JPS617609A - Multipolar strip form rubber magnet and manufacture thereof - Google Patents

Multipolar strip form rubber magnet and manufacture thereof

Info

Publication number
JPS617609A
JPS617609A JP12854884A JP12854884A JPS617609A JP S617609 A JPS617609 A JP S617609A JP 12854884 A JP12854884 A JP 12854884A JP 12854884 A JP12854884 A JP 12854884A JP S617609 A JPS617609 A JP S617609A
Authority
JP
Japan
Prior art keywords
magnetization
substrate
magnetized
rubber magnet
multipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12854884A
Other languages
Japanese (ja)
Inventor
Daiji Amamiya
雨宮 大二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichilaymagnet Co Ltd
Original Assignee
Nichilaymagnet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichilaymagnet Co Ltd filed Critical Nichilaymagnet Co Ltd
Priority to JP12854884A priority Critical patent/JPS617609A/en
Publication of JPS617609A publication Critical patent/JPS617609A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • H01F1/117Flexible bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a strong multipolar belt form rubber magnet which is approximate to be fully saturated magnetization by a method wherein a ferromagnetic substrate of anisotropic and isotropic belt or sheet form is magnetized in uniform direction, and then a second magnetization is performed along the direction of magnetization. CONSTITUTION:A flexible belt form substrate is formed by kneading flexible synthetic resin and rubber of 15-18% in ferromagnetic powder, and the first magnetizing process is performed in the direction of parallel of vertical to substrate surface using a magnetizer of unipolarity surface opposing type 4 or heteropolarity surface opposing type 5. When the isotropic sheet rubber magnet 11 of 0.8mm. in thickness which is magnetized in the direction of arrow 12 is placed on a multipolar belt form magnetize 13 of 3mm. magnetizing pitch and the second magnetizing process is performed thereon, the width of magnetization of the same direction in the first and the second magnetization is widely formed, the reverse-directed part is narrowly formed, but the degree of magnetization on their surfaces is increased. Also, after an anisotropic sheet rubber magnet 14 is magnetized in the direction of the arrow 15 in the diagram in longitudinal direction of 0.2mm. in thickness, it is placed on a multipolar belt form magnetizer 16 of the pitch of 2mm., and when the above is magnetized by applying a large current in a heteropolar-to-heteropolar state, the attracting force of approximately twice as much as the one obtained by the conventional method can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフェライト等の強磁性体の粉末粒子に可撓性の
合成樹脂やゴム等をおよそ15〜18%混練した可撓性
の特性を有するシート状又は帯状の基板に多極帯状の着
磁をした強磁性体(以下ゴム磁石と略称)及びその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sheet having flexible characteristics, which is made by kneading approximately 15 to 18% of flexible synthetic resin, rubber, etc. into powder particles of ferromagnetic material such as ferrite. The present invention relates to a ferromagnetic material (hereinafter abbreviated as rubber magnet) in which a multi-polar strip-shaped substrate is magnetized on a shaped or strip-shaped substrate, and a method for manufacturing the same.

従来例の構成とその問題点 従来よりゴム磁石として、多極帯状に着磁されたものは
存在するが、着磁状態が不完全であって、吸着力が弱い
という難点がみられた。特に、パルス大電流方式で基板
の片面から着磁すると、等方性の場合シート状基板の厚
さ方向に着磁磁場が貫通してしまい、着磁力が弱められ
る。又異方性の場合、着磁磁極から離れた部分へ磁場を
与えることが困難であったからである。これは、着磁器
による磁極面と基板表面とが平行であり、空隙長が長く
なるためであると考えられる。
Conventional Structures and Problems Conventionally, there have been rubber magnets magnetized in the form of multi-pole strips, but they have had the disadvantage that the magnetization is incomplete and the attraction force is weak. In particular, if the substrate is magnetized from one side using the pulsed large current method, the magnetizing magnetic field will penetrate in the thickness direction of the sheet-like substrate in the case of isotropy, weakening the magnetizing force. Another reason is that in the case of anisotropy, it is difficult to apply a magnetic field to a portion away from the magnetized magnetic pole. This is considered to be because the magnetic pole surface formed by the magnetizer is parallel to the substrate surface, and the gap length becomes long.

