JPS6176739A - Electronically controlled type fuel injection device for diesel engine - Google Patents

Electronically controlled type fuel injection device for diesel engine

Info

Publication number
JPS6176739A
JPS6176739A JP59197588A JP19758884A JPS6176739A JP S6176739 A JPS6176739 A JP S6176739A JP 59197588 A JP59197588 A JP 59197588A JP 19758884 A JP19758884 A JP 19758884A JP S6176739 A JPS6176739 A JP S6176739A
Authority
JP
Japan
Prior art keywords
fuel injection
actuator
adjustment member
diesel engine
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197588A
Other languages
Japanese (ja)
Inventor
Ichiro Akahori
一郎 赤堀
Makoto Shiozaki
誠 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59197588A priority Critical patent/JPS6176739A/en
Priority to US06/777,683 priority patent/US4708111A/en
Priority to EP85306683A priority patent/EP0176323B1/en
Priority to DE8585306683T priority patent/DE3566707D1/en
Publication of JPS6176739A publication Critical patent/JPS6176739A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/406Electrically controlling a diesel injection pump
    • F02D41/407Electrically controlling a diesel injection pump of the in-line type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a high-speed, highly accurate and highly stable servo- operation, by providing such an arrangement that in a positional serve for computing a control input value for an actuator which adjusts the amount of fuel injection, there is provided a shortest time control means for determining the control input value. CONSTITUTION:A fuel injection amount computing section 2 delivers a desired value Pr of a fuel adjusting member 83 in a fuel injection pump 5. In a positional servo 3 an actuator 82 is controlled such that the desired position Pr is coincident with an actual position P of the fuel adjusting member 83 which is detected by an actual position detector 84. A shortest time control section 7 calculates a deviation PE between the desired position Pr and an actual position P, a current I running through the actuator 82 and a control input U for a controlled object 8 in accordance with an estimated speed value V which is estimated by a speed estimating means 9. Thus, since a dynamic and nonlinear model is used for the controlled object, it is possible to provide a high-speed, highly accurate and highly stable servo-operation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、燃料噴射ポンプの燃料調節部材の位置を電
気的手段を用いて目標位置に一致させ、ディーゼル機関
の運転状態に最適な量の燃料を噴射する電子制御式燃料
噴射装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention aligns the position of a fuel adjustment member of a fuel injection pump with a target position using electrical means, and adjusts the amount of fuel that is optimal for the operating condition of a diesel engine. The present invention relates to an electronically controlled fuel injection device that injects fuel.

(従来の技術) 従来、電子制御式燃料噴射装置においては、種々のセン
サーによって検出した機関の運転状態に基づいて演算し
た最適燃料噴射量に対応する燃料調節部材の目標位置P
rに実位置Pを一致させるための位置サーボとしてPI
D(比例、積分、?Ii。
(Prior Art) Conventionally, in an electronically controlled fuel injection system, a target position P of a fuel adjustment member corresponding to an optimum fuel injection amount calculated based on engine operating conditions detected by various sensors is used.
PI as a position servo to match the actual position P with r
D (proportional, integral, ?Ii.

分)制御が用いられていた(例えば特開昭59−250
47号公報)。
) control was used (e.g. JP-A-59-250
Publication No. 47).

(発明が解決しようとする問題点) 従来のPID制御を用いた位置サーボでは、精度、応答
時間、安定性、オーバーシュート量を共に満足すること
が不可能である。例えば、早い応答を得るための比例ゲ
インを上げると大きなオーバーシュートを生じ、不安定
になる。
(Problems to be Solved by the Invention) With a position servo using conventional PID control, it is impossible to satisfy all of accuracy, response time, stability, and amount of overshoot. For example, if the proportional gain is increased to obtain a faster response, a large overshoot will occur, resulting in instability.

また、制御対象である燃料調節部材アクチュエータの特
性が線形ではないため、P’ l D制御ではよいサー
ボ特性を得ることができない。
Furthermore, since the characteristics of the fuel adjustment member actuator to be controlled are not linear, good servo characteristics cannot be obtained by P′ I D control.

そこで、本発明は、高速で精度及び安定性のきわめて高
いサーボ動作を可能としたディーゼル機関用の燃料噴射
装置の提供を目的としている。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fuel injection device for a diesel engine that enables servo operation at high speed with extremely high accuracy and stability.

