JPS6176800A - Steam ejector - Google Patents

Steam ejector

Info

Publication number
JPS6176800A
JPS6176800A JP19868484A JP19868484A JPS6176800A JP S6176800 A JPS6176800 A JP S6176800A JP 19868484 A JP19868484 A JP 19868484A JP 19868484 A JP19868484 A JP 19868484A JP S6176800 A JPS6176800 A JP S6176800A
Authority
JP
Japan
Prior art keywords
steam
nozzle
ejector
pressure
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19868484A
Other languages
Japanese (ja)
Inventor
Shigeru Mitsuoka
光岡 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKOU GIKEN KK
Original Assignee
SAKOU GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKOU GIKEN KK filed Critical SAKOU GIKEN KK
Priority to JP19868484A priority Critical patent/JPS6176800A/en
Publication of JPS6176800A publication Critical patent/JPS6176800A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/461Adjustable nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To convert the speed energy efficiently into pressure energy through special diffuser having reducing area variation of double tube flow path by arranging a conical buffle block in steam ejector pipe. CONSTITUTION:The nozzle expansion ratio (working steam pressure in front of nozzle/suction pressure) is made variable through adjustment of the positional relation between the tip of conical buffle block 9 arranged immediately in the rear of nozzle 3 and the end of nozzle 3 while the flow path area between a diffuser 8 and a buffle block 9 is made variable through variation of positional relation between the buffle block 9 arranged in the diffuser 8 and the steam flow along the axis of diffuser 8 and to achieve energy save effect of working steam through regulation of said expansion ratio and the flow path area ratio of diffuser 8 resulting in efficient conversion of speed energy into pressure energy.

Description

【発明の詳細な説明】 本発明は蒸気エゼクタ−のデフユーザー構造を変えで、
内部に円(准形若しくは多角錐形、更には之等に準じた
形状を持つ段階変化を持ったパンフルブロックを設置す
る事によって、創り出される二重管路の縮小面積効果と
、パンフルブロックの流体に与える大きな流動抵抗によ
って、高い速度エネルギーを持った通過する流体の、有
効な圧力のエネルギーへの転換を計る事を目的とした、
特殊エゼクタ−である。
[Detailed description of the invention] The present invention changes the differential user structure of the steam ejector,
By installing a Panful block with a step change in shape similar to a circle (quasi-shaped or polygonal pyramid, etc.) inside, the reduced area effect of the double pipe is created, and the Panful block The purpose is to convert the passing fluid with high velocity energy into effective pressure energy by applying a large flow resistance to the fluid.
It is a special ejector.

デフユーザー内に吹き込まれた高速の蒸気流れは、吸入
室内より抽気ガスを吸引して、デフユーザー内を直進す
るが、以後に設置されでいる円錐形状のバッフルブロッ
クによって、次第に縮小する二重円筒流路と円錐形状か
ら来る通過流体への抵抗現象から流体は外周にあるデフ
ユーザー内壁に押し付けられ乍ら通り抜けて、従来の単
一管の挟まり流路とは太き(相違し、ノズルより膨張し
て高速で走り出した蒸気の直後に壁面押圧のショックを
与える効果を斉らし速度エネルギーの急速な圧力のエネ
ルギーへの効率の高い変換を可能にする事が出来た。
The high-speed steam flow blown into the differential user sucks bleed gas from the suction chamber and travels straight through the differential user, but the cone-shaped baffle block installed later creates a double cylinder that gradually shrinks. Due to the resistance phenomenon to the passing fluid caused by the flow path and conical shape, the fluid passes through while being pressed against the inner wall of the differential user on the outer periphery. By simultaneously applying the shock of wall pressure immediately after the steam starts running at high speed, we were able to achieve a rapid and highly efficient conversion of velocity energy into pressure energy.

