温岩体【に対して注入井2および生産井3を
掘削し、注入井2の先4部から生産井3の先端部にかげ
て、***によって、乾深高は老体【に亀裂を生じさせる
。そして、ポンプ4によって配管5を通して注入井2に
水化圧送すると、水は注入井2の先端から乾燥高温岩体
【に形成された亀裂を通り、ここで高温に加島され、生
産井3を通って地上へ回収される。この回収された熱水
および高温蒸気?発電プラント6に送り、ここで熱エネ
ルギな取り出し1発電に行ない、この水を再び配管5を
通してポンプ4に送る。
The latter is shown in Figure 2, and to explain it, first, injection well 2 and production well 3 are is drilled and blasted from the tip of the injection well 2 to the tip of the production well 3, causing cracks in the old body. Then, when the water is pumped to the injection well 2 through the pipe 5 by the pump 4, the water passes from the tip of the injection well 2 through cracks formed in the dry high-temperature rock, where it is heated to a high temperature, and passes through the production well 3. and recovered to the ground. This recovered hot water and high temperature steam? The water is sent to a power generation plant 6, where thermal energy is extracted and used for power generation, and this water is sent to the pump 4 through the pipe 5 again.

このようにして地下の乾燥高温岩体lの熱エネルギを地
上に収り出すことができ、発’jtK使用することがで
きる。
In this way, the thermal energy of the dry, high-temperature rock bodies underground can be brought to the surface and used as energy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの従来の地熱発電手段は、前者にあっては、高温
蒸気Sよび熱水が多量に安定的に供給されることが必要
であり、シフeがって建設適地が限定されるという問題
点があった。!!た。地中から取り出した高温蒸気Hシ
び熱水はヒ素や亜1m酸等のM害vlJ質を含んでいる
ため、この廃水を処理する必要がある。その手段として
、この廃水を強制のに地中再注入する遣水システムを設
ける場合があるが、この手段は廃水?再注水する井戸を
別に必要とし、廃水を圧入する2めのポンプ等の動力設
備を必要とするため建設コストが高くなるという問題点
があった。
These conventional geothermal power generation means have the problem that the former requires a stable supply of large amounts of high-temperature steam and hot water, which limits the suitable construction sites. was there. ! ! Ta. The high-temperature steam hot water taken out from underground contains harmful substances such as arsenic and 1m2 acid, so it is necessary to treat this wastewater. One way to do this is to install a water supply system that forces this wastewater to be reinjected into the ground, but is this method suitable for wastewater? There was a problem in that construction costs were high because a separate well was required to re-inject water, and power equipment such as a second pump was required to pressurize the wastewater.

一方、後者にあっては、注入井2の先端部と生産井3の
先端部との間に***によってうまく亀裂を形成させるこ
とが難しいという問題点があり、ま7S:、水を地下へ
注入し循環するために必要なポンプ等の設備が必要であ
り、このため膜製が大聖化しコスト高になるという問題
点があった。
On the other hand, in the latter case, there is a problem that it is difficult to properly form a crack between the tip of the injection well 2 and the tip of the production well 3 by blasting. This requires equipment such as pumps for circulation, which leads to the problem that membranes are preferred and costs are high.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記の問題点を解決するための手段として
、第1の発明では、ヒートサイホンの−mY地中の地熱
貯留層に挿入し、他端から熱エネルギを取り出し、この
熱エネルギYtfiエネルギに変換するものであり、第
2の発明では、一端を地中の地熱貯留層に挿入したヒー
トサイホン?設け、このヒートサイホンの他端から熱エ
ネルギを収り出し発電機を作動させる蒸気サイクルを&
Jけ、この蒸気サイクルにエリ駆動される発It機を設
けた構成である。
In the first invention, as a means for solving the above problems, the heat syphon is inserted into a -mY underground geothermal reservoir, heat energy is taken out from the other end, and this heat energy Ytfi energy is In the second invention, a heat syphon with one end inserted into an underground geothermal reservoir is used. A steam cycle is established to extract heat energy from the other end of this heat siphon and operate a generator.
This steam cycle is equipped with an electrically driven generator.

〔実施例〕〔Example〕

第1図は、この発明の一実施例を示す図である。 FIG. 1 is a diagram showing an embodiment of the present invention.

