JPS6174778A - Method of following weld groove - Google Patents

Method of following weld groove

Info

Publication number
JPS6174778A
JPS6174778A JP19763384A JP19763384A JPS6174778A JP S6174778 A JPS6174778 A JP S6174778A JP 19763384 A JP19763384 A JP 19763384A JP 19763384 A JP19763384 A JP 19763384A JP S6174778 A JPS6174778 A JP S6174778A
Authority
JP
Japan
Prior art keywords
welding
center
oscillation
groove
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19763384A
Other languages
Japanese (ja)
Other versions
JPH0413066B2 (en
Inventor
Keiichi Hokaku
宝角 敬一
Hiroshi Kondo
弘 近藤
Masami Une
宇根 正美
Kenji Saeki
佐伯 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP19763384A priority Critical patent/JPS6174778A/en
Publication of JPS6174778A publication Critical patent/JPS6174778A/en
Publication of JPH0413066B2 publication Critical patent/JPH0413066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To perform following of weld groove by a welding torch properly and enable good arc welding by operating the quantity of control to be given to the center of oscillation using a proper gain coefficient pertinent to welding condition. CONSTITUTION:It is supposed that IA is the value of welding current when oscillation is made from a point 1S2 to a point 2S2, and I'A' is the value of welding current when movement is made to the left end during oscillation from a point 1Sn+1 to a point 2Sn+1 when the center of oscillation OSC is shifted from a desired position to the left by a distance d1. The value of welding current I''A'' when oscillation is made to the left end during oscillation from a point 1Sn+i+1 to a point 2Sn+i+1 when the center of oscillation OSC is shifted from a desired position by a distance d1 is read out. Gain coefficient is operated from the value of welding current and the distance d1. The quantity of control is operated using the gain coefficient, and outputted as the quantity of change of each joint of a robot. The center of oscillation OSC is shifted to keep desired relation with the center line of groove GC.

Description

【発明の詳細な説明】 (利用分野) この発明は、消耗電極を供給する溶接トーチを溶接開先
の幅方向に揺動させながら行うアーク溶接において、揺
動中、溶接電流を検出し、この検出した溶接電流値を演
算、処理することによって揺動中心が溶接開先と所望の
位置関係から変位したことを検出すると共に揺動中心の
位置を修正し溶接トーチを溶接開先に追従させるべくし
た溶接開先追従方法に関するものである。
[Detailed Description of the Invention] (Field of Application) This invention detects the welding current during arc welding, which is performed while swinging the welding torch that supplies the consumable electrode in the width direction of the welding groove. By calculating and processing the detected welding current value, it is detected that the center of oscillation is displaced from the desired positional relationship with the welding groove, and the position of the center of oscillation is corrected to make the welding torch follow the welding groove. The present invention relates to a welding groove tracking method.

従来の技術 アーク溶接の自動化に対応して溶接トーチを溶接開先に
追従させる方法にはいろいろなものがあるが、別個の検
出器を要せずかつヌパノタ、アーク熱等の影響による精
度低下がないなど数々の利点を有する方法として、溶接
アーク自体の特性を利用した方法、いわゆるアークセン
サ倣いが開発され、実行されている。
Conventional technology There are various methods of making the welding torch follow the welding groove in response to the automation of arc welding, but there are methods that do not require a separate detector and that do not reduce accuracy due to the effects of arc welding, arc heat, etc. A method that utilizes the characteristics of the welding arc itself, so-called arc sensor copying, has been developed and is being implemented as a method that has many advantages such as:

中でも、溶接トーチの揺動中、溶接電流を検出し、それ
を演算処理することによって溶接トーチを開先に追従さ
せるようにした方法および装置についての数多くの出願
がある。
Among these, many applications have been filed regarding methods and devices in which the welding torch is caused to follow the groove by detecting the welding current while the welding torch is oscillating and processing the detected welding current.