従来のエゼクタ−は第1図に表わしである様に4末細1
 ’) テフユーサー、5.デフユーザースロート、6
末広がりデフユーザー、の3つのデフユーザーの組合せ
によって出来上って其の全長りは、デフユーザースロー
ト内径の21@程度となっておりノズルから噴出した蒸
気流は比較的長い距離を使って圧力の回復を計っている
が、本エゼクタ−は出来る丈短い距離で油気と圧縮を行
う事を目標としで、種々の実験、試行の結果、従来のエ
ゼクタ−デフユーザー長さの約1/内至115の寸法比
率を持った、直管を主体としたデフユーザーと1円錐形
バッフルブロックとの組合せによるデフユーザーの使用
による、速度エネルギーの圧力エネルギーへの有効な転
換を可能にし、大きな成果を挙げる事が出来た。
The conventional ejector has four tapered ends as shown in Figure 1.
') Tefyuuser, 5. Def user throat, 6
The result is a combination of three differential users, a differential user that spreads out at the end, and its total length is about 21@ of the inner diameter of the differential user throat, and the steam flow ejected from the nozzle uses a relatively long distance to reduce the pressure. However, the aim of this ejector is to compress oil and air in the shortest distance possible, and as a result of various experiments and trials, the length of the conventional ejector is approximately 1/2 of the length of the differential user. By using a differential user with a dimensional ratio of 115, which is a combination of a straight pipe-based differential user and one conical baffle block, it is possible to effectively convert velocity energy into pressure energy, achieving great results. I was able to do something.

第2図はハソフルブロックを持った蒸気エゼクタ−の略
図であり符号8は直管を主体としたデフユーザー、9は
円錐形バッフルブロック、10は同ブロックの取付用軸
、11は同取付軸受金具である。
Figure 2 is a schematic diagram of a steam ejector with a full block, where 8 is a differential user mainly consisting of straight pipes, 9 is a conical baffle block, 10 is the shaft for mounting the block, and 11 is the mounting bearing. It is a metal fitting.

尚りはデフユーザー長さ、Dはデフユーザー内径を示し
L/Dの値は3内部4前後の値を示す。
Here, D indicates the differential user length, D indicates the differential user inner diameter, and the value of L/D is around 3 internal 4.

エゼクタ−は長期間に渉る安定した性能を保持させる必
要があり、企画設計の時点で考慮される負荷条件の最も
苛酷な条件を満足させる必要があり、使用蒸気量の増加
によって之等の対応を行う事となり、実際の稼動に際し
ての対応としては、一度設定された条件下で稼動する事
で、此の面から来る、余佑取り過ぎの弊害も出で、エネ
ルギーの労費に連がる可能性も大きい。
The ejector must maintain stable performance over a long period of time, and must satisfy the most severe load conditions considered at the time of planning and design. As a response to the actual operation, once the system is operated under the set conditions, the negative effects of using too much surplus space will arise from this aspect, which will lead to higher labor costs for energy. There's a big possibility.

本エゼクタ−は之等の負荷条件の変動要素と共に、地域
的には大きく条件も異なるが、季節の変化に従って起る
、凝縮用水の温度差異も大きく、3〜4度Cから、32
〜33度C1東南アジア地域等に至っては、36度〜4
0度Cと異なる温度を示し之によって起きる放射圧力の
変化、吸入圧力への影響等極めて大きな省エネルギーへ
の重要な変動要因である。
In addition to these variable load conditions, the conditions for this ejector vary greatly depending on the region, but the temperature of the condensing water that occurs due to seasonal changes is also large, ranging from 3 to 4 degrees Celsius to 32 degrees Celsius.
~33 degrees C1 In Southeast Asia, it is 36 degrees ~4
The change in radiation pressure caused by the temperature difference from 0 degrees Celsius and the influence on suction pressure are important fluctuation factors for extremely large energy savings.

本エゼクタ−に於ては之等の性能を効率の高い蒸気使用
量によって稼動させる事を目標とした。
The aim of this ejector was to achieve the above performance with a highly efficient amount of steam usage.