(問題点を解決するための手段) 本発明では、古典制御理論に基づいたI) I D制御
に代わり、現代制御理論の一分野である非線形最適制御
理論に基づいた最短時間制御(別名:ハンハン制御)を
用いることにより上記の問題を解決した。
(Means for Solving the Problems) In the present invention, instead of I)ID control based on classical control theory, we use shortest time control (also known as Hanhan) based on nonlinear optimal control theory, which is a field of modern control theory. The above problem was solved by using the control method.

現代制御理論では、制御対象の入出力関係のみに着目し
ていた古典制御理論とは異なり、制御対象の内部の状態
にも着目す為ため、より高性能なサーボ特性が得られる
。また、現代制御理論を用いた場合でも、線形制御理論
(通常、最適制御とに呼ばれている制御は、これに含ま
れる。)では、制御対象の非線形性に対応できないが、
本発明では非線形制御理論を用いているため、最適な号
−ポ特性が得られる。
Unlike classical control theory, which focused only on the input/output relationship of the controlled object, modern control theory also focuses on the internal state of the controlled object, resulting in higher-performance servo characteristics. Furthermore, even when using modern control theory, linear control theory (which includes what is usually called optimal control) cannot deal with the nonlinearity of the controlled object.
Since the present invention uses nonlinear control theory, optimal power-power characteristics can be obtained.

(実施例) 以下、図面を用いて、本発明の実施例について説明する
。第2図は、電子制御式燃料噴射装置の構成例である。
(Example) Hereinafter, an example of the present invention will be described using the drawings. FIG. 2 shows an example of the configuration of an electronically controlled fuel injection device.

運転状態検出器1によって検出された、機関の回転数、
アクセル操作量等の運転状態により、噴射量演算部はマ
ツプ等を用いて燃料噴射量を演算し、列型燃料噴射ポン
プ5の燃料調節部材(コントロールラック)83の目標
値Prとして出力する。位置サーボ3では、目標位置P
rと実位置検出器84によって検出された燃料調節部材
83の実位置Pとが一致するようにアクチュエータ82
の制御を行なう。なお、噴射量演算部2及び位置サーボ
3はマイクロコンピュータにより構成される。
The engine rotation speed detected by the operating state detector 1,
Depending on the operating state such as the amount of accelerator operation, the injection amount calculation unit calculates the fuel injection amount using a map or the like, and outputs it as a target value Pr of the fuel adjustment member (control rack) 83 of the in-line fuel injection pump 5. In position servo 3, target position P
The actuator 82 is moved so that r matches the actual position P of the fuel adjustment member 83 detected by the actual position detector 84.
control. Incidentally, the injection amount calculation section 2 and the position servo 3 are constituted by a microcomputer.

第1図は、上記位置サーボ3の詳細な構成例である。FIG. 1 shows a detailed configuration example of the position servo 3. As shown in FIG.

最短時間制御部7は、燃料調節部材83の目標位置Pr
と実位置Pの偏差PEと、アクチュエータ82に流れる
電流■と、速度推定手段9によって推定された燃料調節
部材83の速度推定値Vから後述する制御対象8の制御
人力Uを計算する。
The shortest time control unit 7 controls the target position Pr of the fuel adjustment member 83.
The control human power U for the controlled object 8, which will be described later, is calculated from the deviation PE between the actual position P, the current (2) flowing through the actuator 82, and the estimated speed V of the fuel adjustment member 83 estimated by the speed estimating means 9.

Uは、2値信号であり、例えば、アクチュエータ駆動ト
ランジスタのON、OFFを意味する。
U is a binary signal, and means, for example, ON or OFF of an actuator drive transistor.

制御対象8は、Uを制御入力、燃料調整部材83の実位
置Pとアクチュエータ82に流れる電流値Iを制御出力
とするシステムであり、第5図のように、アクチュエー
タ駆動回路81、アクチュエータ82、燃料調1節部材
83、実位置検出器84から構成される。81は、パワ
ートランジスタ、あるいは、パワーFETなどのスイッ
チング素子により、アクチュエータ82に印加される電
圧を制御する。また、アクチェエータに流れる電流Iの
検出も抵抗等を用いて駆動回路81て行なう。
The controlled object 8 is a system in which U is the control input, and the actual position P of the fuel adjustment member 83 and the current value I flowing through the actuator 82 are the control outputs.As shown in FIG. It is composed of a fuel adjustment member 83 and a real position detector 84. 81 controls the voltage applied to the actuator 82 by a switching element such as a power transistor or a power FET. Further, the drive circuit 81 also detects the current I flowing through the actuator using a resistor or the like.