そして、揺動の左右端における溶接電流検出値の差、揺
動の中心から一方への所望期間の溶接電流値の積分値と
同じく他の一方への所望期間の溶接電流値の積分値の差
を求めることなどによって揺動中心が溶接開先と所望の
位置関係から変位したことを検出し、この変位を修正す
るための制御量はあらかじめ定めたゲイン係数を前述電
流鎮差などに掛は合わせて求めていた。しかしながら、
溶接条件に合った適切な制御量が得られないので種々の
条件を与えて実験を行いゲイン係数を決めていたが、パ
ラメータが非常に多く適切なゲイン係数が得られないと
言う問題があった。
Then, the difference between the detected welding current values at the left and right ends of the swing, and the difference between the integral value of the welding current value during the desired period from the center of the swing to one side and the integral value of the welding current value during the desired period from the center of the swing to the other side. It is detected that the center of oscillation has shifted from the desired positional relationship with the welding groove by determining That's what I was looking for. however,
Since it was not possible to obtain an appropriate control amount that matched the welding conditions, experiments were conducted under various conditions to determine the gain coefficient, but there was a problem that there were so many parameters that it was impossible to obtain an appropriate gain coefficient. .

(解決しようとする問題点) この発明は、前述揺動の左右端における溶接電! 節倹出値の差、揺動の中心から左右への所望期間の溶接
電流検出値の積分値の差などに基いて、揺動中1しに対
する制御量を与えるに当り、1客扱条件に応じた適切な
ゲイン係tlIを得る方法を提供するものである。
(Problem to be Solved) This invention solves the problem of welding electric current at the left and right ends of the above-mentioned swing! Based on the difference in the savings value, the difference in the integral value of the welding current detection value during the desired period from the center of the vibration to the left and right, etc. This provides a method for obtaining an appropriate gain coefficient tlI.

(問題点を解決するための手段) 溶接トーチの揺動中心が、1容接開先と所定の位置関係
を保って正しく溶接開先を追従しているときに、溶接不
良を生じない範囲で揺動中心を溶接開先との所定の位置
関係から適宜距離だけ変位せしめる。そして、変位のあ
る場合とない場合について検出した、揺動の同じ特定位
置における洛接電流i直の差を求め、更にこの差と与え
た変位量からゲイン係数を求め、このゲイン係数を、変
位を生じた場合の揺動の左右端における溶接電流検出値
の差、揺動中心から左右への所望期間の溶接電流検出値
の積分値の差、この差と基準値との差などに乗算して、
揺動中心に対する制御量を求める。
(Means for solving the problem) When the center of oscillation of the welding torch maintains a predetermined positional relationship with the 1-volume welding groove and correctly follows the welding groove, welding should be performed within a range that does not cause welding defects. The center of oscillation is displaced by an appropriate distance from a predetermined positional relationship with the welding groove. Then, find the difference in the current i at the same specific position of the oscillation detected with and without displacement, and then find the gain coefficient from this difference and the given displacement amount. Multiply the difference between the welding current detection values at the left and right ends of the oscillation when oscillation occurs, the difference between the integrated values of the welding current detection values during the desired period from the oscillation center to the left and right, and the difference between this difference and the reference value, etc. hand,
Find the control amount for the center of oscillation.

(作用) このようにして求めたゲイン係数は、それぞれのケース
において実際に変位を与えてそれに応じた電流変化から
求めたものであるから、それぞれのケースにおける溶接
条件に適したものになる。
(Function) The gain coefficient obtained in this manner is obtained from actual displacement in each case and the corresponding current change, so it is suitable for the welding conditions in each case.