エゼクタ−性能に重要な役割を果しでいる次の3つの要
素を調節可能の設備とする事が出来、之等3つの条件調
節の総合効果によって効率の良い、高性能の蒸気エゼク
タ−を造り出す事が出来た。
The following three elements that play an important role in ejector performance can be adjusted, and the overall effect of adjusting these three conditions creates an efficient and high-performance steam ejector. I was able to do something.

=1−膨張比  ノズル前作動蒸気圧/吸入圧−2−圧
縮比  放射圧力/吸入圧カ ー3−蒸気比  作動蒸気量/抽気ガス量上記の3つの
条件は、従来エゼクタ−設計条件として固定的に決定さ
れでいたが、本エゼクタ−は、次の如く設備要素の中に
可変要素を組込んで設計する事が出来た。
= 1 - Expansion ratio Nozzle pre-working steam pressure / Suction pressure - 2 - Compression ratio Radiation pressure / Suction pressure Car 3 - Steam ratio Working steam amount / Bleed gas amount The above three conditions are fixed as conventional ejector design conditions. However, this ejector could be designed by incorporating variable elements into the equipment elements as follows.

−1−膨張比の調節 ノズル膨張比調節の必要性は吸入条件の変動によってよ
り効果の高い膨張比の選定を必要とするが、稼動に入っ
た後の長期使用の間には、装置の空気洩れ、原料差異、
運転条件差異による蒸気、或はペーパー発生の変動の外
、季節変動による冷却水温の変1ヒによる外乱要素があ
り之等の条件変動による。吸入側の条件変動が多く考え
られる。
-1- Adjustment of expansion ratio Nozzle expansion ratio adjustment requires selection of a more effective expansion ratio due to fluctuations in suction conditions. Leaks, raw material differences,
In addition to fluctuations in steam or paper generation due to differences in operating conditions, there are disturbance factors due to changes in cooling water temperature due to seasonal fluctuations. There are many possible variations in conditions on the suction side.

之等の要因によって次項に述べるデフユーザー内縮小面
積比率の整整と共に、第2図、第6図に示されでいる略
図の符号3のノズルと、9のバッフルブロックの先端と
の関係位置を変える事によってノズル膨張比を調節する
事を可能にした。
Due to these factors, in addition to adjusting the reduction area ratio within the differential user described in the next section, the relative position between the nozzle 3 in the diagrams shown in Figures 2 and 6 and the tip of the baffle block 9 will be changed. This makes it possible to adjust the nozzle expansion ratio.

図中の/)1ま此の関係位置調節長さを示し此の間の間
隔の調節によって膨張比を変更する事が出来る。
/)1 in the figure indicates the adjustment length of the relative position, and the expansion ratio can be changed by adjusting the interval between them.

−2−圧縮比の調節 圧縮比を変動の要因は前項記載の負荷の変動によるもの
と、季節変動の大きな凝縮用冷却水の稼動に与える影響
が極めて大きい。
-2- Adjustment of Compression Ratio The factors that cause the compression ratio to vary are the load fluctuations described in the previous section, and the influence on the operation of the condensing cooling water, which has large seasonal fluctuations, is extremely large.

此の冷却水温度の大巾な変動は結果として圧縮比に大き
な影響を与え、実際の高い真空を得る場合大きく実仕事
量が変って来る。
As a result, this wide fluctuation in cooling water temperature has a large effect on the compression ratio, and the actual amount of work required to obtain an actual high vacuum changes greatly.

本エゼクタ−は圧縮比の変動対応の装置調節の方法とし
て、デフユーザー縮小面積比を変える事によっての対応
とし、装置としでは、デフユーザー最小面積の挟まり部
と、中心部に設置された、バッフルブロックの外周面と
の、二重日間流路の調節、即ちバクフルブロックのデフ
ユーザー内の長手方向の位置変更によって実現する事が
出来た。
This ejector is a method of adjusting the device to accommodate fluctuations in compression ratio by changing the differential user reduction area ratio. This was achieved by adjusting the double flow path with the outer peripheral surface of the block, that is, by changing the longitudinal position of the backful block inside the differential user.

