JPS6174803A - Manufacture of injection-molded ceramic member - Google Patents

Manufacture of injection-molded ceramic member

Info

Publication number
JPS6174803A
JPS6174803A JP19805784A JP19805784A JPS6174803A JP S6174803 A JPS6174803 A JP S6174803A JP 19805784 A JP19805784 A JP 19805784A JP 19805784 A JP19805784 A JP 19805784A JP S6174803 A JPS6174803 A JP S6174803A
Authority
JP
Japan
Prior art keywords
injection molding
viscosity
injection
kneading
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19805784A
Other languages
Japanese (ja)
Inventor
誠司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19805784A priority Critical patent/JPS6174803A/en
Publication of JPS6174803A publication Critical patent/JPS6174803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はセラミック部材の製造方法に関し、特に成形
体を射出成形によって造り、その成形体に脱脂および焼
成ならびに加工等の処理を施してR11製品を得る方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing ceramic members, and in particular, a molded body is made by injection molding, and the molded body is subjected to treatments such as degreasing, firing, and processing to obtain an R11 product. It is about the method.

従来の技術 周知のようにセラミック部材は、原料粉末の成形、成形
体の焼成、焼結体の加工等の工程を経て製造し、これら
の工程のうちの成形方法として、射出成形、押出成形、
鋳込成形等の方法が知られている。これらの各種成形法
は、得るべき製品の形状等の条件によって一長一短があ
るが、均質で?!!雑形状形状品を多山に生産する場合
には、射出成形法が適している。
Conventional Technology As is well known, ceramic members are manufactured through processes such as molding raw material powder, firing a molded body, and processing a sintered body, and among these processes, injection molding, extrusion molding,
Methods such as casting are known. These various molding methods have advantages and disadvantages depending on conditions such as the shape of the product to be obtained, but are they homogeneous? ! ! Injection molding is suitable for producing large quantities of irregularly shaped products.

射出成形法は、プラスチック成形技術から派生した技術
であって、熱可塑性m脂を主体とした有d粘結剤とセラ
ミック粉末とを混合・混練し、その混練物を流動性の良
い状態で所定形状の金型に圧入して形状を付与する方法
である。射出成形法を使用したセラミック部材の製造は
、混粉→混練→射出成形→脱脂→焼成→加工→検査の各
工程を経て行なわれるが、各々の工程ごとに充足すべき
条件があり、これを混練および射出成形の工程について
みると、混練物中におけるセラミック原料の分散度合、
粘度、射出圧力、射出温度、金型の構造等が挙げられる
。しかしながら、混練および射出成形の各工程における
これらの諸条件は、他の工程における条件や要因と同様
に、理論的に解明されていない点が多く、したがって実
用に際しては現実的事象ごとに対処しているのが実情で
ある。
Injection molding is a technology derived from plastic molding technology, in which a binder mainly composed of thermoplastic resin and ceramic powder are mixed and kneaded, and the kneaded product is molded into a predetermined shape with good fluidity. This is a method of giving a shape by press-fitting it into a mold. Manufacturing ceramic parts using the injection molding method involves the following steps: mixing powder → kneading → injection molding → degreasing → firing → processing → inspection, but there are conditions that must be met for each step. Regarding the kneading and injection molding processes, the degree of dispersion of the ceramic raw material in the kneaded material,
Examples include viscosity, injection pressure, injection temperature, mold structure, etc. However, these various conditions in each process of kneading and injection molding, like the conditions and factors in other processes, have many points that have not been clarified theoretically, and therefore, in practice, they must be dealt with on a case-by-case basis. The reality is that there are.