(実施例) 第1図のような水平隅肉継手のワークWに対して多関節
ロボット凡て溶接トーチTを揺動させながら、揺動中心
O8Cの両側における揺動の1/4周期の溶接電流検出
値の積分値を比較し、溶接トーチTを開先Gに追従させ
るようにしたものにおける実施例について説明する。
(Example) While swinging the welding torch T of the multi-joint robot on the workpiece W of a horizontal fillet joint as shown in Fig. 1, welding is carried out at 1/4 period of the swing on both sides of the swing center O8C. An embodiment in which the welding torch T is made to follow the groove G by comparing the integral values of the detected current values will be described.

この実施例では、第2図のように溶接トーチTは、開先
中心線GCから所定距離dだけ図上の右方にオフセフ)
して揺動経路Pを画きながら溶接進行方向CDへ向って
移動し、水平隅肉溶接を行なう。そして、この溶接トー
チTの揺動と移動は、第3図のように最終腕先に溶接ト
ーチTを取り付けた多関節ロボット凡の関節角α1〜α
5を制御することによって行われる。l客扱トーチTに
は。
In this embodiment, as shown in Fig. 2, the welding torch T is offset to the right in the figure by a predetermined distance d from the groove center line GC.
It moves in the welding progress direction CD while drawing a swinging path P, and performs horizontal fillet welding. The swinging and movement of the welding torch T is caused by the joint angles α1 to α of the articulated robot with the welding torch T attached to the end of its final arm as shown in
This is done by controlling 5. l For the customer handling torch T.

電WEには、溶接電源1から、溶接トーチTの図示しな
いチップを通して溶接電流1が供給される。
A welding current 1 is supplied to the electric WE from a welding power source 1 through an unillustrated tip of a welding torch T.

溶接電源1から溶接トーチTへの電気配線上には電流セ
ンサ2が設けられており、電流センサ2ノ出カバ、ロー
パスフィルり3、サンプルボールドてバスタに接続され
る。また、バスタにはマイクロコンピュータ8 カ接続
され、インターフェーヌ9を通じてロボソl−Rの各関
節軸駆動用サーボ回路10〜14が接続されている。な
お、マイクロコy ヒュp 8 ’d.、図示L fZ
 イC P U 、 R O M、R A Mからなる
公知のもので、この溶接開先追従に関するプログラムを
内蔵し、演算を行Cハ、かつそのデータを格納する。こ
のような電流センサ2〜サーボ回路14で制御装置15
が構成されている。そして、サーボ回路10〜14は、
ロボット凡の各関節角α1〜α5を制御するα1@モー
タ16〜α5軸モータ20にそれぞれ接続されている。
A current sensor 2 is provided on the electrical wiring from the welding power source 1 to the welding torch T, and is connected to the output cover of the current sensor 2, a low-pass filter 3, and a sample bold to a buster. Further, a microcomputer 8 is connected to the buster, and servo circuits 10 to 14 for driving the respective joint axes of Roboso I-R are connected through an interface 9. In addition, Microcoy Hyp8'd. , illustrated L fZ
It is a well-known device consisting of A CPU, ROM, and RAM, and has a built-in program related to this welding groove tracking, performs calculations, and stores the data. The control device 15 includes the current sensor 2 to the servo circuit 14.
is configured. And the servo circuits 10 to 14 are
They are respectively connected to α1@motor 16 to α5-axis motor 20 that control joint angles α1 to α5 of the robot.

また、操作部21が7<ス)に接続されている。Further, the operation section 21 is connected to the terminal 7.

ここで、全体的なデータ処理のフローは、第4図に示す
通りのもので、前述ゲイン係数を求めるサブルーチンを
学習モードと言い、学習モードで得られたゲイン係数を
使って溶接トーチTを開先Gに追従させるだめの制御量
を演算するサブルーチンを実行モードと言うことにする
Here, the overall data processing flow is as shown in Fig. 4. The subroutine for calculating the gain coefficient described above is called the learning mode, and the welding torch T is opened using the gain coefficient obtained in the learning mode. The subroutine that calculates the amount of control required to follow the previous G will be referred to as the execution mode.

