JPS6175244A - X-ray spectrometer - Google Patents

X-ray spectrometer

Info

Publication number
JPS6175244A
JPS6175244A JP59197638A JP19763884A JPS6175244A JP S6175244 A JPS6175244 A JP S6175244A JP 59197638 A JP59197638 A JP 59197638A JP 19763884 A JP19763884 A JP 19763884A JP S6175244 A JPS6175244 A JP S6175244A
Authority
JP
Japan
Prior art keywords
slit
rays
crystal
slit means
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197638A
Other languages
Japanese (ja)
Other versions
JPH0524479B2 (en
Inventor
Kazuyasu Kawabe
河辺 一保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP59197638A priority Critical patent/JPS6175244A/en
Publication of JPS6175244A publication Critical patent/JPS6175244A/en
Publication of JPH0524479B2 publication Critical patent/JPH0524479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the SN ratio, by arranging a slit means for restricting X rays derived from spectroscopic analysis so that at least the length-wise dimension of the slit is variable. CONSTITUTION:A specroscopic crystal having curvatures in two directions and a slit means 11 for forming a long and thin slit restricting X rays spectroscopically analyzed therewith is provided and the spectroscopic crystal and the slit means 11 are moved to perform a spectroscopic analysis of X rays in such a manner as that the distance between the X rays generation point on a sample and the spectroscopic crystal is equal to that between the spectroscopic crystal and the slit means 11. In a spectrometer of such a type, the lengthwise dimension of X rays focused varies in proportion to the distance between the sample and the spectroscopic crystal.Therefore, the length-wise dimension of the slit 12 of the slit means 11 is moved i symmetry with the center S of regulation plates 14 and 15 to shut down scattering X rays and the like other than the desired diffracting X rays.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、X線マイクロアナライザー等用のX線分光装
置に関し、特に、分光結晶として2方向に曲率を有する
分光結晶を用いたX線分光装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an X-ray spectrometer for an X-ray microanalyzer, etc., and in particular, to an X-ray spectrometer using a spectroscopic crystal having curvature in two directions as a spectroscopic crystal. Regarding equipment.

[従来技vFI] 第6図はX線マイクロアナライザーに使用されているX
線分光装置を示しており、1は試料である。該試料1に
電子線2が照射されると試料の電子線照射部分からX線
3が発生する。該X線3はローランド円4上に配置され
た分光結晶5に入射し、X線の波長に応じて回折される
。該回折X線の内断定波長のX線6はローランド円4上
の点7に集光されるが、該集光点7に集光されたX線の
みを取り出すために、長方形状のスリットを形成するス
リット手段8が配置されている。該スリット手段8を通
過したX線は検出器9によって検出される。
[Conventional technology vFI] Figure 6 shows the X-ray microanalyzer used in
A line spectrometer is shown, and 1 is a sample. When the sample 1 is irradiated with the electron beam 2, X-rays 3 are generated from the electron beam irradiated portion of the sample. The X-rays 3 are incident on the spectroscopic crystal 5 arranged on the Rowland circle 4, and are diffracted according to the wavelength of the X-rays. The X-rays 6 of the internally defined wavelength of the diffracted X-rays are focused at a point 7 on the Rowland circle 4, but in order to extract only the X-rays focused at the focusing point 7, a rectangular slit is formed. Forming slit means 8 are arranged. The X-rays passing through the slit means 8 are detected by a detector 9.

上述した構成において、分光結晶5を図中点線で示した
ライン10上を直線的に移動させると共に、該結晶5の
位置に応じてローランド円4を仮想的に移動させ、スリ
ット手段8を試料1のX線発生点Gと分光結晶5との間
の距離と該結晶5とスリット手段8との間の距離が等し
い状態でローランド円上に移動させれば、次々と異なっ
た波長のX線を検出することができる。
In the above-mentioned configuration, the spectroscopic crystal 5 is moved linearly on the line 10 shown by the dotted line in the figure, and the Rowland circle 4 is virtually moved according to the position of the crystal 5, and the slit means 8 is moved to the sample 1. If the distance between the X-ray generation point G and the spectroscopic crystal 5 is equal to the distance between the crystal 5 and the slit means 8, and the crystal is moved on the Rowland circle, X-rays of different wavelengths will be emitted one after another. can be detected.