アクチェエータ82には、例えぼりニアソレノイド・ア
クチュエータ6が使用され、電流によって生じた、磁気
力によって、燃料調節部材83を移動させる。実位置検
出装置84は、例えば、可変インダクタンスタイプの位
置検出器により、燃料調節部材83の実位置Pを検出す
る。
For example, the near solenoid actuator 6 is used as the actuator 82, and the fuel adjustment member 83 is moved by a magnetic force generated by an electric current. The actual position detection device 84 detects the actual position P of the fuel adjustment member 83 using, for example, a variable inductance type position detector.

速度推定手段9では、燃料調節部材の実位置Pの時間微
分、すなわち速度Vを推定する。この速度Vの推定値■
を計算するためには、単純に実位置Pを微分することに
よって求めてもよいし、実位置Pにノイズが乗っている
場合など、微分すると正確な値が得られない場合には、
制御対象8のダイナミックモデルに基づき、状態観測器
を構成し、これによって速度測定値を計算してもよい。
The speed estimating means 9 estimates the time differential of the actual position P of the fuel adjustment member, that is, the speed V. Estimated value of this speed V■
In order to calculate , you can simply differentiate the actual position P, or if the actual position P is noisy and you cannot obtain an accurate value by differentiating it,
Based on the dynamic model of the controlled object 8, a state observer may be configured and thereby calculate the velocity measurements.

次に、最短時間制御部7について述べる。まず、計測自
動制御学会編、[自動制御ハンドブック(基礎編)」)
、(昭和58年10月30日、オ−ム社、P、287)
に基づいて、最短時間制御の説明を行なう。
Next, the shortest time control section 7 will be described. First, [Automatic Control Handbook (Basic Edition)] edited by the Society of Instrument and Control Engineers)
, (October 30, 1981, Ohmsha, P, 287)
Based on this, we will explain the shortest time control.

最短時間制御の問題は、次のように記述される。The problem of minimum time control is described as follows.

制御対象: X= f  (X、  u)      
 (11制御入力制限:ueΩ         (2
)初期条件:X(to)=¥’、、 O(3)終端条件
:’i、<tf)=にf(4)評価関数;j=tf−t
o        f5)式(3)の初期条件から出発
し、式(1)の微分方程式に従って、終端条件(4)を
満たすような軌道X (t)、te[to、tr)を発
生するような制御人力U(1)の中で、式(5)の評価
関数を最小にするものを求めることである。ただしu 
(t)は式(2)を満たす必要がある。ここで、fは非
線形な関数、【はn次元ベクトル、Uはr次元制御入力
ベクトル、豆はr次元空間中の閉領域である。
Controlled object: X= f (X, u)
(11 Control input limit: ueΩ (2
) Initial condition: X(to)=\',, O(3) Terminal condition: 'i,<tf)= to f(4) Evaluation function; j=tf-t
o f5) Control that starts from the initial condition of equation (3) and generates a trajectory X (t), te[to, tr) that satisfies terminal condition (4) according to the differential equation of equation (1). The purpose is to find the human power U(1) that minimizes the evaluation function of equation (5). However, u
(t) needs to satisfy equation (2). Here, f is a nonlinear function, [ is an n-dimensional vector, U is an r-dimensional control input vector, and Bean is a closed region in the r-dimensional space.