学習モードのフローを第5図に示し、実行モードのフロ
ーを第6図に示す。
The flow of the learning mode is shown in FIG. 5, and the flow of the execution mode is shown in FIG.

以下、作用について説明する。The effect will be explained below.

操作部21で、溶接電流、消耗電極径、シールドガス種
類、開先形状等の溶接条件が設定されると揺動の周期が
プログラム中から選定される。そして、ロボッ)Rによ
って溶接トーチTは第2図の溶接開始点1S1へ正しく
位置決めされる。そして、ロボット几はアークセンサス
タートすなわち溶接電流検出を求める状態になったもの
と判断される。更に、学習モードが求められると判断さ
れると、第5図のフローのように学習モードが始まる。
When welding conditions such as welding current, consumable electrode diameter, shielding gas type, and groove shape are set using the operation unit 21, the period of oscillation is selected from the program. Then, the welding torch T is correctly positioned by the robot R to the welding starting point 1S1 in FIG. Then, it is determined that the robot box is in a state requiring arc sensor start, that is, welding current detection. Further, if it is determined that the learning mode is required, the learning mode starts as shown in the flowchart of FIG.

溶接トーチTは、消耗電極の先端か、第2図の教示され
た正しい溶接開始点1S1へ来るように公知の方法で位
置決めされている。溶接開始に伴い、溶接トーチTは第
2図の点181.281.182.282・・・の順に
移動しながら溶接を行なって行くと共に溶接電流を検出
し、格納する。この溶接の当初にあっては、まだ溶接ト
ーチTの揺動中心O8Cは、開先中心線GCと距[dだ
けオフセントした所望の関係位置を保っている。そして
、1sn−1点へ来たとき、溶接不良を生じない程度に
距離d1だけ、揺動中心O8Cを図上の、左方へ変位さ
せるように、揺動中心に対する制御量を与える。そして
、溶接トーチTが点1sn−1−iへ来たとき、同様に
開先中心線と揺動中心線の所定の関係から、図上の右方
へ距離d1だけ揺動中心O8Cを変位させるように制御
量を与える。そして、次に点2S n + i + j
 −1に溶接1−−チT’が来るまで、距離d1だけ右
方へ揺動中心を移動させたままで揺動させ、溶接を行う
The welding torch T is positioned in a known manner so as to be at the tip of the consumable electrode or at the correct welding starting point 1S1 as taught in FIG. At the start of welding, the welding torch T performs welding while moving in the order of points 181, 281, 182, 282, . . . in FIG. 2, and detects and stores the welding current. At the beginning of this welding, the swing center O8C of the welding torch T still maintains a desired relative position offset by a distance [d] from the groove centerline GC. Then, when reaching the 1sn-1 point, a control amount is given to the swing center so that the swing center O8C is displaced to the left in the diagram by a distance d1 to the extent that welding defects do not occur. Then, when the welding torch T comes to point 1sn-1-i, the swing center O8C is similarly displaced by a distance d1 to the right in the figure based on the predetermined relationship between the groove center line and the swing center line. Give the control amount as follows. Then, point 2S n + i + j
-1 to welding 1--Welding is performed by swinging with the swing center moved to the right by a distance d1 until T' is reached.