[発明が解決しようとする問題点] 上述した分光結晶5として、2方向に曲率を有する結晶
を使用した場合、第7図に示す如く集光xmxの形状は
、X線発生部と分光結晶5との間の距離(分光結晶5と
スリット手段8の間の距離)Lに応じて変化する。図中
Oは分光結晶5の中心であり、距離りがLo  (=r
/sinθ)に等しい場合に回折X線は点状に集光し、
距離りがLoから離れるに従ってより細長く集光される
ことになる。尚、上記rは分光結晶5の幅方向(第6図
中紙面に垂直方向)の曲率半径、θは分光結晶5へのX
線の入射角である。このようにLの変化に応じてX線の
集光長さは変化するにもかかわらず、スリット手段8が
形成するスリットの長手方向の長さく紙面に垂直な方向
の長さ)は一定となっているため、カットすべきバック
グラウンドノイズもスリット手段を通過して検出され、
検出信号のSN比は悪化する。
[Problems to be Solved by the Invention] When a crystal having curvature in two directions is used as the above-mentioned spectroscopic crystal 5, the shape of the condensing light xmx as shown in FIG. (distance between the spectroscopic crystal 5 and the slit means 8). O in the figure is the center of the spectroscopic crystal 5, and the distance is Lo (=r
/sinθ), the diffracted X-rays are focused into a point,
As the distance increases from Lo, the light becomes narrower and more condensed. In addition, the above r is the radius of curvature of the spectroscopic crystal 5 in the width direction (direction perpendicular to the plane of the paper in FIG. 6), and θ is the X to the spectroscopic crystal 5.
is the angle of incidence of the line. Although the focused length of the X-rays changes in accordance with the change in L, the length in the longitudinal direction of the slit formed by the slit means 8 (the length in the direction perpendicular to the plane of the paper) remains constant. Therefore, the background noise that should be cut passes through the slit means and is detected.
The SN ratio of the detection signal deteriorates.

本発明は、上述した点に鑑みてなされたもので、SN比
の良好なX線分光装置を提供することを目的としている
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an X-ray spectrometer with a good signal-to-noise ratio.

[問題点を解決するための手段] 本発明に基づくX線分光装置は、2方向に曲率を有する
分光結晶と、該分光結晶によって分光されたX線を制限
する細長いスリットを形成するためのスリット手段と、
該試料上のX線発生点と分光結晶との間の距離と該分光
結晶と該スリット手段との間の距離とが等しい状態で該
分光結晶と該スリット手段を移動させ、X線の分光を行
うようにしたX線分光装置において、該スリット手段は
、少なくともスリットの長手方向の長さを変え得るよう
に構成されていることを特徴としている。
[Means for Solving the Problems] An X-ray spectrometer based on the present invention includes a spectroscopic crystal having curvature in two directions, and a slit for forming an elongated slit that limits the X-rays separated by the spectroscopic crystal. means and
The spectroscopic crystal and the slit means are moved in a state where the distance between the X-ray generation point on the sample and the spectroscopic crystal is equal to the distance between the spectroscopic crystal and the slit means, and the spectroscopy of the X-rays is performed. The X-ray spectrometer is characterized in that the slit means is configured such that at least the length of the slit in the longitudinal direction can be changed.

[作用] 2方向に曲率を有する分光結晶によって回折されたX線
は、スリット手段によって形成されるスリットにより制
限されるが、試料のX線発生部と分光結晶との間の距離
の変化に応じて、該スリットの長手方向の長さは調整さ
れる。その結果、集光された所望波長の回折X線のみを
該スリットを通過させることができ、バックグラウンド
ノイズを該スリット手段によってカットすることができ
る。
[Function] The X-rays diffracted by the spectroscopic crystal having curvature in two directions are restricted by the slit formed by the slit means, but depending on the change in the distance between the X-ray generating part of the sample and the spectroscopic crystal. Thus, the length of the slit in the longitudinal direction is adjusted. As a result, only the focused diffracted X-rays of the desired wavelength can pass through the slit, and background noise can be cut by the slit means.