第2図、第6図に示した略図の符号9のバッフルブロッ
クを上下に移動させる事によって、デフユーザー下端の
最小内径管とパワフルブロックの間の二重円管通路面積
を変え符号t2の間隔の調節によって、圧縮比率の変動
に対応する面積比率を調節し得る設備を造り上げる事が
出来た。
By moving the baffle block 9 in the schematic diagrams shown in Figs. 2 and 6 up and down, the double circular pipe passage area between the minimum inner diameter pipe at the lower end of the differential user and the powerful block is changed, and the interval t2 is changed. By adjusting this, we were able to create a facility that could adjust the area ratio in response to changes in the compression ratio.

−3−蒸気比の調節 前記の如く吸入負荷の条件並びに放射圧力側の条件の変
動に対応させるノズル膨張比とデフユーザー内通過面積
比と併せ、作動蒸気のノズル前蒸気圧の調整によって得
られる、手動調整装置付の特殊蒸気エゼクター 凝縮水用温度の季節的な変化によって圧縮比に及ぼす影
響は極めで大きい。
-3- Adjustment of steam ratio As mentioned above, this can be achieved by adjusting the steam pressure of working steam in front of the nozzle, in conjunction with the nozzle expansion ratio and differential user passage area ratio to accommodate fluctuations in suction load conditions and radiation pressure side conditions. , special steam ejector with manual adjustment device. Seasonal changes in condensate temperature have a very large effect on the compression ratio.

吸入真空5 Torrの場合を想定しでも冬期冷却水温
度10度Cが確保出来る場合と、夏期30度Cである場
合圧縮比は次の如き値を示す。
Even assuming a case where the suction vacuum is 5 Torr, the compression ratio shows the following values when a cooling water temperature of 10 degrees Celsius can be secured in the winter and 30 degrees Celsius in the summer.

冬期 10℃−9,2Torr / 5 Torr =
 1. s夏期 30℃−31,8Torr/ 5 T
orr = 6.3当然冬期は仕事量が小さくて良く此
の圧縮比が蒸気朗用量に見合うものとすれば、冬期の使
用蒸気量は約30%程度で良(・筈であるが、従来のエ
ゼクタ−は固定した面積比と、膨張比を持っで居る為、
蒸気量は冬期(期での差異は殆んど出で来ない。
Winter 10℃-9.2 Torr / 5 Torr =
1. sSummer 30℃-31,8Torr/5T
orr = 6.3 Naturally, the amount of work is small in the winter, and if this compression ratio is commensurate with the amount of steam required, the amount of steam used in the winter should be around 30%. Since the ejector has a fixed area ratio and expansion ratio,
There is almost no difference in the amount of steam during the winter season.

本エゼクタ−は之等の調整装置によって膨張比デフユー
ザー流路面積比を変化させて之等の最も効率の良い操作
ゑ件を探り出す事を可能にし、之゛等を手動操作による
対応と、更には、冷却水温度、吸入圧力、放射圧力、ノ
ズル前蒸気圧力を検出端として、ノズル膨張比、デフユ
ーザー縮小流路面積比と共に使用蒸気量の調節を行う事
によって、高い性能を持った、省エネルギー効果の大き
い、特殊蒸気エゼクタ−を造り上げる事が出来た。
This ejector makes it possible to find the most efficient operation by changing the expansion ratio differential user flow path area ratio with the adjustment device. uses cooling water temperature, suction pressure, radiation pressure, and steam pressure in front of the nozzle as detection points, and adjusts the amount of steam used in conjunction with the nozzle expansion ratio and differential user reduction flow path area ratio to achieve high performance and energy saving. We were able to create a special steam ejector that is highly effective.

第6図はノズル膨張比並びにデフユーザー面積比調節装
置を持った特殊エゼクタ−の略図である。
FIG. 6 is a schematic diagram of a special ejector with nozzle expansion ratio and differential user area ratio adjustment devices.

符号9は円錐バッフルブロックで之の上下方向の位置調
節によってt2の寸法が変りデフユーザーと円錐バッフ
ルブロック間の流路面積を調節する。
Reference numeral 9 denotes a conical baffle block, and by adjusting its vertical position, the dimension t2 changes to adjust the flow path area between the differential user and the conical baffle block.