コ(’)図に′j6いて、符号11は地熱発電装置を示
し、地熱発電装[11は地熱取り出し装置12−と蒸気
サイクル【3と発電機14とn)ら構成され、地熱取り
出し装置【2はヒートサイホン15と吸熱フィン16と
放熱フィン17と断熱部材18とから構成されている。
In the figure, 11 indicates a geothermal power generation device, and the geothermal power generation device [11 is composed of a geothermal extraction device 12-, a steam cycle [3, a generator 14, and n], and a geothermal power generation device 2 is composed of a heat siphon 15, heat absorption fins 16, heat radiation fins 17, and a heat insulating member 18.

ヒートサイホン15は1両端部が密閉されたパイプ状の
外殻L9と、この外殻【9の内部に密封された伝熱流体
(図示せず〕とから構成されている。ヒートティホン1
5の下端部L5a(一端)の外周面には吸熱フィン16
が連設され、ヒートサイホン15り上端部L5b(他端
〕の外周面には放熱フィン17が連設され、ヒートサイ
ホン15の中間部tSCの外周面には中空円筒状のll
!f?熱部材L8が嵌合して装置されている。一方、岩
mAには、地表から地中の熱水JIB(地熱貯留層]に
至るほぼ垂直の掘削坑Cが形成されている。ヒートサイ
ホン【5は、その下端部tSaを熱水層B中に位置させ
、その中間部tsca’堀削坑C掘削位置させて配設さ
れている。
The heat siphon 15 is composed of a pipe-shaped outer shell L9 with both ends sealed, and a heat transfer fluid (not shown) sealed inside the outer shell L9.
5, there are heat absorbing fins 16 on the outer peripheral surface of the lower end L5a (one end).
A heat dissipation fin 17 is continuously provided on the outer circumferential surface of the upper end L5b (the other end) of the heat siphon 15, and a hollow cylindrical fin is provided on the outer circumferential surface of the intermediate portion tSC of the heat siphon 15.
! f? A thermal member L8 is fitted and installed. On the other hand, in rock mA, an almost vertical excavation hole C has been formed that extends from the ground surface to underground hydrothermal water JIB (geothermal reservoir). It is located at the middle part of the excavation hole C.

蒸気サイクルL3は、熱交換器20と、タービン2Lと
復水器22とポンプ23とからなり、この順に作動流体
が循環し蒸気サイクルL3を構成している。熱交換器2
0の内部には、前記ヒートサイホン15の上端部L5b
お工び放熱フィンE7が配設されている。タービン2L
の出力軸には発を機14の入力軸が連結されている。
The steam cycle L3 includes a heat exchanger 20, a turbine 2L, a condenser 22, and a pump 23, and working fluid circulates in this order to form the steam cycle L3. heat exchanger 2
0 has an upper end L5b of the heat siphon 15.
A built-in heat dissipation fin E7 is provided. Turbine 2L
The input shaft of the starter 14 is connected to the output shaft of the starter.

このような構成の地熱発′uL装(tLtり作用化説明
すると、高温の熱水j−Bσ〕熱は、ヒートサイホン【
5の下端部15aicgいて、吸熱フィンL6お裏び外
殻【9を通して伝熱媒体に伝えられる。
Geothermal heat generation equipment with such a configuration (to explain, high-temperature hot water j-Bσ) heat is generated by a heat siphon [
The heat is transmitted to the heat transfer medium through the lower end 15aicg of the heat absorbing fin L6 and the outer shell [9].

この熱によって伝熱媒体は沸騰し、その蒸気はヒートサ
イホン15内を上昇し、上端部15fiに到達する。こ
こにおいて、伝熱媒体の蒸気はその熱を放熱フィン17
お工び外殻19化通して熱交換器20内の蒸気サイクル
13の作動流体に伝える。
This heat causes the heat transfer medium to boil, and its vapor rises within the heat siphon 15 and reaches the upper end 15fi. Here, the steam of the heat transfer medium transfers its heat to the radiation fins 17.
The working fluid of the steam cycle 13 in the heat exchanger 20 is transmitted through the fabricated shell 19 .

そし【、伝熱媒体自体は冷瀬されて液fヒし、ヒートサ
イホン【5の外殻L9の内壁を伝って下降しヒートサイ
ホン【5の下端部tSaに至り、ここで再び加熱され沸
騰する。このような作用をくり返すことにより、熱水層
Bの熱を蒸気サイクル13の熱交換器20に伝える。ヱ
た、ヒートティホン[5の中間部L5Cには断熱部材1
8が外側に装着されているため、中間部15Cでの熱損
失を少な(することができる。
Then, the heat transfer medium itself is cooled and becomes liquid, and it descends along the inner wall of the outer shell L9 of the heat siphon [5] and reaches the lower end tSa of the heat siphon [5, where it is heated again and boils. . By repeating such actions, the heat of the hydrothermal layer B is transferred to the heat exchanger 20 of the steam cycle 13. Insulation member 1 is installed in the middle part L5C of Heat Typhon [5]
8 is mounted on the outside, heat loss at the intermediate portion 15C can be reduced.