着磁力が弱いと、磁性体への吸着が弱くなるので、これ
を防止するため、ゴム磁石を大きくして、強力な吸着力
を得るようにしなければならない欠点がみちれた。
If the magnetizing force is weak, the attraction to the magnetic material will be weak, so in order to prevent this, the rubber magnet had to be made larger to obtain a strong attraction force.

発明の目的 本発明は上記の難点を解消し、極めて強力な多極帯状の
着磁ができるゴム磁石並びにその製造方法を提供し、特
に、異方性、等方性の帯状又はシート状の強磁性体基板
のいずれに対しても、先ず、一定方向に向いた磁化を行
ない、次いで上記磁化方向に沿った2次着磁によって多
極帯状で。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned difficulties and provides a rubber magnet that can be extremely strongly magnetized in the form of multi-pole strips, as well as a method for manufacturing the same. Each of the magnetic substrates is first magnetized in a certain direction, and then secondary magnetized along the magnetization direction to form a multipolar strip.

飽和磁化に近い強力な着磁を実現しようとするものであ
る。
The aim is to achieve strong magnetization close to saturation magnetization.

発明の構成 上記目的達成のため本発明では、帯状又はシート状の強
磁性体基板に対し、表面と平行又は垂直の″−一定方向
向けて磁化した1次着磁後、多極帯状で異極同志が前記
基板の表面方向に隣接するよう2次着磁をした多極帯状
のゴム磁石とした。
Structure of the Invention In order to achieve the above-mentioned object, in the present invention, a strip-shaped or sheet-shaped ferromagnetic substrate is first magnetized in a fixed direction parallel or perpendicular to the surface, and then magnetized in a multi-polar strip shape with different polarities. A multi-polar belt-shaped rubber magnet was secondarily magnetized so that the magnets were adjacent to each other in the direction of the surface of the substrate.

強磁性体基板の表面と平行又は垂直の一定方向に向けて
磁化した1次磁化後に、多極帯状の異極同志が前記基板
の表面方向に隣接するように2次着磁をしたので、2次
着磁時に着磁方向が1次磁化方向と同一となり飽和磁化
に極めて近く着磁されている。1次磁化と2次着磁の極
が同極の場合には磁極幅が広く、異極の場合には狭く着
磁されている。
After primary magnetization in a certain direction parallel or perpendicular to the surface of the ferromagnetic substrate, secondary magnetization was performed so that the different polarities of the multipolar strips were adjacent to each other in the direction of the surface of the substrate. During the next magnetization, the magnetization direction is the same as the primary magnetization direction, and the magnetization is extremely close to saturation magnetization. When the primary magnetization and secondary magnetization have the same polarity, the magnetic pole width is wide, and when they have different polarities, the magnetic pole width is narrow.

本発明のゴム磁石の製造方法は、帯状又はシート状の強
磁性体基板を中心として、両表面から同極又は異極同志
が近接するよう設けた着磁器を用いて磁界をかけ、基板
表面と平行又は垂直の一定方向に向けて磁化する第1着
磁工程と、この第1着磁工程による磁化方向と平行に片
面から着磁器を用いて多極帯状で異極同志が前記基板の
表面方向に隣接するよう着磁する第2着磁工程とから成
っている。
The method for producing a rubber magnet of the present invention is to apply a magnetic field to a strip-shaped or sheet-shaped ferromagnetic substrate using a magnetizer installed on both surfaces so that the same or different polarities are close to each other. A first magnetization step in which magnetization is performed in a certain parallel or perpendicular direction, and a magnetization device is used from one side parallel to the direction of magnetization in this first magnetization step to form multipolar strips of different polarities in the direction of the surface of the substrate. and a second magnetization step of magnetizing the magnet so as to be adjacent to the magnet.