本発明は、サーボ装置では、例えば、 n=3.X= CP、V、I)”  、r=1゜u= 
(U)             ・・・・・・ (6
)β−■             ・・・(7−1)
V=−(B/M)  −V+F  (1,P)/M・・
・ (7−2) F  (I、  P)=−kP+  (a−bp)  
1・・・ (7−3) I =−(R/L)  ・ I+E(U)/L・・・ 
(7−4) B;粘性係数、M;可動部質量、 a、b;定数、k;ハネ定数、 R;コイル抵抗、L;コイルインダクタンスΩ=〔アク
チュエータ駆動素子ON、0FFI・・・・・・ (8
) 【0=任恵、:X−f = (P r、 O,I b)
”・・・・・・  (9) ように、対応づけできる。ここで、Ibは、P=Prが
定常的に成立するために、必要な電値である。なお、U
をにの関数として得ることを最短時間制御法則を得ると
いう。
The present invention is applicable to a servo device in which, for example, n=3. X= CP, V, I)", r=1゜u=
(U) ...... (6
) β−■ ...(7-1)
V=-(B/M) -V+F (1,P)/M...
・ (7-2) F (I, P) = -kP+ (a-bp)
1... (7-3) I=-(R/L) ・I+E(U)/L...
(7-4) B: viscosity coefficient, M: moving part mass, a, b: constant, k: spring constant, R: coil resistance, L: coil inductance Ω=[actuator drive element ON, 0FFI...・(8
) [0=Ninhui, :X-f=(P r, O, I b)
”... (9) Here, Ib is the electric value necessary for P=Pr to hold steady. Note that U
Obtaining as a function of is called obtaining the minimum time control law.

本サーボ装置の場合、最短時間制御法!1すは、−・・
・・・ aω となる。ここでgは関数[から−意に決定される関数で
ある。具体的な計算法については、前記文献P、290
に説明されているので、ここでは省略する。
In the case of this servo device, the shortest time control method! 1st...
... becomes aω. Here, g is a function arbitrarily determined from the function [. Regarding the specific calculation method, see the above-mentioned document P, 290.
Since it is explained in , it will be omitted here.

実際は、式αO)中の速度Vは、測定することが困難で
あるため、前述の速度推定手段9によって得られた推定
値■を代わりに用いる。
In reality, since it is difficult to measure the speed V in the equation αO), the estimated value (2) obtained by the speed estimating means 9 described above is used instead.

制御法則(1G+は、第3図のように実現することがで
きる。g計算手段71によってg(P−Pr。
The control law (1G+) can be realized as shown in FIG.

■)を計算し、その結果とアクチュエータ電流Iとを比
較手段72で比較しアクチュエータ駆動素子のON、O
FFを決定する。また、第4図のように偏差pEの積分
値を電流Iに加える積分補償手段73を設けることによ
り、経年変化などによる関数fの特性変化の影響を少な
くすることも可能である。
(2) is calculated, and the comparison means 72 compares the result with the actuator current I to determine whether the actuator drive element is ON or OFF.
Determine FF. Further, by providing an integral compensating means 73 that adds the integral value of the deviation pE to the current I as shown in FIG. 4, it is also possible to reduce the influence of changes in the characteristics of the function f due to changes over time.

なお、関数gの計算は、マツプとして、ROM等に記憶
し、与えられたP−Pr、Vの値で補間することによっ
て、実現できる。このマツプ化されたgの一例を第7図
に示す。
Note that the calculation of the function g can be realized by storing it in a ROM or the like as a map and interpolating it with the given values of P-Pr and V. An example of this mapped g is shown in FIG.

次に第6図に積分補償を行なわない場合の位置サーボ部
の処理のフローチャートを示す。ステップ100では燃
料調節部材の目標位置Prと実位置Pの偏差PEを計算
する。ステップ101では、実位置Pを微分することに
よって、あるいは、状態観測器を用いることによって速
度推定値■を計算する。ステップ102では、例えば第
7図に示すようなマツプを用いることによって関数g 
(PE、V)を計算しI+へ代入する。ステップ103
では、アクチュエータ電流Iと11を比較し、その結果
によってステップ104.105で制御人力UをONあ
るいはOFF状態にする。上述の処理をくり返すことに
より、最短時間で燃料調節部材は目標位置に制御される
Next, FIG. 6 shows a flowchart of the processing of the position servo section when integral compensation is not performed. In step 100, the deviation PE between the target position Pr and the actual position P of the fuel adjustment member is calculated. In step 101, the velocity estimate ■ is calculated by differentiating the actual position P or by using a state observer. In step 102, the function g is
Calculate (PE, V) and assign it to I+. Step 103
Then, actuator current I and 11 are compared, and depending on the result, control human power U is turned ON or OFF in steps 104 and 105. By repeating the above process, the fuel adjustment member is controlled to the target position in the shortest possible time.