[実施例1 以下、本発明の実施例を添附図面に基づいて詳述する。[Example 1 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明に基づくスリット手段11の一例を示
しており、このスリット手段11は第6図のスリット手
段8に代えて使用される。該スリット手段11は、長方
形のスリット12が穿たれたスリット板13とスリット
12の長手方向の長さを規制するための一対の規制板1
4.15とより成る。該規制板14.15は、スリット
12の中心Sに対して図中矢印方向に対称的に移動し得
るように構成されている。
FIG. 1 shows an example of a slit means 11 according to the invention, which is used in place of the slit means 8 of FIG. The slit means 11 includes a slit plate 13 having a rectangular slit 12 and a pair of regulation plates 1 for regulating the length of the slit 12 in the longitudinal direction.
4.15. The regulating plates 14, 15 are configured to be able to move symmetrically in the direction of the arrow in the figure with respect to the center S of the slit 12.

上述した毎き構成において、試料1と分光結晶5との間
の距離りがLoに近付いた場合、第7図に示す如く、集
光されるX線の長手方向の長さは短くなるため、該規制
板14.15とを互いに接近させれば、該規制板の端部
間の距離は該集光X線の長さと等しくされる。又、距離
りがLOから離された状態でX線分光を行う場合には、
該規制板14.15は離され、その端部間の距離は、し
に応じた集光X線の長さと等しくされる。その結果、該
スリット手段11は、集光された所望の回折X線以外の
散乱X線等のノイズ成分を効率的にカットすることがで
き、検出信号のSN比を高くすることができる。
In the above-described configuration, when the distance between the sample 1 and the spectroscopic crystal 5 approaches Lo, the length of the focused X-ray in the longitudinal direction becomes shorter, as shown in FIG. When the regulating plates 14 and 15 are brought close to each other, the distance between the ends of the regulating plates is made equal to the length of the focused X-ray. Also, when performing X-ray spectroscopy at a distance away from the LO,
The regulating plates 14,15 are separated and the distance between their ends is made equal to the length of the focused X-rays depending on the distance. As a result, the slit means 11 can efficiently cut out noise components such as scattered X-rays other than the desired focused diffracted X-rays, and can increase the SN ratio of the detection signal.

第2図は、第6図における分光結晶5の法線Nを通る、
紙面に垂直な平面PへのX線発生点Gと集光点7の投影
図である。ここで、aを距離りの平面Pへの投影とし、
bをa点から発生したX線が第6図の紙面に垂直な方向
(第2図では紙面に水平な方向)に集光される点の距離
とし、分光結晶5の長手方向く第6図の紙面に水平な方
向)の曲率半径を2R(ローランド円の半径をR)、結
晶5の幅方向(第6図の紙面に垂直な方向)の曲率半径
をrとすれば、次の式が導かれる。
FIG. 2 passes through the normal N of the spectroscopic crystal 5 in FIG.
It is a projection view of an X-ray generation point G and a convergence point 7 onto a plane P perpendicular to the plane of the paper. Here, let a be the projection of the distance onto the plane P,
Let b be the distance of the point where the X-rays generated from point a are focused in the direction perpendicular to the plane of the paper in Fig. 6 (in the direction horizontal to the plane of the paper in Fig. 2), and If the radius of curvature in the direction horizontal to the paper in Figure 6 is 2R (the radius of the Roland circle is R), and the radius of curvature in the width direction of the crystal 5 (direction perpendicular to the paper in Figure 6) is r, then the following equation is obtained. be guided.