1次磁化によって、異方性又は等方性の強磁性体基板に
対して、一定方向を向いて磁化させる第1着磁工程を用
いたので、続く第2着磁工程において、基板の片面に着
磁器を用いて、前記第1着磁工程における磁化方向と平
行に着磁させることにより磁界による着磁が強力になり
、飽和磁化に近い値が得られるようになった。
Since the first magnetization step was used to magnetize an anisotropic or isotropic ferromagnetic substrate in a fixed direction through primary magnetization, in the subsequent second magnetization step, one side of the substrate was magnetized. By using a magnetizer to magnetize in parallel to the magnetization direction in the first magnetization step, the magnetization by the magnetic field becomes strong, and a value close to saturation magnetization can be obtained.

等方性の場合、2次着磁での着磁方向と同一方向に1次
着磁が行われ、異方性の場合、強磁性体のC軸と一致し
た配向方向に磁化させておくと、2次着磁において極め
て着磁力が大きく飽和磁化に達するこ・とができる。
In the case of isotropy, the primary magnetization is performed in the same direction as the magnetization direction in the secondary magnetization, and in the case of anisotropy, if it is magnetized in the alignment direction that coincides with the C axis of the ferromagnetic material. In secondary magnetization, the magnetizing force is extremely large and saturation magnetization can be reached.

実施例の説明 以下、実施例として示した図面につき説明する。Description of examples The drawings shown as examples will be explained below.

lは帯状基板で、フェライト等の強磁性体の粉末粒子に
可撓性の合成樹脂やゴム等をおよそ15〜18%混練し
た可撓性の基板である。尚、基板の製造はカレンダー、
押出、積層方式等により厚さ 0.2一層より約3腸層
迄は幅6〜1000騰■、長さ10M〜200Mの帯状
に、厚さ約l■■以上は幅500層■長さ1000mm
の板状とされる。
1 is a band-shaped substrate, which is a flexible substrate made by kneading approximately 15 to 18% of flexible synthetic resin, rubber, etc. to powder particles of ferrite or other ferromagnetic material. In addition, the manufacturing of the board is done using a calendar.
Depending on the extrusion, lamination method, etc., from 0.2 to about 3 layers, the width is 6 to 1000 mm, and the length is 10 to 200 m, and the thickness is about 1 or more, the width is 500 layers, and the length is 1000 mm.
It is said to be plate-shaped.

2は着磁帯で、N極とS極の多極帯状の着磁層となって
、異極同志が基板の表面方向に隣接している。尚、この
着磁Wf2は第1次着磁工程により着磁された極と、第
2次着磁により着磁される極とが同一の場合には磁極幅
が広く、異なる場合には狭く形成されている。
Reference numeral 2 denotes a magnetized band, which is a multi-pole magnetized layer with N and S poles, and different polarities are adjacent to each other in the direction of the surface of the substrate. Note that this magnetization Wf2 has a wide magnetic pole width if the pole magnetized in the first magnetization process and the pole magnetized in the second magnetization process are the same, and narrow if they are different. has been done.

N極とS極の中央部の間隔を着磁ピッチPという。ゴム
磁石の厚さが薄い場合は、細い着磁ビッチ、厚くなると
粗い着磁ピッチとなる関係がある、 第2図、第3図は第1着磁工程を示すもので、3は帯状
基板である。4は着磁器で、前記基板3を挟むような位
置で、同極面同志が対向するよう設けられている。この
場合、磁化方向は基板3の表面と平行方向になっている
。第3図において、5は異方性の強磁性体の帯状基板を
示す。6は着磁器で、基板を挟む両面では、互いに異極
同志が対向している。従って、第1着磁工程としての磁
化方向は基板表面に対して垂直方向となっている。
The spacing between the center portions of the N and S poles is called the magnetization pitch P. If the thickness of the rubber magnet is thin, the magnetization pitch will be thin, and if it is thick, the magnetization pitch will be coarse. Figures 2 and 3 show the first magnetization process, and 3 is a strip-shaped substrate. be. Reference numeral 4 denotes a magnetizer, which is provided at a position sandwiching the substrate 3 so that the same polar planes face each other. In this case, the magnetization direction is parallel to the surface of the substrate 3. In FIG. 3, reference numeral 5 indicates a strip-shaped substrate made of anisotropic ferromagnetic material. Reference numeral 6 denotes a magnetizer, in which different polarities face each other on both sides of the substrate. Therefore, the magnetization direction in the first magnetization step is perpendicular to the substrate surface.