以上の説明は、判型燃料噴射ポンプに本発明を適用した
場合について行なったが、分配型燃料噴射ポンプにも同
様に適用可能である。
Although the above description has been made regarding the case where the present invention is applied to a size-type fuel injection pump, it is similarly applicable to a distribution-type fuel injection pump.

(発明の効果) 以上説明したように、本発明によれば、評価関数J (
式(5))を最小にすることができ、これは最短の時間
で、燃料調節部材を目標位置へ位置決めできることを意
味する。
(Effects of the Invention) As explained above, according to the present invention, the evaluation function J (
Equation (5)) can be minimized, which means that the fuel adjustment member can be positioned to the target position in the shortest time.

また、制御対象のグイナミソクでかつ非線形なモデルに
基づいているため、従来のPID制御、あるいは、線形
現代制御では不可能であった、高速、高精度、高安定な
サーボ動作が可能である。
Furthermore, since it is based on a unique and nonlinear model of the controlled object, it is possible to perform high-speed, highly accurate, and highly stable servo operations that were impossible with conventional PID control or linear modern control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図中の位置サーボのブロック図、第2図は
本発明の一実施例を示す燃料噴射装置の構成図、第3図
は第1図中の最短時間制御部の詳細を示す図、第4図は
積分補償を行なう場合の最短時間制御部の詳細を示す図
、第5図は第1図中の制御対象の詳細を示す図、第6図
は本発明による位置サーボの処理を示すフローチャート
、第7図はマツプ化された関数gを示す模式図である。 1・・・運転状態検出器、2・・・噴射量演算部、3・
・・位置サーボ、5・・・燃料噴射ポンプ、7・・・最
短時間制御部、8・・・制御対象、9・・・速度推定手
段、71・・・g計算手段、72・・・比較手段、73
・・・積分補償手段、82・・・アクチュエータ、83
・・・燃料調節部材、84・・・実位置検出器。
Fig. 1 is a block diagram of the position servo in Fig. 2, Fig. 2 is a configuration diagram of a fuel injection device showing an embodiment of the present invention, and Fig. 3 shows details of the minimum time control section in Fig. 1. FIG. 4 is a diagram showing details of the minimum time control unit when performing integral compensation, FIG. 5 is a diagram showing details of the controlled object in FIG. 1, and FIG. 6 is a diagram showing details of the control object in FIG. A flowchart showing the processing, and FIG. 7 is a schematic diagram showing the mapped function g. 1... Operating state detector, 2... Injection amount calculation section, 3.
... Position servo, 5... Fuel injection pump, 7... Shortest time control unit, 8... Controlled object, 9... Speed estimation means, 71... G calculation means, 72... Comparison means, 73
... Integral compensation means, 82 ... Actuator, 83
...Fuel adjustment member, 84... Actual position detector.

Claims (3)

【特許請求の範囲】[Claims] (1) ディーゼル機関の燃料噴射ポンプの燃料調節部
材を操作し燃料噴射量の調節を行なうアクチュエータと
、燃料調節部材の実位置を検出する位置センサと、上記
機関の運転状態信号から燃料調節部材の目標位置を演算
する手段とを備えた燃料噴射装置において、 燃料調節部材の実位置が該目標位置に一致するように前
記アクチュエータの制御入力値を演算するための位置サ
ーボを備え、この位置サーボに、制御対象である前記ア
クチュエータの非線形ダイナミックモデルに基づいて前
記制御入力値を決定する最短時間制御手段を設けた事を
特徴とするディーゼル機関用電子制御式燃料噴射装置。
(1) An actuator that operates the fuel adjustment member of the fuel injection pump of a diesel engine to adjust the fuel injection amount; a position sensor that detects the actual position of the fuel adjustment member; and a position sensor that detects the actual position of the fuel adjustment member; A fuel injection device comprising a means for calculating a target position, further comprising a position servo for calculating a control input value of the actuator so that the actual position of the fuel adjustment member coincides with the target position; . An electronically controlled fuel injection device for a diesel engine, characterized in that the electronically controlled fuel injection device for a diesel engine is provided with a shortest time control means for determining the control input value based on a nonlinear dynamic model of the actuator to be controlled.
(2) 前記最短時間制御手段は、前記アクチュエータ
に流れる電流と、前記燃料調節部材の実位置と目標位置
との偏差と、前記燃料調節部材の速度とに応じて、前記
アクチュエータへの電流を導通、遮断することを特徴と
する特許請求の範囲第1項に記載のディーゼル機関用電
子制御式燃料噴射装置。
(2) The shortest time control means conducts the current to the actuator according to the current flowing to the actuator, the deviation between the actual position and the target position of the fuel adjustment member, and the speed of the fuel adjustment member. The electronically controlled fuel injection device for a diesel engine according to claim 1, wherein the electronically controlled fuel injection device for a diesel engine is cut off.
(3) 前記位置サーボに積分補償手段を付加したこと
を特徴とする特許請求の範囲第1項または第2項に記載
のディーゼル機関用電子制御式燃料噴射装置。
(3) The electronically controlled fuel injection device for a diesel engine according to claim 1 or 2, characterized in that an integral compensation means is added to the position servo.
JP59197588A 1984-09-19 1984-09-19 Electronically controlled type fuel injection device for diesel engine Pending JPS6176739A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59197588A JPS6176739A (en) 1984-09-19 1984-09-19 Electronically controlled type fuel injection device for diesel engine
US06/777,683 US4708111A (en) 1984-09-19 1985-09-19 Electronically controlled fuel injection based on minimum time control for diesel engines
EP85306683A EP0176323B1 (en) 1984-09-19 1985-09-19 Electronically controlled fuel injection based on minimum time control for diesel engines
DE8585306683T DE3566707D1 (en) 1984-09-19 1985-09-19 Electronically controlled fuel injection based on minimum time control for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197588A JPS6176739A (en) 1984-09-19 1984-09-19 Electronically controlled type fuel injection device for diesel engine

