JPS6173852A - Ni base alloy for super plasticity forging and its manufacture - Google Patents

Ni base alloy for super plasticity forging and its manufacture

Info

Publication number
JPS6173852A
JPS6173852A JP19397884A JP19397884A JPS6173852A JP S6173852 A JPS6173852 A JP S6173852A JP 19397884 A JP19397884 A JP 19397884A JP 19397884 A JP19397884 A JP 19397884A JP S6173852 A JPS6173852 A JP S6173852A
Authority
JP
Japan
Prior art keywords
less
alloy
gamma prime
base alloy
superplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19397884A
Other languages
Japanese (ja)
Other versions
JPS6362577B2 (en
Inventor
Akira Ishida
章 石田
Yutaka Koizumi
裕 小泉
Koji Harada
広史 原田
Isao Tomizuka
冨塚 功
Michio Yamazaki
道夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP19397884A priority Critical patent/JPS6173852A/en
Publication of JPS6173852A publication Critical patent/JPS6173852A/en
Publication of JPS6362577B2 publication Critical patent/JPS6362577B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Ni base alloy easy for refining crystal grains and having small super plastic deformation resistance, by treating Ni base alloy powder having a specified compsn. at high temp. and high pressure, and extruding said material by specifying temp. and extrusion ratio. CONSTITUTION:Alloy powder consisting of, by atomic %, <=28% Al, <=16.5% Ti, <=8% Nb, <=6% Mo, <=6% W, <=14% Cr, <=1% C, <=0.2% B, <=0.1% Zr, under Al+Ti+Nb+Mo+W=19-28%, satisfying a specified formula relating Ti, Nb, Mo, W, and the balance Ni substantially is prepared. Or <=20% Ni is substituted by Co. Powder of said compsn. is treated at high temp. and high pressure of 1025-1250 deg.C and 800-2000atm for 30-200min. Next, said body is extruded at 1025-1250 deg.C, 4-15 extrusion ratio. By this method, the titled alloy contg. gamma prime phase of >=70vol% in thermodynamical equilibrium state at 1100 deg.C is obtd. easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超塑性鍛造用Ni基合金及びその製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a Ni-based alloy for superplastic forging and a method for producing the same.

Ni基超超合金用いてガスタービンディスクなどの大型
で複雑な形状の製品を成形する方法として超塑性鍛造法
が知られている。これは金属材料があたかも粘土のよう
に小さい力で数百−以上も塑性変形する現象すなわち超
塑性現象を利用するものである。
Superplastic forging is known as a method for forming large, complex-shaped products such as gas turbine disks using Ni-based superalloys. This utilizes the phenomenon of superplasticity, in which a metal material undergoes plastic deformation of hundreds of degrees or more with a small force, just like clay.

従来技術 従来の超塑性鍛造用Ni基合金としては、例えばRen
e95(G、g社製)のNi基合金が知られている。し
かし、この合金は実施例において比較合金として示すよ
うに、結晶粒径も大きく、特に超塑性鍛造時の変形抵抗
が大きすぎる問題点があったっ変形抵抗が大きすぎると
大型製品や複雑形状製品の成形が困難となり、たとえ成
形が可能であったとしても、そのためには大型のプレス
が必要となり、生産性の点で好オしくないっ この超塑性変形抵抗を小さくするには、押出加工によっ
て結晶粒を微細化することが効果的であることは知られ
ているが、前記既存のNi基合金では、結晶粒を小さく
するのも限度があった。
Prior Art Conventional Ni-based alloys for superplastic forging include, for example, Ren.
Ni-based alloy e95 (G, manufactured by G Company) is known. However, as shown as a comparative alloy in the examples, this alloy has a large grain size and has the problem that the deformation resistance is too large, especially during superplastic forging. This makes molding difficult, and even if molding is possible, a large press is required.In order to reduce this superplastic deformation resistance, which is unfavorable in terms of productivity, extrusion is used to Although it is known that making grains finer is effective, in the existing Ni-based alloys, there is a limit to how small crystal grains can be made.