ところで、溶接トーチTが点1snから点ISn −4
−i −1までを揺動しているときおよび点1Sn −
1−iから点I S n + i + j −1までを
揺動しているときにも前述のようにl客扱電流の検出と
格納が行われている。そして、溶接トーチTが、2Sn
+i+j−1に来たとき、これまでに検出し、格納した
溶接電流値から次のものを読み出す。例えば、点182
から点282への揺動について第6図(a)のようにZ
客扱トーチTが揺動中心に関して図上の左端まで揺動し
た状態Aにおける1容接電流須I A 、揺動中・[O
20を所望の位置から距[dlだけ図上の左方へ移動さ
せたときの揺動上の点1sn−)−1から、穀’l S
 n +’ l ヘの揺動中、第6図(b)のように溶
接トーチTが揺動中心に関して図上の左端まで移動した
状態A′における溶接電流検出゛A′、揺動中心O8G
を所望の位置から距!diだけ図上の右方へ移動させた
ときの揺動上の点18 n + i + 1から点2S
n+i+1への揺動中、第6図<C)のようにj客扱ト
ーチTが揺動中心に関して図上の左端まで揺動した状態
1!”における溶接電流値1′A/全読み出す。
By the way, the welding torch T moves from point 1sn to point ISn -4
−i −1 and point 1Sn −
Even during the swing from point 1-i to point I S n + i + j -1, the detection and storage of the customer current is carried out as described above. Then, the welding torch T is 2Sn
When reaching +i+j-1, the next one is read from the welding current values detected and stored so far. For example, point 182
Regarding the swing from point 282 to point 282, Z
In state A when the customer-handled torch T has swung to the left end in the figure with respect to the center of swiveling, the 1-capacity contact current I A is oscillated and [O
20 from the desired position to the left on the diagram by a distance [dl] From the point 1sn-)-1 on the swing, the grain 'l S
Welding current detection ゛A' in state A' when the welding torch T has moved to the left end in the figure with respect to the center of swing as shown in Fig. 6(b) during the swing to n +' l, center of swing O8G
distance from the desired position! From point 18 n + i + 1 on the swing when moving to the right on the diagram by di
During the swing to n+i+1, the customer handling torch T swings to the left end in the figure with respect to the center of swing as shown in FIG. 6<C) 1! "Welding current value 1'A/all readout.

そして、これらの溶接電流iI人、工″A’、I’λ″
および距1211dlからゲイン係数としてを演算する
And these welding currents iI, I'A', I'λ'
and a gain coefficient is calculated from the distance 1211dl.

また、揺動中心の変位は解消し、開先中心線GCから距
離dだけオフセットした所望の関係位置に戻される。そ
して、第7図に示す実行モードへと移行する。
Further, the displacement of the swing center is canceled and the swing center is returned to a desired relative position offset by a distance d from the groove center line GC. Then, the process shifts to the execution mode shown in FIG.

実行モードでは、溶接トーチTが点1Sn+i+Jから
点2S n + i −4−jにかけて揺動する間、溶
接電流INtを検出し、格納する。Nは、この揺動の半
周期間に溶接電流を検出し、格納した回数である。そし
て、溶接トーチTが点2S n −4−i −4−Jへ
来たとき、これら格納した溶接電流値I Ntを読み出
し、点I S n + i + jから揺動中心O8C
までの1/4周期および揺動中+t> o s cがら
点2める。更に、これらの差C=S 1 t−82tを
演算する。そして、揺動中心O8Cが開先中心線GOと
所望の関係にあるときは、この差Cは零でちるが、この
関係が保たれなくなるとこの差は零でなくなる。そこで
、この差Cが零で全くなった場合、学習モードで求めた
ゲイン(IGをこの差Cに掛は合わせて制御量を演算す
る。この制御量が転送され、ロボッ14の各関節角α1
〜α5の変化量として出力されることによって、揺動中
心O8Cは開先中心線Goと所望の関係を保つよう移動
させられる。そして、アークセンサスご判断されるまで
、前述ヌテソプを繰返し、溶接トーチTは開先Gを正確
に追従しながらアーク溶接を行う。
In the execution mode, the welding current INt is detected and stored while the welding torch T swings from the point 1Sn+i+J to the point 2Sn+i-4-j. N is the number of times the welding current is detected and stored during the half cycle of this oscillation. Then, when the welding torch T comes to the point 2S n -4-i -4-J, these stored welding current values I Nt are read out, and from the point I S n + i + j to the swing center O8C.
During the 1/4 period and oscillation, +t > o s c points 2. Furthermore, the difference between them, C=S 1 t-82t, is calculated. When the swing center O8C has a desired relationship with the groove center line GO, this difference C is zero, but if this relationship is no longer maintained, this difference ceases to be zero. Therefore, when this difference C becomes zero, the control amount is calculated by multiplying this difference C by the gain (IG) obtained in the learning mode. This control amount is transferred and each joint angle α1 of the robot 14 is
By outputting the amount of change of ~α5, the swing center O8C is moved so as to maintain a desired relationship with the groove center line Go. Then, the above-described process is repeated until the arc sensor is determined, and the welding torch T performs arc welding while accurately following the groove G.