同様に符号14はバクフルブロックの先端ブロックを、
円錐型ブロツク本体と別に移動させる事を可能にした2
つの円錐ブロックとし、先端部を上下に移動させる事に
よってAIの寸法を変えて、円錐の先端が、ノズル膨張
室の中に入り込ませ、ノズル膨張比を調節し得る構造を
示したものである。
Similarly, numeral 14 indicates the tip block of the bakful block,
2.It is possible to move the conical block separately from the main body.
This shows a structure in which the size of the AI can be changed by moving the tip of the conical block up and down, allowing the tip of the cone to enter the nozzle expansion chamber and adjusting the nozzle expansion ratio.

勿論ノズルそのものの上下移動を可能とした構造によっ
ても同様の目的が達せられ、此の2つの調節個所を手動
、或は自動調節を行わせる事が出来る、円錐バッフルブ
ロックを持つ省エネルギー型の高性能蒸気エゼクタ−で
ある。
Of course, the same purpose can also be achieved by the structure that allows the nozzle itself to move up and down, and these two adjustment points can be adjusted manually or automatically.It is an energy-saving, high-performance product with a conical baffle block. It is a steam ejector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来一般に使用されでいる蒸気エゼクタ−の図
面である。 第2図はデフユーザーの内部に円錐のパンフルブロック
を設置した、本発明の蒸気エゼクタ−を表わす。 第3図はバッフルブロックの円錐型の外観図、第4図は
同ハノフルブロソクの多角錐形の外観図、第5図は段階
的変位を持った、円錐型のバッフルブロックの外観図を
表わす。 第6図はノズル膨張比並びにデフユーザー通路縮小面積
比調節装置付、円錐バッフルブロックを持った、蒸気エ
ゼクタ−の断面を表わしている。 各図の符号及び煮は全図面に共通であり名称算法の通り
。 D デフユーザー有効最大内径 り丁 デフユーザースロート部内径 L デフユーザー長さ t力ノズル膨張比2デジ1−ブー1斗灸ヒ銅杵長21 
吸入室入口 2吸入室 3 作動用蒸気ノズル 4 デフユーザー末細まり管部 5 デフユーザースロート部 6 デフユーザー末広がり管部 7 エゼクタ−出口 8 新型エゼクタ−直管デフユーザー 9 同上円錐形バッフルブロック IOバッフルブロック据付軸 11  バッフルブロック据付金具 12多角錐形ハンフルブロノク 13  段階的変化を持った円錐形パンフルブロック1
4  ノズル膨張比調節用バッフルブロック可動先端ブ
ロック 15  同上先端調節用軸
FIG. 1 is a diagram of a steam ejector that has been commonly used in the past. FIG. 2 shows the steam ejector of the present invention in which a conical panfull block is installed inside the differential user. FIG. 3 is an external view of a conical baffle block, FIG. 4 is an external view of a polygonal pyramidal baffle block, and FIG. 5 is an external view of a conical baffle block with stepwise displacement. FIG. 6 shows a cross section of a steam ejector with a conical baffle block with nozzle expansion ratio and differential user passage reduction area ratio adjustment. The symbols and numbers in each figure are common to all drawings and follow the naming method. D Differential user effective maximum inner diameter D Defer user throat inner diameter L Differential user length t Force nozzle expansion ratio 2 Digi 1 - Boo 1 Moxa Punch length 21
Suction chamber inlet 2 Suction chamber 3 Steam nozzle for operation 4 Differential user convergent tube section 5 Differential user throat section 6 Differential user widening tube section 7 Ejector outlet 8 New type ejector - straight pipe differential user 9 Same as above Conical baffle block IO baffle Block installation shaft 11 Baffle block installation bracket 12 Polygonal pyramidal block 13 Conical block with gradual changes 1
4 Baffle block movable tip block for adjusting nozzle expansion ratio 15 Shaft for adjusting the tip as above