発明が解決しようとする問題点 ところで射出成形は、セラミック粉末と熱可塑性樹脂を
主成分とする有n粘結剤とからなる混練物をベレット化
した混練ベレッl−を素材とし、その混練ベレットを加
熱流動化して金型に圧入することにより行なうから、加
熱流動性の良い材料を用いることが好ましいとされてい
る。しかしながら従来では、混練条件を経験に基づいて
多様に設定してn Hを行なっているが、セラミック原
料の組成や混練雰囲気、あるいは温度や湿度等によって
必ずしも同一の混練ベレットを得ることができず、しか
も混練ベレットの良否を定量的に判定する基準が特に無
かったために、射出成形以降の各工程での条件を同一に
しても良品率(全製造個数に対する製品とし得るものの
個数)や製品強度に大きなバラつきが生じる問題があっ
た。
Problems to be Solved by the Invention By the way, injection molding uses a kneaded pellet made from a kneaded material consisting of ceramic powder and a binder mainly composed of a thermoplastic resin into a pellet, and the kneaded pellet is made into a pellet. Since this is done by heating and fluidizing the material and press-fitting it into a mold, it is said that it is preferable to use a material with good heating fluidity. However, in the past, nH was performed by setting various kneading conditions based on experience, but it was not always possible to obtain the same kneaded pellets depending on the composition of the ceramic raw material, the kneading atmosphere, temperature, humidity, etc. Moreover, since there was no specific standard for quantitatively determining the quality of kneading pellets, even if the conditions for each process after injection molding were the same, the yield rate (the number of products that can be made into a product compared to the total number of products produced) and product strength would be significantly affected. There was a problem that variations occurred.

この発明は上記の事債に鑑みてなされたもので、良品率
および強度を向上させ、かつそのバラつきを低減できる
セラミック部材の製造方法を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a method for manufacturing a ceramic member that can improve the yield rate and strength, and reduce variations thereof.

問題点を解決するための手段 この発明は上記の目的を達成するために、セラミック粉
末と有機粘結剤とからなる射出成形用混練ベレットを約
140℃での粘度が1.0x10’po i seから
3. OX 10’ poiseの範囲に入るよう調整
しておくことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a kneaded pellet for injection molding consisting of ceramic powder and an organic binder with a viscosity of 1.0 x 10'poise at about 140°C. From 3. It is characterized by being adjusted to fall within the range of OX 10' poise.

すなわち射出成形用材料は加熱流動性が良いことが好ま
しいとされているが、本発明者の実験研究によれば、流
動性が過剰であれば、流動性が不足する場合と同様に、
製品に悪影響が出ることが見出され、その結果この発明
をなすに到ったのである。
In other words, it is said that it is preferable for injection molding materials to have good heat fluidity, but according to the inventor's experimental research, if the fluidity is excessive, the fluidity will be insufficient, as well as if the fluidity is insufficient.
It was discovered that this had an adverse effect on the product, and as a result, this invention was made.

発明を実流するための具体的な説明 この発明は、成形体を(9るための方法として射出成形
法を利用し、かつその射出成形用混練ベレットの粘度を
前述した範囲に設定しておくことを特徴とするものであ
って、他の工程は通常のセラミック部材の製造方法と同
様であってよい。
Detailed Description for Practicing the Invention This invention utilizes an injection molding method as a method for molding a molded product, and sets the viscosity of the kneading pellet for injection molding within the above-mentioned range. This is a feature of the present invention, and the other steps may be the same as those of ordinary ceramic member manufacturing methods.

すなわちこの発明においても、こ粉→混練→射出成形4
11!2脂→焼成→加工→検査の各工程を経てセラミッ
ク部材を製造する。
That is, in this invention as well, powder→kneading→injection molding 4
11!2 Ceramic members are manufactured through the following steps: fat → firing → processing → inspection.

また混練ベレットの性状は、前述したように原料や温度
、湿度等によって相当変化するが、この発明においては
、要は、杓140℃での粘度が上述した範囲に入れば良
いのであって、そのための調整はセラミック粉末や有儂
粘結剤のの組成を変え、あるいは混練雰囲気を変えるな
ど、必要に応じて適当な方法によって行なうことができ
る。
Furthermore, as mentioned above, the properties of the kneaded pellets vary considerably depending on the raw materials, temperature, humidity, etc., but in this invention, the viscosity at 140°C in the ladle only needs to fall within the range mentioned above. The adjustment can be carried out by an appropriate method as required, such as by changing the composition of the ceramic powder or the binder, or by changing the kneading atmosphere.