a = L Sin  θ=L2  /2R1/a+1
/b=2/r 2hを分光結晶5の長手方向の長さ、2Hを第6図の集
光点7におけるX線の第6図の紙面に垂直方向の長さと
すれば、 )−1/h= (b−a>/b −2z−’L> ヒ =2(1−一上一・L” ) ZR・r となる。従って、 H4=;2h・(1−」−化1〉 2R・ヒ となり、Lが変化した場合には、この式に基づいてスリ
ットの長手方向の長さを調節すれば良い。
a = L Sin θ=L2 /2R1/a+1
/b=2/r If 2h is the length of the spectroscopic crystal 5 in the longitudinal direction, and 2H is the length of the X-ray at the converging point 7 in FIG. 6 in the direction perpendicular to the plane of the paper in FIG. 6, then )-1/ h= (ba-a>/b -2z-'L>Hi=2(1-1-1-1-L") ZR-r. Therefore, H4=;2h-(1-"-C1> 2R) - If L changes due to H, the length of the slit in the longitudinal direction may be adjusted based on this formula.

尚、上述した実施例において、規制板14.15は手動
で調整されるが、この規制板14.15を距離りの変化
に応じて自動的に移動させることは有効である。又、固
定スリット板13に穿たれたスリット12の形状を長方
形ではなく、集光X線が湾曲しているので、第3図に示
す如く、この湾曲X線に応じた曲線状の端部を有した形
状としても良い。
In the above-described embodiment, the regulation plate 14.15 is manually adjusted, but it is effective to automatically move the regulation plate 14.15 according to changes in distance. In addition, since the shape of the slit 12 formed in the fixed slit plate 13 is not rectangular, but the condensed X-ray is curved, the slit 12 formed in the fixed slit plate 13 has a curved end according to the curved X-ray as shown in FIG. It is also possible to have a shape with

第4図は他の実施例を示しており、スリット手段21は
第1.第2.第3の補助スリット手段22.23.24
より構成されている。該第1と第2の補助スリット手段
22.23は、夫々第5図(a);(b)に示す如く、
湾曲した端部を有する一対の規制板25,26,27.
28より成っているが、該2種の規制板の湾曲の向きは
互いに反対の向きにされている。該第3の補助スリット
手段24は、第1図に示した規制板14.15と同様に
スリットの長手方向の艮ざを規制するためのものである
。この第1.第2.第3の補助スリット手段の各規υI
板は形成されるスリットの中心に対して対称的に移動さ
せ得る。
FIG. 4 shows another embodiment, in which the slit means 21 is the first. Second. Third auxiliary slit means 22.23.24
It is composed of The first and second auxiliary slit means 22,23 are as shown in FIGS. 5(a) and 5(b), respectively.
A pair of regulating plates 25, 26, 27, each having a curved end.
28, the two types of regulating plates are curved in opposite directions. The third auxiliary slit means 24 is for regulating the length of the slit in the longitudinal direction, similar to the regulating plate 14.15 shown in FIG. This first. Second. Each regulation υI of the third auxiliary slit means
The plate can be moved symmetrically with respect to the center of the slit being formed.

この実施例においては、距離りがLoより短い場合には
、第1の補助スリット手段22の規制板25.26の間
の距離が狭くされ、第2の補助スリット手段23の規制
板27.28の間の距離が広くされ、該規制板25.2
6によってX線の幅方向の長さが制限される。一方、距
t!nLがLoより長い場合には、第1の補助スリット
手段22の規制板25.26の間の距離が広くされ、第
2の補助スリット手段23の規制板27.28の間の距
離が狭くされ、該規制板27.28によってX線の幅方
向の長さが制限される。従って、この実施例では、集光
X線の湾曲の方向がLoを境に異なっていることを考直
し、距離Loを境に異なった補助スリット手段を用いる
ようにしているため、集光されたX線の形状に略等しい
スリットが常に形成され、効率良く所望のX線のみを検
出することができる。
In this embodiment, when the distance is shorter than Lo, the distance between the regulating plates 25, 26 of the first auxiliary slit means 22 is narrowed, and the regulating plates 27, 28 of the second auxiliary slit means 23 are narrowed. The distance between the regulation plates 25.2 and 25.2 is increased.
6 limits the length of the X-ray in the width direction. On the other hand, distance t! When nL is longer than Lo, the distance between the regulating plates 25.26 of the first auxiliary slit means 22 is widened, and the distance between the regulating plates 27.28 of the second auxiliary slit means 23 is narrowed. , the length of the X-ray in the width direction is limited by the regulating plates 27 and 28. Therefore, in this embodiment, the fact that the direction of curvature of the focused X-rays differs with the distance Lo as the border is reconsidered, and different auxiliary slit means are used with the distance Lo as the border. A slit approximately equal to the shape of the X-ray is always formed, and only desired X-rays can be efficiently detected.