Claims (1)

【特許請求の範囲】 (1)蒸気エゼクターの管内に、円錐形若しくは多角錐
形の形状を持った、バッフルブロックを設置する事によ
って、形造られる流路二重円筒の縮少面積変化を持った
、特殊なデフユーザーによって速度エネルギーを効率良
く圧力のエネルギーに変換させる事を目的とする、高性
能蒸気エゼクターの発明。 (2)従来用いられている蒸気エゼクターのデフユーザ
ーは、内径の変化を徐々に行わせる事を特徴とする、末
細まり管、直管スロート部、並びに末広がり管の組合せ
により出来上っており、その長さは、スロート内径の約
21倍前後が使用されている。 本エゼクターはデフユーザー内部にバッフルブロックを
設置する事によって、直管を使用する事が可能となり、
デフユーザー内径の変化を行わせる場合も長手方向に対
する内径変化の大きなレジユーザーを用いる事が出来、
従来の20%内至25%程度の長さで且、直管を用いた
デフユーザーを持つ特殊エゼクターの発明。 (3)作動用末広がりの形状を持つ蒸気ノズルは一定の
膨張比率を持って作動しているが、本エゼクターは、ノ
ズル直後に設置するバッフルブロックの先端とノズル末
端との関係位置を調節する事によって、従来固定したノ
ズル膨張比を変化させる事を可能にした。可変ノズル膨
張比の調節機能を持った、特殊蒸気エゼクター。 (4)デフユーザー内に設置したバッフルブロックをデ
フユーザー軸心に副って、蒸気流れに対して前後に関係
位置を変化させる事によって、デフユーザーとバッフル
ブロックの間の流路面積変化を行わせる事を可能にした
、特殊蒸気エゼクタ(5)作動用蒸気ノズルの膨張比率
、デフユーザー流路面積比率の調節によって得られる作
動蒸気の省エネルギー効果を目的とした、作動蒸気のノ
ズル前圧力の調節、之等3点調節の総合効果を計る手動
調整装置付、蒸気エゼクター。 (6)吸入圧力、放射圧力、凝縮用冷却水供給温度、ノ
ズル前蒸気圧力、上記4点の検出端より得られる状報に
よって、作動ノズル膨張比率及デフユーザー面積縮小比
率と併せてノズル前蒸気圧力を調整する装置を持った、
自動調節装置付特殊蒸気エゼクター。
[Claims] (1) By installing a baffle block having a conical or polygonal pyramid shape in the pipe of the steam ejector, the area of the flow path double cylinder formed can be reduced. In addition, the invention of a high-performance steam ejector that aims to efficiently convert velocity energy into pressure energy using a special differential user. (2) Conventionally used differential users of steam ejectors are made of a combination of a tapered pipe, a straight pipe throat, and a pipe that widens at the end, which are characterized by a gradual change in internal diameter. , its length is approximately 21 times the inner diameter of the throat. This ejector makes it possible to use straight pipes by installing a baffle block inside the differential user.
When changing the inner diameter of the differential user, it is possible to use a register user with a large change in inner diameter in the longitudinal direction.
Invention of a special ejector that is about 20% to 25% longer than the conventional ejector and has a differential user using a straight pipe. (3) A steam nozzle with a divergent shape for operation operates with a constant expansion ratio, but this ejector can adjust the relative position between the tip of the baffle block installed immediately after the nozzle and the end of the nozzle. This makes it possible to change the nozzle expansion ratio, which was previously fixed. Special steam ejector with variable nozzle expansion ratio adjustment function. (4) The area of the flow path between the differential user and the baffle block can be changed by changing the relative position of the baffle block installed inside the differential user along the differential user axis back and forth with respect to the steam flow. Adjustment of the pressure in front of the working steam nozzle for the purpose of energy saving effect of the working steam obtained by adjusting the expansion ratio of the working steam nozzle and the differential user flow path area ratio. Steam ejector with manual adjustment device to measure the overall effect of 3-point adjustment. (6) Based on the information obtained from the suction pressure, radiation pressure, condensing cooling water supply temperature, steam pressure in front of the nozzle, and the above-mentioned four detection points, the steam in front of the nozzle is determined in conjunction with the operating nozzle expansion ratio and differential user area reduction ratio. It has a device to adjust the pressure.
Special steam ejector with automatic adjustment device.
JP19868484A 1984-09-25 1984-09-25 Steam ejector Pending JPS6176800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19868484A JPS6176800A (en) 1984-09-25 1984-09-25 Steam ejector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19868484A JPS6176800A (en) 1984-09-25 1984-09-25 Steam ejector