蒸気サイクル13の作動流体は、熱交換器20において
、ヒートサイホン菖5の放熱フィン17および外殻L9
’a’通して熱?受けることにより。
The working fluid of the steam cycle 13 is supplied to the heat exchanger 20 through the heat radiating fins 17 of the heat syphon 5 and the outer shell L9.
Heat through 'a'? By receiving.

過熱蒸気となってタービン21に送られる。この過熱蒸
気となった作動流体はタービン2Iで断熱膨張し熱エネ
ルギを機械エネルギに変換し、タービンの出力@ ’t
 rOJ伝させる。これに工ってタービンの出力軸に運
、結され2発電機[4が作動し1機械エネルギが電気エ
ネルギに変換され、発電が行なわれる。タービン21で
断熱膨張しに作動流体は、復水器22に送られ、ここで
冷却され液化し、再びポンプ23によって熱交換器20
に送られ60このようなサイクルをくり返すことに工り
熱交換器20に伝えられ2熱エネルギはタービン2【で
機械エネルギに変換され、さらに発電機【4で電気エネ
ルギに変換され1発電が行なわれる。
It becomes superheated steam and is sent to the turbine 21. This working fluid, which has become superheated steam, expands adiabatically in the turbine 2I, converts thermal energy into mechanical energy, and outputs the turbine @'t
I'll let rOJ know. In this way, two generators [4] connected to the output shaft of the turbine are activated, converting mechanical energy into electrical energy and generating electricity. The working fluid that has been adiabatically expanded in the turbine 21 is sent to the condenser 22, where it is cooled and liquefied, and then transferred again to the heat exchanger 20 by the pump 23.
By repeating this cycle, the heat energy is transferred to the heat exchanger 20, where it is converted into mechanical energy by the turbine 2, and then converted into electrical energy by the generator 4, generating 1 power. It is done.

尚、この実施例では、地□下の熱水層Bを熱源としてい
るが、地下の熱源は熱水層Bに限る必賛はな(、高温蒸
気の層でもよく、またこれ以外でもヒートサイホン15
の下gsfl115aの周囲が高温であり、熱を採喉で
きる状態であれば、熱水や蒸気がなくてもよい。
In this example, the heat source is the hydrothermal layer B underground, but the underground heat source is not limited to the hydrothermal layer B (a layer of high-temperature steam may also be used, and heat syphons may also be used) 15
As long as the surroundings of the lower gsfl 115a are at a high temperature and can collect heat, there is no need for hot water or steam.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ヒートサイホンの−gtaを地中の
地熱貯留1−へ挿入し、他端から熱エネルギを取り出し
、この熱エネルギ’rl!気エネルギに変換するように
したから、地下の地熱貯留層は熱水や高温蒸気の層に限
る必要はなく、高温状態でありささえすればよ<、シた
がって1発を設備の建設適地を広範凹に選ぶことができ
、建設リスクを低減でざるという効果を奏する。また、
このことから、従来の地熱発電設備とり葦用がOT罷で
1発電設層の熱回収効率を高めるのに役に立つ。また、
地中から有害物質を含んだ熱水や蒸気を嘔り出さないた
め、使用後の廃水を地中にもどす遣水システムを必要と
せず、したがって設備規模を小さくすることができ、建
設コストfK:低減でさるという幼果を奏する。ざらに
、地中の掘削工事としては、地中の地熱貯留層に対して
掘削坑を設けるだけでよ(、難工事を必要とせず、技術
的に容易であり。
According to this invention, the -gta of the heat siphon is inserted into the underground geothermal storage 1-, thermal energy is taken out from the other end, and this thermal energy 'rl! Since the underground geothermal reservoir does not have to be limited to a layer of hot water or high-temperature steam, it only needs to be in a high temperature state and supported. It can be selected to have a wide concave shape, which has the effect of reducing construction risks. Also,
From this, conventional geothermal power generation facility reeds are useful for increasing the heat recovery efficiency of one power generation facility layer by OT stripping. Also,
Since hot water and steam containing harmful substances are not discharged from underground, there is no need for a water distribution system that returns used wastewater underground, and the scale of equipment can therefore be reduced, reducing construction costs fK: It plays a young fruit called Desaru. In general, underground excavation work simply requires drilling a hole into an underground geothermal reservoir (it does not require any difficult construction work and is technically easy).