Publications (1)

Publication Number Publication Date
JPS6176739A true JPS6176739A (en) 1986-04-19

Family

ID=16376982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197588A Pending JPS6176739A (en) 1984-09-19 1984-09-19 Electronically controlled type fuel injection device for diesel engine

Country Status (1)

Country Link
JP (1) JPS6176739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517136A (en) * 1999-12-18 2003-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling a drive unit of a vehicle
JP2003518581A (en) * 1999-12-28 2003-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling an internal combustion engine with an intake system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517136A (en) * 1999-12-18 2003-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling a drive unit of a vehicle
JP2003518581A (en) * 1999-12-28 2003-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling an internal combustion engine with an intake system
JP4646178B2 (en) * 1999-12-28 2011-03-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for control of an internal combustion engine with an intake system

Similar Documents

Publication Publication Date Title
EP0176323B1 (en) Electronically controlled fuel injection based on minimum time control for diesel engines
US6868712B2 (en) Control method for gas concentration sensor
US20050092295A1 (en) Method and apparatus for controlling motor-driven throttle valve, automobile, method of measuring temperature of motor for driving automotive throttle valve, and method of measuring motor temperature
JP2512787B2 (en) Throttle opening control device for internal combustion engine
US6501998B1 (en) Method for controlling a time-lagged process with compensation, and a controlling device for carrying out said method
US4984545A (en) Control system for internal combustion engine
US4497294A (en) Electronically controlled governor for diesel engines
US4594993A (en) Device for recirculating exhaust gas in an internal combustion engine
US5014550A (en) Method of processing mass air sensor signals
JPH08303285A (en) Device and method for controlling valve for automobile
KR102281866B1 (en) System for estimating the load torque of a permanent magnet synchronous motor and system for controlling speed of the permanent magnet synchronous motor using the same
JPS6176739A (en) Electronically controlled type fuel injection device for diesel engine
JPH01112302A (en) Control method and apparatus for electromagnetic operator
US6055971A (en) Plateau linearization curves with proportional/integral/derivative control theory
JPH10153131A (en) Throttle valve opening detector
JP3638318B2 (en) Voltage drop control device in load
JPS6313307A (en) Method for controlling stroke of solenoid
KR100543835B1 (en) Device and method for controlling an operating variable of a motor vehicle
CN113411026A (en) Design method of self-adaptive sliding film disturbance observer for permanent magnet synchronous linear motor
JP3104788B2 (en) Actuator control device
JPS6176740A (en) Electronically controlled type fuel injection device for diesel engine
JPH10149201A (en) Method and device for controlling operation variable
JP3785750B2 (en) Throttle valve positioning control device
JP2606292B2 (en) Fuel injection control device
JP3498492B2 (en) Throttle valve positioning controller