Publications (1)

Publication Number Publication Date
JPS6176800A true JPS6176800A (en) 1986-04-19

Family

ID=16395328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19868484A Pending JPS6176800A (en) 1984-09-25 1984-09-25 Steam ejector

Country Status (1)

Country Link
JP (1) JPS6176800A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310700A (en) * 1994-05-17 1995-11-28 Sakou Giken:Kk Combination jet vacuum generating device
WO2013114856A1 (en) * 2012-02-02 2013-08-08 株式会社デンソー Ejector
JP2014005967A (en) * 2012-06-22 2014-01-16 Denso Corp Decompression device and refrigeration cycle apparatus
WO2014091701A1 (en) * 2012-12-13 2014-06-19 株式会社デンソー Ejector
WO2014103276A1 (en) * 2012-12-27 2014-07-03 株式会社デンソー Ejector
WO2014103277A1 (en) * 2012-12-27 2014-07-03 株式会社デンソー Ejector
JP2014206147A (en) * 2013-04-16 2014-10-30 株式会社デンソー Ejector
WO2014185069A1 (en) * 2013-05-15 2014-11-20 株式会社デンソー Ejector
WO2015015783A1 (en) * 2013-08-01 2015-02-05 株式会社デンソー Ejector
WO2015015752A1 (en) * 2013-07-30 2015-02-05 株式会社デンソー Ejector
WO2015040850A1 (en) * 2013-09-23 2015-03-26 株式会社デンソー Ejector-type refrigeration cycle
WO2015111113A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Ejector
CN104870829B (en) * 2012-12-13 2016-11-30 株式会社电装 Ejector
WO2017043336A1 (en) * 2015-09-11 2017-03-16 株式会社デンソー Ejector
US20170108256A1 (en) * 2014-01-30 2017-04-20 Carrier Corporation Ejectors and Methods of Use
DE112013005554B4 (en) * 2012-11-20 2021-05-06 Denso Corporation Ejector