また地中に水を注入したり、地中n)ら熱水?(み上げ
る必要がないため、そのための動刃設備が不要であると
いう効果を奏する。1z、ヒートサイホン自体は、掘削
坑に苅して挿抜がでさるため、他の掘削坑での再使用が
でき、したがって経済的であるという効果も萎する。
Also, injecting water into the ground, or hot water from underground? (Since there is no need to lift it up, there is no need for moving blade equipment. 1z. The heat siphon itself can be inserted and removed by plowing it into the excavation pit, so it can be reused in other excavation pits. Therefore, the economical effect is also diminished.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施例であるヒートサイホンを利用
した地熱発電装置を示す図であり、第2図は従来の地熱
発電装置を示す図である。 B・・・熱水層(地熱貯留層)、kl・・・地熱発4装
置。 【3・・・蒸気ブイタル、14・・・発電機、15・・
・ヒートサイホン、L5a・・・下gfa部(一端)、
1、5 b・・・上端部(他端)。
FIG. 1 is a diagram showing a geothermal power generation device using a heat siphon, which is an embodiment of the invention, and FIG. 2 is a diagram showing a conventional geothermal power generation device. B... Hydrothermal layer (geothermal reservoir), kl... 4 geothermal power generation devices. [3... Steam generator, 14... Generator, 15...
・Heat siphon, L5a...lower gfa part (one end),
1, 5 b... Upper end (other end).

Claims (2)

【特許請求の範囲】[Claims] (1)地中の熱エネルギを地上へ取り出しこれを利用し
て発電するに際し、ヒートサイホンの一端を地中の地熱
貯留層に挿入し、他端から熱エネルギを取り出し、この
熱エネルギを電気エネルギに交換することを特徴とする
地熱発電方法。
(1) When extracting thermal energy from underground to the surface and using it to generate electricity, one end of the heat syphon is inserted into a geothermal reservoir underground, thermal energy is extracted from the other end, and this thermal energy is converted into electrical energy. A geothermal power generation method characterized by replacing.
(2)地中の熱エネルギを地上へ取り出しこれを利用し
て発電する地熱発電装置において、一端を地中の地熱貯
留層に挿入したヒートサイホンと、このヒートサイホン
の他端から熱エネルギを取り出し発電機を作動させる蒸
気サイクルと、この蒸気サイクルにより駆動される発電
機とを具備してなる地熱発電装置。
(2) In a geothermal power generation device that extracts thermal energy from underground and uses it to generate electricity, a heat siphon is inserted into a geothermal reservoir underground at one end, and thermal energy is extracted from the other end of this heat siphon. A geothermal power generation device comprising a steam cycle that operates a generator, and a generator driven by this steam cycle.
JP59200961A 1984-09-26 1984-09-26 Method and device for geothermal electric power generation Pending JPS6179942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200961A JPS6179942A (en) 1984-09-26 1984-09-26 Method and device for geothermal electric power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200961A JPS6179942A (en) 1984-09-26 1984-09-26 Method and device for geothermal electric power generation

Publications (1)

Publication Number Publication Date
JPS6179942A true JPS6179942A (en) 1986-04-23

Family

ID=16433186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200961A Pending JPS6179942A (en) 1984-09-26 1984-09-26 Method and device for geothermal electric power generation

Country Status (1)