第4図は第2次着磁工程を示すもので、7は着磁器であ
る。凹凸状の着磁fA8を有し、凹溝には銅線部9が設
けられ、パルス大電流が与えられるようになっている。
FIG. 4 shows the secondary magnetization process, and 7 is a magnetizer. It has an uneven magnetization fA8, a copper wire portion 9 is provided in the groove, and a large pulse current is applied.

10は異方性の帯状基板で、第1着磁工程で表面と垂直
方向(実線矢印)に磁化されたものを示している。尚、
2次着磁は点線矢印G方向に磁場がかけられる。
Reference numeral 10 denotes an anisotropic strip-shaped substrate, which is magnetized in a direction perpendicular to the surface (solid arrow) in the first magnetization step. still,
For secondary magnetization, a magnetic field is applied in the direction of dotted arrow G.

通常フェライト磁石では保磁力が大きく、透磁率はlに
近いので、飽和磁界は10,000工ルステツド以上必
要とされている。従って、上記着磁器において銅線に流
す電流は相当大きく、電気抵抗ならびに高電圧に耐える
範囲の絶縁設備を要する。
Since ferrite magnets usually have a large coercive force and a magnetic permeability close to l, a saturation magnetic field of 10,000 or more is required. Therefore, the current flowing through the copper wire in the magnetizer is quite large, and insulation equipment that can withstand electrical resistance and high voltage is required.

第5図は第2次着磁工程終了後のゴム磁石を示す、S極
は1次着磁と同極で着磁幅が広く、N極は狭くなってい
る。
FIG. 5 shows the rubber magnet after the secondary magnetization step.The south pole is the same polarity as the primary magnetization and has a wide magnetization width, and the north pole is narrow.

第6図、〜第8図に示したのは、本発明方法としてのゴ
ム磁石の製造方法を模式化して示したものである。
6 to 8 are schematic illustrations of a method of manufacturing a rubber magnet according to the present invention.

第6図は等方性シートゴム磁石の例である。11は0.
8■厚のシート状基板である。(イ)において、矢印1
2は第1次着磁工程による磁化方向を示す。(ロ)は第
2次着磁工程を示すもので、着磁ピッチ3 mm(3p
)の多極帯状着磁器13上に乗せ、2次着磁を行った。
FIG. 6 is an example of an isotropic sheet rubber magnet. 11 is 0.
It is a sheet-like substrate with a thickness of 8 cm. In (a), arrow 1
2 indicates the magnetization direction in the first magnetization step. (b) shows the secondary magnetization process, in which the magnetization pitch is 3 mm (3p
) was placed on a multipolar strip magnetizer 13 to perform secondary magnetization.

この磁石の磁極面の磁束密度B、吸着力P、Fは第1表
に示す通りである。又、従来の着磁即ち2次着磁に相当
する1回の着磁のみの場合の値を比較値として示した。
The magnetic flux density B and attraction forces P and F of the magnetic pole surface of this magnet are as shown in Table 1. Further, the values obtained in the case of only one magnetization, which corresponds to conventional magnetization, that is, secondary magnetization, are shown as comparative values.