(他の実施例) 例の実施例として、ゲイン係数を求めるために行う揺動
中心の変位の方向は、前述実施例のような揺動方向に限
ることなく、例えば第8図におけるX方向まだはX方向
などとすることができる。
(Other Embodiments) As an example, the direction of the displacement of the center of oscillation performed to obtain the gain coefficient is not limited to the oscillation direction as in the above-mentioned embodiment. can be the X direction, etc.

また、例えば下向きV開先継手の溶接についても実施で
きるが、その際は、開先中心線GCと揺動中心O8Cと
の間にオフセットdばなくなる。
For example, welding of a downward V-groove joint can also be carried out, but in that case, there will be no offset d between the groove center line GC and the swing center O8C.

また、ゲイン係数を演算するために行う揺動の回数すな
わちIまたは、1の値には、特に制限はないが、余り多
いと溶接によるワークの変形などにより1.所望の関係
位置からの変位がdlでなくなってしまう恐れかめる。
There is no particular limit to the number of oscillations performed to calculate the gain coefficient, that is, the value of I or 1, but if it is too large, the workpiece may be deformed due to welding. There is a fear that the displacement from the desired relative position will no longer be dl.

ゲイン係数を演算するために行う溶接電流の検出は、揺
動の一端に限ることはなく、揺動の他の一端、揺動の中
心、揺動中、Uからいずれかの一端までの途中に行うこ
とができる。また、ゲイン係数は、これらいろいろな位
置において求めた溶接電流値から演算して得たものの平
均道として決めることもできる。
Detection of the welding current to calculate the gain coefficient is not limited to one end of the swing, but can be performed at the other end of the swing, at the center of the swing, during the swing, or on the way from U to either end. It can be carried out. Further, the gain coefficient can also be determined as the average value obtained by calculating the welding current values obtained at these various positions.

更にまた、前述実施例では、溶接電流検出値と揺動中心
の変位量とが直線的な関係であったが、水平隅肉溶接に
おいてもこれらの関係が第9図のように非直線的になる
ことがあり、そのような場合、単に直線的な関係として
ゲイン係数を決めて制御を行うと、方向によって制御量
が適正でなくなることが起る。そこで、溶接電流検出値
と変位量との関係を適宜近似的に関数化してゲイン係数
を決め、制御を行うこともできる。
Furthermore, in the above embodiment, there was a linear relationship between the welding current detection value and the displacement of the center of oscillation, but even in horizontal fillet welding, these relationships are non-linear as shown in Figure 9. In such a case, if control is performed by simply determining a gain coefficient based on a linear relationship, the control amount may become inappropriate depending on the direction. Therefore, control can be performed by appropriately converting the relationship between the detected welding current value and the amount of displacement into a function to determine a gain coefficient.