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310700A (en) * 1994-05-17 1995-11-28 Sakou Giken:Kk Combination jet vacuum generating device
DE112013000817B4 (en) * 2012-02-02 2019-05-09 Denso Corporation ejector
JP2013177879A (en) * 2012-02-02 2013-09-09 Denso Corp Ejector
WO2013114856A1 (en) * 2012-02-02 2013-08-08 株式会社デンソー Ejector
CN104081064A (en) * 2012-02-02 2014-10-01 株式会社电装 Ejector
US9394921B2 (en) 2012-02-02 2016-07-19 Denso Corporation Ejector
JP2014005967A (en) * 2012-06-22 2014-01-16 Denso Corp Decompression device and refrigeration cycle apparatus
DE112013005554B4 (en) * 2012-11-20 2021-05-06 Denso Corporation Ejector
WO2014091701A1 (en) * 2012-12-13 2014-06-19 株式会社デンソー Ejector
CN104870829A (en) * 2012-12-13 2015-08-26 株式会社电装 Ejector
JP2014134196A (en) * 2012-12-13 2014-07-24 Denso Corp Ejector
US10077923B2 (en) 2012-12-13 2018-09-18 Denso Corporation Ejector
CN104870829B (en) * 2012-12-13 2016-11-30 株式会社电装 Ejector
US9625193B2 (en) 2012-12-27 2017-04-18 Denso Corporation Ejector
JP2014142166A (en) * 2012-12-27 2014-08-07 Denso Corp Ejector
WO2014103276A1 (en) * 2012-12-27 2014-07-03 株式会社デンソー Ejector
JP2014142167A (en) * 2012-12-27 2014-08-07 Denso Corp Ejector
US9618245B2 (en) 2012-12-27 2017-04-11 Denso Corporation Ejector
WO2014103277A1 (en) * 2012-12-27 2014-07-03 株式会社デンソー Ejector
JP2014206147A (en) * 2013-04-16 2014-10-30 株式会社デンソー Ejector
JP2014224626A (en) * 2013-05-15 2014-12-04 株式会社デンソー Ejector
WO2014185069A1 (en) * 2013-05-15 2014-11-20 株式会社デンソー Ejector
WO2015015752A1 (en) * 2013-07-30 2015-02-05 株式会社デンソー Ejector
JP2015028395A (en) * 2013-07-30 2015-02-12 株式会社デンソー Ejector
US9897354B2 (en) 2013-07-30 2018-02-20 Denso Corporation Ejector
JP2015031184A (en) * 2013-08-01 2015-02-16 株式会社デンソー Ejector
US10330123B2 (en) 2013-08-01 2019-06-25 Denso Corporation Ejector for refrigeration cycle device
WO2015015783A1 (en) * 2013-08-01 2015-02-05 株式会社デンソー Ejector
JP2015061990A (en) * 2013-09-23 2015-04-02 株式会社デンソー Ejector type refrigeration cycle
US10029538B2 (en) 2013-09-23 2018-07-24 Denso Corporation Refrigeration cycle
CN105579788A (en) * 2013-09-23 2016-05-11 株式会社电装 Ejector-type refrigeration cycle
WO2015040850A1 (en) * 2013-09-23 2015-03-26 株式会社デンソー Ejector-type refrigeration cycle
WO2015111113A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Ejector
US20170108256A1 (en) * 2014-01-30 2017-04-20 Carrier Corporation Ejectors and Methods of Use
JPWO2017043336A1 (en) * 2015-09-11 2018-02-01 株式会社デンソー Ejector
WO2017043336A1 (en) * 2015-09-11 2017-03-16 株式会社デンソー Ejector

Similar Documents

Publication Publication Date Title
JPS6176800A (en) Steam ejector
CN104675760B (en) A kind of nozzle-adjustable steam ejector
CN108563896A (en) A kind of expansion segment method for designing profile improving rocket tube performance
CN2367395Y (en) Atomizing water nozzle
CN112065604B (en) Low-infrared characteristic spray pipe
CN109059534B (en) Adjustable high-efficiency energy-saving rotary kiln burner
CN217026374U (en) Gas overflow dyeing machine with controllable air flow of high-efficiency energy-saving fan
CN2475476Y (en) Spray nozzle for sprayer
US2190109A (en) Low pressure steam injector
CN100434853C (en) Two-stage water-intaking supersonic speed gas-liquid two-phase fluid step-up heater
CN206695112U (en) One kind energy-conservation attemperator
CN2466412Y (en) Pressure-regulated water-saving pipe
CN2242432Y (en) Coal powder jetting tube with adjustable stable combustion device for cement rotary-drum furnace
CN221255062U (en) Device for preventing dripping between sizing machine winding rollers
CN1145984A (en) Speeding deflector for water turbine
CN206115299U (en) Energy -conserving high -efficient temperature controller
CN100400999C (en) Variable acoustic pressurizing dual blast heat exchanger
JPS5524253A (en) Valve device
CN1060043A (en) A kind of energy-conservation cyclone dust collectors
CN107740888A (en) Lower resistance flows long water pipe
JPS5481410A (en) Direct contact type condenser
CN2443315Y (en) Steam spray adjustable quick heating type heat exchanger
CN114234424B (en) Wind pipe static pressure box with arc-change guide vane based on dissipation analysis
CN212618263U (en) Umbrella-shaped spray hole type high-efficiency energy-saving burner with adjusting function
CN209977998U (en) Energy-saving desulfurization and denitrification low-emission gas boiler