発明の目的 本発明は既存の超塑性鍛造用Ni基合金の問題点を解消
すべくなされたもので、その目的は結晶粒の微細化が容
易で、かつ超塑性変形抵抗の小さいNi基合金を提供す
るにある。
Purpose of the Invention The present invention was made to solve the problems of existing Ni-based alloys for superplastic forging, and its purpose is to create a Ni-based alloy that has easy crystal grain refinement and low superplastic deformation resistance. It is on offer.

発明の構成 本発明者は前記目的を達成するために、結晶粒を微細化
するのに最適なNi基合金を見出すべく検討を行った。
DESCRIPTION OF THE INVENTION In order to achieve the above object, the present inventor conducted studies to find a Ni-based alloy that is optimal for refining crystal grains.

Ni基合金中のガンマプライム相の量とこれが押出し加
工時の結晶粒微細化との関係について調べた。
The relationship between the amount of gamma prime phase in the Ni-based alloy and grain refinement during extrusion processing was investigated.

ここで言うガンマプライム相とは、Ni元素3に対して
At元素1の比の金属間化合物Ni 、Atを基本組成
とするものである。このN i * Atはco、 O
r、 Mo、 W、 TiXNb、 Ta、 Hf、 
 その他多くの元素を固溶し得る。この場合、例えばC
Oは主KNiK置換し、Orは約半分のN13残部がA
tと置換し、またTi、 Nb、 Ta、 Hf、 M
o、 Wは主にklと置換する。 このような、Nt3
At及びこれに他の元素が固溶したもの全体をガンマプ
ライム相と総称する。
The gamma prime phase mentioned here has a basic composition of intermetallic compounds Ni and At with a ratio of 3 parts Ni to 1 part At. This N i * At is co, O
r, Mo, W, TiXNb, Ta, Hf,
Many other elements can be dissolved in solid solution. In this case, for example, C
O is mainly KNiK substituted, and about half of the N13 remainder in Or is A.
t, and also Ti, Nb, Ta, Hf, M
o and W are mainly replaced with kl. Such, Nt3
The entire solid solution of At and other elements is collectively referred to as the gamma prime phase.

先ず、押出加工温度の平衡状態において含有するガンマ
プライム相の景が種々異なるNi基合金粉末を作った。
First, Ni-based alloy powders containing various types of gamma prime phase in an equilibrium state of extrusion temperature were prepared.

これらの合金粉をそれぞれ予備焼結した後、押出加工し
て再結晶を起させ微細化したところ、ガンマプライム体
積の多い合金はど再結晶粒がより微細となり、また再結
晶粒の微細な程超塑性変形抵抗が小さいことを確認した
After pre-sintering each of these alloy powders, they were extruded to cause recrystallization and refinement. The alloys with a large gamma prime volume had finer recrystallized grains, and the finer the recrystallized grains. It was confirmed that the superplastic deformation resistance was small.

この知見に基いて本発明を完成した。The present invention was completed based on this knowledge.

本発明の超塑性鍛造用Ni基合金は、1100℃の温度
での熱力学的平衡状態において、70体積チ以上のガン
マプライム相を含有したものからなるNi基合金である
。 ガンマプライム相の養 量が70体積より少ないと、押出加工により結チで、A
A28チ以下、’ri16.5係以下、Nb8チ以下、
MO6%以下、W6%以下、Cr14%以下、C1%以
下、80.2%以下、ZrQ、1%以下を含有し、At
+Ti +Nb+Mo+W= 19〜28%、買的にN
iあるいVよその20チまでをCOで置換[7た組成で
ある。
The Ni-based alloy for superplastic forging of the present invention is a Ni-based alloy containing a gamma prime phase with a volume of 70 or more in a thermodynamic equilibrium state at a temperature of 1100°C. If the amount of nutrients in the gamma prime phase is less than 70 volumes, the extrusion process will result in caking and A
A28 or less, 'ri 16.5 or less, Nb 8 or less,
Contains MO 6% or less, W 6% or less, Cr 14% or less, C 1% or less, 80.2% or less, ZrQ, 1% or less, At
+Ti +Nb+Mo+W= 19~28%, N
It has a composition in which up to 20 parts of i or V are replaced with CO.