[効果] 以上詳述した如く、本発明においては、ローランド円上
に配置したスリット手段が形成するスリットの長手方向
の長さを任意に調整することができるため、バックグラ
ウンドノイズを略カットし、所望の回折X線を効率良く
スリットを通過させて検出することができ、SN比の良
い検出信号を得ることができる。
[Effect] As detailed above, in the present invention, since the length in the longitudinal direction of the slit formed by the slit means arranged on the Rowland circle can be arbitrarily adjusted, background noise can be substantially cut, Desired diffracted X-rays can be efficiently passed through the slit and detected, and a detection signal with a good signal-to-noise ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づくスリット手段の一例を示す図、
第2図は、第6図における分光結晶5の法線Nを通る、
紙面に垂直な平面PへのX線発生点Gと集光点7の投影
図、第3図はスリット形状を示す図、第4図は本発明の
他の実施例を示す図、第5図は第4図の実施例に使用さ
れる補助スリット手段の規制板の形状を示す図、第6図
はX線分光装置の全体構成を示す図、第7図は回折xm
の集光の様子を示す図である。 1・・・試料     2・・・電子線3・・・X線 
    4・・・ローランド円5・・・分光結晶   
6・・・X線 8.11・・・スリット手段 9・・・検出器 13・・・スリット板 14.15・・・規制板
FIG. 1 is a diagram showing an example of a slit means based on the present invention;
FIG. 2 passes through the normal N of the spectroscopic crystal 5 in FIG.
A projection view of the X-ray generation point G and the condensing point 7 on a plane P perpendicular to the paper surface, FIG. 3 is a view showing the slit shape, FIG. 4 is a view showing another embodiment of the present invention, and FIG. is a diagram showing the shape of the regulating plate of the auxiliary slit means used in the embodiment of FIG. 4, FIG. 6 is a diagram showing the overall configuration of the X-ray spectrometer, and FIG.
FIG. 2 is a diagram showing how light is focused. 1... Sample 2... Electron beam 3... X-ray
4... Roland circle 5... Spectroscopic crystal
6...X-ray 8.11...Slit means 9...Detector 13...Slit plate 14.15...Regulation plate

Claims (3)