さらに粘度の測定は、従来知られている各種の粘度測定
器によって行なってもよいが、例えば第3図に原理的に
示すようにして行なってもよい。
Further, the viscosity may be measured using various conventionally known viscosity measuring instruments, and may be carried out, for example, as shown in principle in FIG. 3.

すなわち第3図において符号1は加圧可能な容器であっ
て、その底部に長さf=10mm、i径り=111mの
オリフィス2を取付けておき、容器1に入れたセラミッ
ク粉末と有潰粘結剤との混練物3を、温度T−140℃
の下で加圧して剪断速度5R−1、22x 102se
c −1rオlJ Vイス2カラR出させ、その場合の
中位時間当りの流mから粘度を算出してもよい。上述し
た粘度は、このような測定方法による値であり、測定法
が異なれば粘度値が誤差等により若干変動するが、この
発明では、第3図に示す方法による粘度値が前述した値
になればよい。
In other words, in FIG. 3, reference numeral 1 denotes a container that can be pressurized, and an orifice 2 with a length f = 10 mm and a diameter i = 111 m is attached to the bottom of the container, and the ceramic powder and the crushed viscosity contained in the container 1 are attached. The kneaded material 3 with the binder was heated to a temperature of T-140°C.
Shear rate 5R-1, 22x 102se under pressure
The viscosity may be calculated from the medium flow m per unit time in which c-1r 1J V chair 2 color R is discharged. The viscosity mentioned above is the value obtained by such a measurement method, and if the measurement method is different, the viscosity value will vary slightly due to errors, etc., but in this invention, the viscosity value obtained by the method shown in Fig. 3 is the value mentioned above. Bye.

実施例 以下に、ディーゼルエンジン用セラミックチャンバーを
製造した場合を倒に採って説明する。
EXAMPLES Below, the case of manufacturing a ceramic chamber for a diesel engine will be explained.

製造工程は前述した通り、混粉→混練→射出成形→脱脂
→焼成→加工→検査→の各工程であり、各々の条件を以
下に示す。
As mentioned above, the manufacturing process includes the following steps: mixing powder → kneading → injection molding → degreasing → firing → processing → inspection, and the conditions for each are shown below.

混  粉 5i3N4f末と焼結助剤とをボールミルで5時間以上
混合した。
The mixed powder 5i3N4f powder and the sintering aid were mixed in a ball mill for more than 5 hours.

混 踵 10〜30wt%の有機粘結剤と上記の混合工程でl”
J tc 1合粉末とをニーダで混練した後、約140
℃での粘度(溶融粘度)が0.5X 10  Do+s
e1.Ox 10  poise 、 2.Ox 10
” poise 、 3.0×10” poise、3
.5X 10” poiseとなる5種類の混練ベレッ
トを作成した。
Mixed with 10 to 30 wt% organic binder and the above mixing process.
After kneading J tc 1 powder with a kneader, about 140
Viscosity (melt viscosity) at °C is 0.5X 10 Do+s
e1. Ox 10 poise, 2. Ox10
"poise, 3.0×10" poise, 3
.. Five types of kneading pellets each having a size of 5×10” poise were prepared.

射出成形 上記5種類の混練ベレット分用いて、それぞれ躬出滉度
100℃以上、射出1次圧力300 k!]/−(以上
の条件で、所期の形状の成形体を射出成形した。
Injection molding Using the above five types of kneading pellets, each has an ejection temperature of 100°C or more and a primary injection pressure of 300 k! ]/−(Under the above conditions, a molded article of the desired shape was injection molded.

脱 脂 成形体を500℃程度までゆっくり加熱昇温し、バイン
ダーとしての符加成分を熱分解させて眉失させた。
The defatted molded body was slowly heated to about 500° C. to thermally decompose the additive component as a binder and cause the eyebrows to disappear.