着磁方式    表面B   吸着力P、F従来の着磁
   11(1′+、I 10’   24 g /c
m’本方式の着磁  120”、 130”   34
g/am’(0,8を等方性シートゴム磁石3Pの着磁
)第1表 本発明方式の吸着力は従来より約40%の増大を示して
いる。これは従来の片面よりの着磁では厚さ0.8mm
の距離迄磁場が充分作用していないので吸着力は低くな
っている。これに対して、本発明方式では1次着磁で一
定方向に飽和着磁され、次いで2次着磁を行なっている
ので、同方向の着磁磁場に対しては1次着磁が残留し、
逆方向の所では2次着磁方向に着磁されることになる。
Magnetization method Surface B Attraction force P, F Conventional magnetization 11 (1'+, I 10' 24 g /c
m' method magnetization 120", 130" 34
g/am' (0,8 is magnetization of isotropic sheet rubber magnet 3P) Table 1 The attraction force of the method of the present invention shows an increase of about 40% compared to the conventional method. This is 0.8mm thick with conventional single-sided magnetization.
Since the magnetic field does not act sufficiently up to a distance of , the attraction force is low. On the other hand, in the method of the present invention, the primary magnetization is saturated magnetization in a certain direction, and then the secondary magnetization is performed, so the primary magnetization remains against the magnetization field in the same direction. ,
In the opposite direction, it will be magnetized in the secondary magnetization direction.

ゴム磁石の着磁極面の磁気パターンは1次、2次着磁方
向が同一の磁極幅は広く表面は大きく、逆方向となる磁
極幅は狭くなっている。しかし、表面は共に従来方式の
着磁よりも増加している。
The magnetic pattern on the magnetized pole surface of the rubber magnet is such that the magnetic pole width in the same primary and secondary magnetization directions is wide and the surface is large, and the magnetic pole width in the opposite direction is narrow. However, both surfaces are increased compared to conventional magnetization.

第7図は帯状の長さ方向に異方性のゴム磁石の着磁例を
示す、0.2腸鵬厚さの長さ方向に異方性のシートゴム
磁石】4を用いた。
FIG. 7 shows an example of magnetization of a strip-shaped rubber magnet which is anisotropic in the longitudinal direction.

(イ)において、−記号は異方性方向を示している。長
さ方向(即ち異方性方向)に1次の着磁を施し、磁化方
向を矢印15で示した。 (ロ)は1次着磁後のゴム磁
石を2mmピッチ(2P)の多極帯状着磁器16の磁極
上に乗せた図を示す、銅線のOにパルス大電流を流して
ゴム磁石14に多極帯状着磁を施す。多極帯状で異極同
志が隣接するように着磁された。
In (a), the - symbol indicates the anisotropic direction. Primary magnetization was performed in the length direction (that is, the anisotropic direction), and the magnetization direction is indicated by an arrow 15. (b) shows a diagram in which a rubber magnet after primary magnetization is placed on the magnetic poles of a 2 mm pitch (2P) multi-pole strip magnetizer 16. Apply multipolar strip magnetization. The magnets were magnetized in a multipolar band shape with different polarities adjacent to each other.

この着磁面の吸着力は6g/arrr’を有している。The attraction force of this magnetized surface is 6 g/arrr'.

従来の同じピッチ(2P)の多極帯状着磁のみの吸着力
は3.2g/cm″であり、本発明方式は約倍の吸着力
の増大となっている。
The attracting force of the conventional multi-pole strip magnetization with the same pitch (2P) is 3.2 g/cm'', and the method of the present invention increases the attracting force by about twice as much.

第8図は帯状の厚さ方向に異方性のゴム磁石の着磁例を
示す。0.8tataの厚さ方向に異方性のシートゴム
磁石の着磁状況を示す。(イ)は帯状ゴム磁石17を示
し、■記号は矢印方向に異方性であることを示している
FIG. 8 shows an example of magnetization of a strip-shaped rubber magnet that is anisotropic in the thickness direction. The magnetization status of a 0.8 tata sheet rubber magnet that is anisotropic in the thickness direction is shown. (A) shows a band-shaped rubber magnet 17, and the symbol ■ indicates that it is anisotropic in the direction of the arrow.

1次の着磁を厚さ方向に施す、磁化方向は矢印18方向
となっている。 (ロ)は1次の着磁後、シートゴム磁
石17は3■ピツチ(3P)の多極帯状着磁器19の磁
極面に乗せ、その上に着磁ヨーク20が設置されている
Primary magnetization is performed in the thickness direction, and the magnetization direction is in the direction of arrow 18. In (b), after primary magnetization, the sheet rubber magnet 17 is placed on the magnetic pole surface of a 3-pitch (3P) multi-pole strip magnetizer 19, and the magnetizing yoke 20 is placed on top of the magnetic pole surface.