そして、爵接電節倹出恒と変位との関係が例えば第10
図のように単純でない場合、ゲイン係数を求めて制御量
を与えても、適切な制御が行えないものであり、関数化
によってその判別を行い、エラー処理、より近似的な関
数化などの処置がとれる。また、変位に対する溶接電流
検出値の変化がないことも関数化によって分るので、エ
ラー処理、変位量の変更などの処置がとれる。まだ、第
11図のようなワークWについてもZ客扱電節倹畠埴と
変位量との関係を関数化することができ、前述同様、そ
の関数が単調なものかどうかによって適切な制御ができ
るかどうかの判別を行うことができる。
For example, the relationship between the power supply, the power supply, and the displacement is the 10th one.
If it is not as simple as shown in the figure, even if you calculate the gain coefficient and give the control amount, it will not be possible to perform appropriate control, so you can determine it by converting it into a function, and then take measures such as error handling or converting it into a more approximate function. can be removed. Further, since it can be determined by the function that there is no change in the detected welding current value with respect to displacement, measures such as error processing and changing the amount of displacement can be taken. Still, for the workpiece W as shown in Fig. 11, the relationship between the Z load and the displacement can be expressed as a function, and as mentioned above, appropriate control can be determined depending on whether the function is monotonous or not. You can determine whether it is possible.

(効果) 以上のように、この発明は、溶接トーチTの揺動中心が
溶接開先と所望の関係位置から変位したとき、この変位
を昨正するに当り、溶接条件に合った適切なゲイン係数
を防用して、揺動中心に与える制御量を演算するので、
溶接トーチによる溶接開先の追従が適切に行え、良好な
アーク溶接ができると言う効果を有している。
(Effects) As described above, when the center of oscillation of the welding torch T is displaced from the desired position relative to the welding groove, in order to correct this displacement, the present invention provides an appropriate gain that matches the welding conditions. Since the coefficient is used to calculate the control amount given to the center of oscillation,
This has the effect of allowing the welding torch to properly follow the welding groove, allowing for good arc welding.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の実施例2示すものであって、第1図
および第2図は概略図、第3図は概略プロ図面において
、Tは溶接トーチ、GはZ客扱開先、O8は溶接トーチ
Tの揺動、dlは与えられる揺動中心OSCの変位であ
る。
The drawings show Embodiment 2 of the present invention, in which FIGS. 1 and 2 are schematic diagrams, and FIG. 3 is a schematic professional drawing, T is a welding torch, G is a Z custom groove, and O8 is a The swing of the welding torch T, dl, is the displacement of the given swing center OSC.

Claims (3)

【特許請求の範囲】[Claims] (1)消耗電極を供給する溶接トーチを溶接開先の幅方
向に揺動させながらアーク溶接を行い、前記揺動中に検
出した溶接電流値を演算処理することによって、前記溶
接開先に対する所望の関係位置からの、前記揺動中心の
変位を検出し、前記揺動中心の位置を修正して前記溶接
開先中心と所望の位置関係を保ちながら前記溶接トーチ
を前記溶接開先に追従させるようにした溶接開先追従方
法において、 前記揺動中心を前記溶接開先に対する所望の関係位置か
ら適宜距離変位せしめて前記溶接トーチを適宜回数揺動
せしめ、この間に検出した溶接電流値と前期所望の関係
位置にあるときに検出した溶接電流値とからゲイン係数
を演算し、このゲイン係数を用いて前記揺動中心の、前
記溶接開先との所望の関係位置からの変位を修正するた
めの制御量を演算するべくした前記溶接開先追従方法。
(1) Arc welding is performed while the welding torch that supplies the consumable electrode is oscillated in the width direction of the welding groove, and the welding current value detected during the oscillation is processed to obtain the desired value for the welding groove. Detecting the displacement of the swing center from the relative position, and correcting the position of the swing center to make the welding torch follow the welding groove while maintaining a desired positional relationship with the welding groove center. In the welding groove tracking method, the welding torch is oscillated an appropriate number of times by appropriately displacing the oscillation center from a desired relative position with respect to the welding groove, and the welding current value detected during this period and the previous desired value are A gain coefficient is calculated from the welding current value detected when the welding groove is at the relative position, and this gain coefficient is used to correct the displacement of the swing center from the desired relative position with the welding groove. The welding groove tracking method for calculating a control amount.
(2)前述ゲイン係数の演算は、検出した溶接電流値と
与えた変位が直線関係にあるものとして行うべくした特
許請求の範囲第1項記載の溶接開先追従方法。
(2) The welding groove tracking method according to claim 1, wherein the calculation of the gain coefficient is performed on the assumption that the detected welding current value and the applied displacement are in a linear relationship.
(3)前述ゲイン係数の演算は、検出した溶接電流値と
与えた変位とを関数で関係付けて行うべくした特許請求
の範囲第1項記載の溶接開先追従方法。
(3) The welding groove tracking method according to claim 1, wherein the calculation of the gain coefficient is performed by correlating the detected welding current value and the applied displacement using a function.
JP19763384A 1984-09-19 1984-09-19 Method of following weld groove Granted JPS6174778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19763384A JPS6174778A (en) 1984-09-19 1984-09-19 Method of following weld groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19763384A JPS6174778A (en) 1984-09-19 1984-09-19 Method of following weld groove