Country Link
JP (1) JPS6179942A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259767A (en) * 1988-04-06 1989-10-17 Fujikura Ltd Geothermal power generation device
US5143150A (en) * 1992-02-10 1992-09-01 Johnston James M Geothermal heat converter
WO2002035091A2 (en) * 2000-10-20 2002-05-02 Orra Corporation Method and apparatus for converting natural heat energy into another form of energy
KR20030096468A (en) * 2002-06-12 2003-12-31 이수현 Heating and air-conditioning device by subterranean heat
JP2007154863A (en) * 2005-12-07 2007-06-21 Yoshiro Sato Earth hot water power generator
JP2011524484A (en) * 2008-06-13 2011-09-01 ジェイ. パレラ,マイケル System and method for acquiring geothermal heat for generating electricity from a drilled well
KR101078647B1 (en) 2009-09-30 2011-11-01 삼성중공업 주식회사 Electronic power plant using hot water gushing out of seabed
CZ303076B6 (en) * 2007-08-24 2012-03-21 Fite, A. S. Device for utilization of mine excavations for production of peak electric power by pumped-storage systems
US8534069B2 (en) 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
JP2016070516A (en) * 2014-09-26 2016-05-09 鹿島建設株式会社 Magma power generation system, and method of manufacturing magma power generation system
US9423158B2 (en) 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127143A (en) * 1980-03-10 1981-10-05 Kawasaki Heavy Ind Ltd Heat pipe type subterranean heat pickup apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127143A (en) * 1980-03-10 1981-10-05 Kawasaki Heavy Ind Ltd Heat pipe type subterranean heat pickup apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259767A (en) * 1988-04-06 1989-10-17 Fujikura Ltd Geothermal power generation device
US5143150A (en) * 1992-02-10 1992-09-01 Johnston James M Geothermal heat converter
WO2002035091A2 (en) * 2000-10-20 2002-05-02 Orra Corporation Method and apparatus for converting natural heat energy into another form of energy
WO2002035091A3 (en) * 2000-10-20 2003-09-25 Orra Corp Method and apparatus for converting natural heat energy into another form of energy
KR20030096468A (en) * 2002-06-12 2003-12-31 이수현 Heating and air-conditioning device by subterranean heat
JP2007154863A (en) * 2005-12-07 2007-06-21 Yoshiro Sato Earth hot water power generator
CZ303076B6 (en) * 2007-08-24 2012-03-21 Fite, A. S. Device for utilization of mine excavations for production of peak electric power by pumped-storage systems
JP2011524484A (en) * 2008-06-13 2011-09-01 ジェイ. パレラ,マイケル System and method for acquiring geothermal heat for generating electricity from a drilled well
US8616000B2 (en) 2008-06-13 2013-12-31 Michael J. Parrella System and method of capturing geothermal heat from within a drilled well to generate electricity
US9404480B2 (en) 2008-06-13 2016-08-02 Pardev, Llc System and method of capturing geothermal heat from within a drilled well to generate electricity
US8534069B2 (en) 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US9423158B2 (en) 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
KR101078647B1 (en) 2009-09-30 2011-11-01 삼성중공업 주식회사 Electronic power plant using hot water gushing out of seabed
JP2016070516A (en) * 2014-09-26 2016-05-09 鹿島建設株式会社 Magma power generation system, and method of manufacturing magma power generation system

Similar Documents

Publication Publication Date Title
US3911683A (en) Efficient and nonpolluting method for recovering geothermal heat energy
US5515679A (en) Geothermal heat mining and utilization
US6546726B1 (en) Gravity power plant
US3986362A (en) Geothermal power plant with intermediate superheating and simultaneous generation of thermal and electrical energy
JPS6179942A (en) Method and device for geothermal electric power generation
US20120144829A1 (en) Direct exchange geothermal refrigerant power advanced generating system
SE8104570L (en) ROTATING ENGINE
US20120012280A1 (en) Device and method for generating steam with a high level of efficiency
US4343999A (en) Steam-electrical generating system using geothermal heat source
UA127718C2 (en) Geothermal energy device
SU745327A1 (en) Electric machine
NZ227052A (en) Steam turbine power plant: condenser elevated above turbine outlet
CN1206097A (en) Geothermal energy extracting method and equipment
CN113374659A (en) Hot dry rock power generation system based on carbon dioxide closed cycle
US4426849A (en) Gravity head reheat method
Dugger Ocean thermal energy conversion
GB1324929A (en) Geothermal energy system
SU1681031A1 (en) Ocean thermal electric power station
RU2096696C1 (en) Geothermal-to-electric energy converter
CN107100809A (en) Seabed geothermal source combines the square law device generated electricity with seawater cold energy
FR2297334A1 (en) Electric energy generation using geothermal energy - using deep shaft with steam passing up insulated jacket to compression chamber
RU2110019C1 (en) Steam-turbine plant for geothermal power station
CN208236588U (en) It is a kind of to utilize solar energy and the concatenated association circulating power generation system of geothermal energy
RU9901U1 (en) SOLAR POWER INSTALLATION
CN208966377U (en) A kind of Electric Factory Air-Cooling Island high-temperature steam liquefaction auxiliary device