銅線■0にパルス大電流を流して2次の多極帯状の着磁
を行う。このシートゴム磁石17の磁極面の磁束密度B
、吸着力P、Fの値を又着磁ヨークのない水力式、従来
の着磁即ち2次着磁と同じ方式の一回の着磁のみの場合
の諸値を第2表に示す。
A large pulsed current is passed through the copper wire 0 to magnetize it into a secondary multipolar strip. Magnetic flux density B of the magnetic pole surface of this sheet rubber magnet 17
Table 2 shows the values of the attraction forces P and F in the case of a hydraulic type without a magnetizing yoke, and in the case of conventional magnetization, that is, one-time magnetization using the same method as secondary magnetization.

着磁方式    表面B   吸着力P、F従来の着磁
   1659.185′?64 g /crn’(2
次着磁のみ) 水力式の着磁  165q、 185978g/crn
’本方式の着磁  165Q、!70”   87 g
 /cm’(ヨークなし) (0,8等方性シートゴム磁石3Pの着磁)82表 本発明方式による着磁の吸着力P、Fは76g/crr
?従来の着磁の84 g /crn’よりも約19%増
大している。他方本発明方式の着磁ヨーク20を使用し
ないときは137g/am’で従来方式とほぼ同値とな
っている。
Magnetization method Surface B Attraction force P, F Conventional magnetization 1659.185'? 64 g/crn'(2
(Next magnetization only) Hydraulic magnetization 165q, 185978g/crn
'Magnetization using this method 165Q,! 70” 87g
/cm' (without yoke) (Magnetization of 0.8 isotropic sheet rubber magnet 3P) Table 82 The attraction force P and F of magnetization by the method of the present invention is 76 g/crr
? This is approximately 19% higher than the conventional magnetization of 84 g/crn'. On the other hand, when the magnetizing yoke 20 of the present invention method is not used, the value is 137 g/am', which is almost the same value as the conventional method.

2次着磁においては着磁ヨークが用いられているので、
2次着磁の空隙長は短くなり磁化は容易となって1次着
磁を反転させる。他方1次と2次の磁化方向が同じ場合
は1次の磁化は残留する。
Since a magnetizing yoke is used for secondary magnetization,
The air gap length of the secondary magnetization becomes shorter, magnetization becomes easier, and the primary magnetization is reversed. On the other hand, if the primary and secondary magnetization directions are the same, the primary magnetization remains.

その結果表面は185′?と大きくなり吸着力P、Fは
大となると考えられる。従来方式の低い吸着力P、Fは
充分に着磁が行われていないことを示している。
As a result, the surface is 185'? It is considered that the adsorption forces P and F become large. The low attraction forces P and F of the conventional method indicate that sufficient magnetization is not performed.