焼 成 脱脂体を1600’C以上で4詩間焼成した。Baked The degreased body was fired at 1600'C or higher for 4 cycles.

以上の工程を紅てqられた焼結体について、亀裂等欠陥
のないものの割合すなわち良品率と、強rX(kり/−
)とを測定した。結果を第1図および第2図に示す。
Regarding the sintered bodies that have undergone the above process, the ratio of those without defects such as cracks, that is, the good product rate, and the strength rX (kri/-
) was measured. The results are shown in FIGS. 1 and 2.

まず第1図に示す良品率についてみると、溶融粘度が1
.0X10  poiseないし3.0X10(lpo
iseの混練ベレットを切用した場合には、良品率が9
0%前後の高率となり、かつそのパラつきが小さくなり
、これに対し溶融粘度が0.5×10” poiseお
よび3.5X10りpoiseのコ縛ベレットを使用し
た場合には、良品客が20m%程度の低い値になり、し
かもそのバラつきが大きくなった。また第2図に示す強
度についてみると、溶融粘度が1 、 Ox 10 f
poiseないし3.0X10’ poiseの混練ベ
レットを使用した場合には、70 kg/−前後の高い
強度を示し、これに対し溶融粘度が0.5x 10  
polse I>よび3.5X10 ’ oo i s
eの8棟ベレットを使用した場合には、20 kg/−
程度の低強度になってしまった。
First, if we look at the non-defective rate shown in Figure 1, we can see that the melt viscosity is 1.
.. 0X10 poise to 3.0X10 (lpo
When the ise kneading pellets are used up, the yield rate is 9.
The ratio is high, around 0%, and the fluctuation is small.On the other hand, when using a co-tied pellet with a melt viscosity of 0.5 x 10" poise and 3.5 %, and the variation was large.Also, looking at the strength shown in Figure 2, the melt viscosity was 1, Ox 10 f.
When a poise or 3.0x10' poise kneading pellet is used, it shows a high strength of around 70 kg/-, whereas the melt viscosity is 0.5x10'.
polse I> and 3.5X10' oo is
20 kg/- when using 8-barret e.
The strength has become somewhat low.

発明の効果 以上の説明から明らかなようにこの発明の方法によれば
、従来定テ的に管理されていなかった射出成形用材料で
恋る混練ベレットの粘度を、約140℃で1.0x10
  poiseないし3.0X1Q’ poiseに設
定することにより、良品率が向上し、したがって生産性
および材料歩留りを向上させることができるとともに、
得られた製品の強度を従来になく高めることができる。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention, the viscosity of the kneaded pellet made of injection molding material, which has not been regularly controlled in the past, can be reduced to 1.0x10 at about 140°C.
By setting it to 3.0X1Q' poise or 3.0
The strength of the resulting product can be increased to an unprecedented level.

またこの発明によれば、成形条件適合範囲の拡大および
最適条件の設定が容易になり、さらに射出成形口の摩耗
が安定するなどの21次的効果をりることができる。
Further, according to the present invention, it becomes easy to expand the compatible range of molding conditions and set the optimum conditions, and it is also possible to obtain 21st-order effects such as stabilizing wear of the injection molding port.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混練ベレットの溶I!!粘度と良品率との関係
を示す線図、第2図は混練ベレットの溶融粘度と製品強
度との関係を示す貯口、第3図は混坪ベレットの溶Fp
A帖度の測定法の一例を示す宍略図である。 出願人  トヨタ自動車株式会社 代理人  弁理士 σ 1)武 久 (ほか1名) 第1図 =t+4tu&     xjo’po+sa第2図 1.0    2.0   3.0    4.0名μ
式拓友    に10’ POI SE第3図
Figure 1 shows the melting of kneaded pellets! ! A diagram showing the relationship between viscosity and good product rate, Figure 2 shows the relationship between the melt viscosity of the kneaded pellet and product strength, and Figure 3 shows the melt Fp of the mixed pellet.
FIG. 2 is a schematic diagram showing an example of a method for measuring A-level. Applicant Toyota Motor Corporation Representative Patent Attorney σ 1) Hisashi Take (and 1 other person) Figure 1 = t + 4 tu &xjo'po + sa Figure 2 1.0 2.0 3.0 4.0 people μ
10' POI SE Figure 3