Publications (2)

Publication Number Publication Date
JPS6174778A true JPS6174778A (en) 1986-04-17
JPH0413066B2 JPH0413066B2 (en) 1992-03-06

Family

ID=16377727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19763384A Granted JPS6174778A (en) 1984-09-19 1984-09-19 Method of following weld groove

Country Status (1)

Country Link
JP (1) JPS6174778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120042A (en) * 2008-11-18 2010-06-03 Daihen Corp Method and apparatus of setting copying parameter of arc sensor for robot
DE102018101140A1 (en) 2017-01-26 2018-07-26 Fanuc Corporation Arc sensor adjuster and arc sensor adjustment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120042A (en) * 2008-11-18 2010-06-03 Daihen Corp Method and apparatus of setting copying parameter of arc sensor for robot
DE102018101140A1 (en) 2017-01-26 2018-07-26 Fanuc Corporation Arc sensor adjuster and arc sensor adjustment method
US10688582B2 (en) 2017-01-26 2020-06-23 Fanuc Corporation Arc sensor adjustment device and arc sensor adjustment method
DE102018101140B4 (en) * 2017-01-26 2020-10-08 Fanuc Corporation Arc Sensor Adjustment Device and Arc Sensor Adjustment Procedure

Also Published As

Publication number Publication date
JPH0413066B2 (en) 1992-03-06

Similar Documents

Publication Publication Date Title
US11679501B2 (en) Controller for determining modification method of position or orientation of robot
JPS6388612A (en) Foreknowledge pursuing/control type robot
US10688582B2 (en) Arc sensor adjustment device and arc sensor adjustment method
US4870247A (en) Method and apparatus for controlling a welding robot forming a nonuniform weld satisfying predetermined criteria related to an interspace between elements being welded
EP0862963B1 (en) Welding robot control method
EP0411139A1 (en) Positioning correction for robots
JP5495915B2 (en) Sensing motion generation method and sensing motion generation device for work manipulator
JPS6174778A (en) Method of following weld groove
JPS58122179A (en) Teaching playback robot for arc welding
JP2008080343A (en) Arc sensor
US4785155A (en) Automatic welding machine path correction system
JPS58192108A (en) Controlling method of welding robot
JPH0818130B2 (en) Weaving welding control method
US5066847A (en) Automatic welding machine path correction method
JPH0420711B2 (en)
Fridenfalk et al. Design and validation of a sensor guided robot control system for welding in shipbuilding
KR101010775B1 (en) Method for automatic tracking of welding line through arc-sensor calibration
JPH0318478A (en) Method for controlling weld line profile
JPH0418945B2 (en)
JPS6072676A (en) Method and device for following up weld line
JP2832630B2 (en) Welding line profiling control method
JP2003326370A (en) Spot welding system and its control method
JP3208276B2 (en) Groove width copying method
KR880002507B1 (en) Automatic welding line tracking system for arc welding robot
JP3243390B2 (en) Groove width copying method