発明の効果 」−記のように本発明は帯状、板状の多極帯状着磁ゴム
磁石の吸着力を増大させその吸着力の安定化、軽量化に
有効な多極帯状のゴム磁石が提供できた。又、その製造
方法として、第1着磁工程と第2着磁工程とにより、多
極帯状で基板の表面に異極同志が隣接するよう着磁され
、従来に比して極めて強力にで′きるようになった。
As described in "Effects of the Invention", the present invention provides a multi-polar strip-shaped rubber magnet that is effective for increasing the attraction force of a strip-shaped or plate-shaped multi-pole magnetized rubber magnet, stabilizing the attraction force, and reducing the weight. did it. In addition, as for its manufacturing method, the first magnetization step and the second magnetization step are used to magnetize the substrate in the form of a multi-polar strip so that different polarities are adjacent to each other on the surface of the substrate, making it extremely strong compared to the conventional method. Now I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多極帯状のゴム磁石の一部斜視図
、第2図、第3図は第1次着磁工程を示す斜視図で、第
2図は基板表面に平行に磁化した場合、第3図は基板表
面に垂直方向に磁化した場合を示す。第4図、第5図は
第2次着磁工程を示す斜視図、第6図〜第8図は第1次
着磁工程と第2次着磁工程との関連性を示す斜視図で、
 (イ)は第1次着磁工程、 (ロ)は第2次着磁工程
を示す。 ■、3.5.1O111,14,17・・・帯状基板4
.6・・・1次着磁用の着磁器 7.13.16.18・・・2次着磁用の着磁器9・・
・銅線部 代理人  弁理士  大 島 −公 第1図 第4図 第5図 第6図 第7図 (イ)         (ワ) 第8図
Fig. 1 is a partial perspective view of a multi-polar band-shaped rubber magnet according to the present invention, Figs. 2 and 3 are perspective views showing the first magnetization process, and Fig. 2 shows magnetization parallel to the substrate surface. In this case, FIG. 3 shows the case where the magnetization is perpendicular to the substrate surface. Figures 4 and 5 are perspective views showing the secondary magnetization process, and Figures 6 to 8 are perspective views showing the relationship between the primary magnetization process and the secondary magnetization process.
(a) shows the first magnetization process, and (b) shows the second magnetization process. ■, 3.5.1O111, 14, 17... band-shaped substrate 4
.. 6... Magnetizer for primary magnetization 7.13.16.18... Magnetizer for secondary magnetization 9...
・Copper Wire Department Agent Patent Attorney Oshima -Ko Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 (A) (W) Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)帯状又はシート状の強磁性体基板に対し、表面と
平行又は垂直の一定方向に向けて磁化した1次着磁後、
多極帯状で異極同志が前記基板の表面方向に隣接するよ
う2次着磁をしたことを特徴とする多極帯状のゴム磁石
(1) After primary magnetization of a strip-shaped or sheet-shaped ferromagnetic substrate in a certain direction parallel or perpendicular to the surface,
A multi-polar strip-shaped rubber magnet characterized in that the multi-polar strip-shaped rubber magnet is secondary magnetized so that different polarities are adjacent to each other in the surface direction of the substrate.
(2)帯状又はシート状の強磁性体基板を中心として、
両表面から同極又は異極同志が近接するよう設けた着磁
器を用いて磁界をかけ、基板表面と平行又は垂直の一定
方向に向けて磁化する第1着磁工程と、この第1着磁工
程による磁化方向と平行に片面から着磁器を用いて多極
帯状で異極同志が前記基板の表面方向に隣接するよう着
磁する第2着磁工程とから成ることを特徴とする多極帯
状のゴム磁石の製造方法。
(2) Focusing on a band-shaped or sheet-shaped ferromagnetic substrate,
A first magnetization step in which a magnetic field is applied using a magnetizer installed so that the same or different polarities come close to each other from both surfaces, and the substrate is magnetized in a certain direction parallel or perpendicular to the surface; and this first magnetization. a second magnetization step of magnetizing the multi-pole strip from one side parallel to the magnetization direction in the step so that different polarities are adjacent to each other in the surface direction of the substrate; A method of manufacturing rubber magnets.
(3)強磁性体基板として、等方性を用い基板の平面と
平行方向に磁化する第1着磁工程と、この磁化方向と平
行に第2着磁工程を行うようにした特許請求の範囲第2
項記載の多極帯状のゴム磁石の製造方法。
(3) A first magnetization step in which the ferromagnetic substrate is magnetized in a direction parallel to the plane of the substrate using isotropy, and a second magnetization step in parallel to this magnetization direction. Second
A method for producing a multi-polar band-shaped rubber magnet as described in 2.
(4)強磁性体基板として、異方性を用い基板の平面と
平行方向に磁化する第1着磁工程と、この磁化方向と平
行に第2着磁工程を行うようにした特許請求の範囲第2
項記載の多極帯状のゴム磁石の製造方法。
(4) Claims for a ferromagnetic substrate in which a first magnetization step is performed in which the substrate is magnetized in a direction parallel to the plane of the substrate using anisotropy, and a second magnetization step is performed in parallel to this magnetization direction. Second
A method for producing a multi-polar band-shaped rubber magnet as described in 2.
(5)強磁性体基板として、異方性を用い基板の平面と
垂直方向に磁化する第1着磁工程と、この磁化方向と平
行に第2着磁工程を行うため、基板表面の片面に着磁器
を用い、もう一方の片面にヨークを配して着磁するよう
にした特許請求の範囲第2項記載の多極帯状のゴム磁石
の製造方法。
(5) As a ferromagnetic substrate, the first magnetization process uses anisotropy to magnetize perpendicular to the plane of the substrate, and the second magnetization process is performed parallel to this magnetization direction. 3. The method of manufacturing a multipolar strip-shaped rubber magnet according to claim 2, wherein magnetization is carried out using a magnetizer and a yoke disposed on the other side.
JP12854884A 1984-06-21 1984-06-21 Multipolar strip form rubber magnet and manufacture thereof Pending JPS617609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12854884A JPS617609A (en) 1984-06-21 1984-06-21 Multipolar strip form rubber magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12854884A JPS617609A (en) 1984-06-21 1984-06-21 Multipolar strip form rubber magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS617609A true JPS617609A (en) 1986-01-14