Claims (1)

【特許請求の範囲】[Claims] セラミック粉末と有機粘結剤とからなる射出成形用混練
ペレットを素材として射出成形を行なうことにより、所
定形状の成形体を得るとともに、その成形体に脱脂およ
び焼成等の各処理を施してセラミック部材を製造するに
あたり、前記混練ペレットの粘度を、約140℃で1.
0×10^4poiseから3.0×10^4pois
eの範囲の粘度に設定しておくことを特徴とする射出成
形セラミック部材の製造方法。
By performing injection molding using kneaded pellets for injection molding consisting of ceramic powder and an organic binder as a raw material, a molded body of a predetermined shape is obtained, and the molded body is subjected to various treatments such as degreasing and firing to form a ceramic member. In producing the above-mentioned kneaded pellets, the viscosity of the kneaded pellets is set to 1.
0x10^4poise to 3.0x10^4poise
A method for manufacturing an injection molded ceramic member, characterized in that the viscosity is set to a range of e.
JP19805784A 1984-09-21 1984-09-21 Manufacture of injection-molded ceramic member Pending JPS6174803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19805784A JPS6174803A (en) 1984-09-21 1984-09-21 Manufacture of injection-molded ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19805784A JPS6174803A (en) 1984-09-21 1984-09-21 Manufacture of injection-molded ceramic member

Publications (1)

Publication Number Publication Date
JPS6174803A true JPS6174803A (en) 1986-04-17

Family

ID=16384811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19805784A Pending JPS6174803A (en) 1984-09-21 1984-09-21 Manufacture of injection-molded ceramic member

Country Status (1)

Country Link
JP (1) JPS6174803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099373A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Method for manufacturing ceramic heater, and glow plug
JP2013028148A (en) * 2011-07-29 2013-02-07 Noritake Co Ltd Ceramic injection molding material and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099373A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Method for manufacturing ceramic heater, and glow plug
JP2013028148A (en) * 2011-07-29 2013-02-07 Noritake Co Ltd Ceramic injection molding material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2003525828A (en) Injection molding of zirconia-based structural materials by wet method
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
CN108409311B (en) Multi-component 3D printing extrusion molding material
JPS6174803A (en) Manufacture of injection-molded ceramic member
US3442668A (en) Method of manufacturing ceramics
Allaire et al. Injection molding of submicrometer zirconia: blend formulation and rheology
ATE509001T1 (en) RESISTOR BEADS FOR FIREPROOF MOLDED BODIES AND METHOD FOR THE PRODUCTION THEREOF
US3252809A (en) Dry grinding of ceramics
CN113878113A (en) Ceramic-stainless steel composite material and preparation method thereof
JPH0297461A (en) Production of molded body of barium titanate semiconductor ceramics
JP2958579B2 (en) Production method of pearl core material
KR960004386B1 (en) Process for the preparation of sintering of zirconia driver
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JPS60151271A (en) Manufacture of ceramic product
JP2511078B2 (en) Injection molding
JPH02129301A (en) Material for forming metal powder, metal powder product and manufacture thereof
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
JPH0825178B2 (en) Method of manufacturing injection molded body
JPS5918414B2 (en) Manufacturing method for plastic bonded magnetic molded body
JPH0620858A (en) Manufacture of ferrite core by injection molding
JPS62197166A (en) Production of crushing and mixing media
JPS6172677A (en) Dewaxing material for ceramic injection molding
JPS5930760A (en) Preparation of ceramic dough
Vaidyanathan et al. Rheological properties of ceramic formulations for Extrusion Freeform Fabrication