【特許請求の範囲】[Claims] (1)2方向に曲率を有する分光結晶と、該分光結晶に
よって分光されたX線を制限する細長いスリットを形成
するためのスリット手段と、該試料上のX線発生点と分
光結晶との間の距離と該分光結晶と該スリット手段との
間の距離とが等しい状態で該分光結晶と該スリット手段
を移動させ、X線の分光を行うようにしたX線分光装置
において、該スリット手段は、少なくともスリットの長
手方向の長さを変え得るように構成されていることを特
徴とするX線分光装置。
(1) A spectroscopic crystal having curvature in two directions, a slit means for forming an elongated slit that restricts the X-rays separated by the spectroscopic crystal, and a space between the X-ray generation point on the sample and the spectroscopic crystal. In the X-ray spectrometer, the spectroscopy crystal and the slit means are moved in a state where the distance between the spectrometer crystal and the slit means is equal to the distance between the spectrometer crystal and the slit means to perform X-ray spectroscopy. An X-ray spectrometer, characterized in that it is configured such that at least the length of the slit in the longitudinal direction can be changed.
(2)該スリットの端部は、曲線状とされる特許請求の
範囲第1項記載のX線分光装置。
(2) The X-ray spectrometer according to claim 1, wherein the end of the slit is curved.
(3)該スリット手段は、スリットを通過するX線の幅
方向の長さを制限する第1と第2の補助スリット手段と
、X線の長手方向の長さを制限する第3の補助スリット
手段とを有しており、夫々の補助スリット手段は、対向
する2枚のスリット板より構成され、第1と第2の補助
スリット手段のスリット板の端部は夫々湾曲しており、
第1と第2の補助スリット手段のスリット板の湾曲の向
きは互いに反対の向きにされ、夫々の2枚のスリット板
の間隔は、独立して変え得るように構成されている特許
請求の範囲第1項記載のX線分光装置。
(3) The slit means includes first and second auxiliary slit means that limit the length in the width direction of the X-rays passing through the slit, and a third auxiliary slit means that limits the length in the longitudinal direction of the X-rays. each auxiliary slit means is composed of two opposing slit plates, the ends of the slit plates of the first and second auxiliary slit means are each curved,
The slit plates of the first and second auxiliary slit means are curved in opposite directions, and the distance between the two slit plates can be changed independently. The X-ray spectrometer according to item 1.
JP59197638A 1984-09-20 1984-09-20 X-ray spectrometer Granted JPS6175244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197638A JPS6175244A (en) 1984-09-20 1984-09-20 X-ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197638A JPS6175244A (en) 1984-09-20 1984-09-20 X-ray spectrometer

Publications (2)

Publication Number Publication Date
JPS6175244A true JPS6175244A (en) 1986-04-17
JPH0524479B2 JPH0524479B2 (en) 1993-04-07

Family

ID=16377812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197638A Granted JPS6175244A (en) 1984-09-20 1984-09-20 X-ray spectrometer

Country Status (1)

Country Link
JP (1) JPS6175244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519393A (en) * 2003-02-28 2006-08-24 オスミック、インコーポレイテッド X-ray optical system with adjustable convergence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484794A (en) * 1977-12-19 1979-07-05 Jeol Ltd Xxray spectroscope
JPS54137091U (en) * 1978-03-16 1979-09-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484794A (en) * 1977-12-19 1979-07-05 Jeol Ltd Xxray spectroscope
JPS54137091U (en) * 1978-03-16 1979-09-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519393A (en) * 2003-02-28 2006-08-24 オスミック、インコーポレイテッド X-ray optical system with adjustable convergence

Also Published As

Publication number Publication date
JPH0524479B2 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
US7864922B2 (en) Wavelength-dispersive X-ray spectrometer
US6665372B2 (en) X-ray diffractometer
US2922331A (en) Spectroscopic device
Johnson et al. Normal incidence grating spectrometer designed for inverse photoemission studies in the range 10–30 eV
US5790628A (en) X-ray spectroscope
JP2002189004A (en) X-ray analyzer
Osborn et al. Two new optical designs for soft x‐ray spectrometers using variable‐line‐space gratings
JPS6175244A (en) X-ray spectrometer
US4786174A (en) Polychromator
JP5484737B2 (en) Soft X-ray spectrometer
US5008910A (en) X-ray analysis apparatus comprising a saggitally curved analysis crystal
US4271353A (en) X-ray spectroscope
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
Namba et al. A compact vacuum-ultraviolet beamline for synchrotron radiation photoelectron spectroscopy combined with an ion-scattering spectrometer, SORIS
JP2666871B2 (en) X-ray monochromator
JP3411705B2 (en) X-ray analyzer
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
JPH08128975A (en) X-ray analyzing device
US3469098A (en) X-ray analyzing element
JPH0772298A (en) X-ray spectroscope and x-ray spectroscopic element
JP2955142B2 (en) Total reflection X-ray fluorescence analyzer
JP3323670B2 (en) Radiation spectrometer
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JPH04140619A (en) Spectroscope
JPH06109662A (en) X-ray analyzer