Family

ID=14987477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12854884A Pending JPS617609A (en) 1984-06-21 1984-06-21 Multipolar strip form rubber magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS617609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853280B2 (en) 2002-01-31 2005-02-08 Sony Corporation Method of magnetizing magnetic sheet and magnetization apparatus
JP2018190982A (en) * 2017-05-08 2018-11-29 日東電工株式会社 Rare earth sintered magnet and sintered body for rare earth sintered magnet which is used for the same, and magnetic field applying device that can be used for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967198A (en) * 1972-11-02 1974-06-28
JPS55120110A (en) * 1979-03-12 1980-09-16 Hitachi Metals Ltd Magnetic tape for attraction
JPS5813999B2 (en) * 1975-08-01 1983-03-16 日本電気株式会社 Denkaketsugososhinokudohou

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967198A (en) * 1972-11-02 1974-06-28
JPS5813999B2 (en) * 1975-08-01 1983-03-16 日本電気株式会社 Denkaketsugososhinokudohou
JPS55120110A (en) * 1979-03-12 1980-09-16 Hitachi Metals Ltd Magnetic tape for attraction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853280B2 (en) 2002-01-31 2005-02-08 Sony Corporation Method of magnetizing magnetic sheet and magnetization apparatus
JP2018190982A (en) * 2017-05-08 2018-11-29 日東電工株式会社 Rare earth sintered magnet and sintered body for rare earth sintered magnet which is used for the same, and magnetic field applying device that can be used for producing the same

Similar Documents

Publication Publication Date Title
US3968465A (en) Inductor and method for producing same
TWI404083B (en) High power inductors using a magnetic basis
DE69313630D1 (en) MAGNETIZATION OF PERMANENT MAGNETIC TAPE MATERIALS
IE50917B1 (en) A device for the multipolar magnetization of a material in strips
JPS617609A (en) Multipolar strip form rubber magnet and manufacture thereof
EP0026014B1 (en) Method of manufacturing a permanent magnet assembly which is to be arranged in an air gap of a transformer core
KR960704308A (en) CONTACT DUPLICATION TAPE DEGAUSSER
KR840002411B1 (en) The multipolar magnetization of a material in strips
JPS6153843B2 (en)
JPH10270247A (en) Multiple polar magnetizing device of permanent magnet
JPS6038843B2 (en) magnetic attraction device
JPH0329079Y2 (en)
JPS5940303A (en) Magnetic head device for magnetization of magnetic material
JPS5952807A (en) One-side multi-pole magnet with yoke
JPS5940305A (en) Magnetizing method of magnetic material
JPH062615U (en) Flexible sheet magnet
SU1371474A1 (en) Photoelectromagnetic receiver
JPS5842281A (en) Hall element
JPS60190154A (en) Poles of motor
JPS5972636A (en) Manufacture for thin film head
JPS62259486A (en) Magnetic sensor
JPH05328677A (en) Manufacture of linear motor field part
JP2003017340A (en) Inductor component
JPH06267735A (en) Singlepolar magnet and manufacture thereof
JPS6362803B2 (en)