Atけガンマプライム相を生成するために必須の元素で
ある。しかし、その贋が28チ(原子チ以下同じ)を超
えると、ガンマプライム相が不安定になってベータ相が
生成し、押出加工時に粗大な割れを生ずる原因となる。
It is an essential element for producing At and gamma prime phases. However, if the number of counterfeits exceeds 28 atoms (the same applies below atoms), the gamma prime phase becomes unstable and a beta phase is generated, which causes coarse cracks to occur during extrusion processing.

そのため28チ以下であることが必要である。Therefore, it needs to be 28 inches or less.

TiXNb、 Mo、Wの元素はガンマプライム相中で
、Atと置換し、Atと同様にガンマプライム相の量を
増加させる作用をし、押出加工時の結晶粒微細化を促進
する作用をする。しかし、いずれの元素も過剰に加える
とガンマプライム相を不安定にし、有害相が生成する。
The elements TiXNb, Mo, and W replace At in the gamma prime phase, and like At, they act to increase the amount of the gamma prime phase and promote grain refinement during extrusion processing. However, adding either element in excess destabilizes the gamma prime phase and generates a harmful phase.

すなわちTi含有骨が16,5チを超えるとNi3Ti
型化合物が生成し、Nb含有倚が8%を超えるとNi、
Nb型化合物が生成し7、MO含有酔が6チを超えると
アルファMO相が生成し、W含有帯が6チを超えるとア
ルファW相が生成し、Or含有量が14%4Mえるとシ
グマ相が生成し、いずれの場合も押出加工の時に粗大な
割れが生成し易くなる欠点が生ずる。
In other words, if the Ti-containing bone exceeds 16.5 Ti, Ni3Ti
type compounds are formed, and when the Nb content exceeds 8%, Ni,
When the Nb-type compound is generated 7, when the MO content band exceeds 6 mm, the alpha MO phase is generated, when the W content band exceeds 6 mm, the alpha W phase is generated, and when the Or content increases to 14%4M, the sigma Phases are formed, and in either case, there is a disadvantage that coarse cracks are likely to form during extrusion processing.

At+Ti +Nb+Mo+Wの値が19係未満である
と1100℃に2時間以上加熱して得られる熱力学的平
衡状態において含有するガンマプライム相の骨が70体
積%以上とならない。そのため押出加工による再結晶微
細粒化が不十分となる。一方その値が28係を超えると
ベータ相が生成し、押出加工時に粗大な割れが生成し易
くなる。従って、入t+ Ti +Nb +Mo +W
= 19〜28チであることが必要である。
If the value of At+Ti+Nb+Mo+W is less than 19, the gamma prime phase bone content will not exceed 70% by volume in the thermodynamic equilibrium state obtained by heating to 1100° C. for 2 hours or more. Therefore, recrystallization into fine grains by extrusion becomes insufficient. On the other hand, if the value exceeds a factor of 28, a beta phase is generated, and coarse cracks are likely to occur during extrusion processing. Therefore, input t+ Ti +Nb +Mo +W
= It is necessary to be 19 to 28 inches.

]二十乏立+y工十異≦1.2であることが必要16.
5   8    6   6 である。この値が1.2を超えるとシグマ相などの有害
相が生成し7、押出加工時に粗大な割れを生ずる原因と
なる。なお、Niの一部をCOで置換することができる
。その置換量が20%を超えるとシグマ相などの有害相
が生成し、押出加工時に粗大な割れを生ずる原因となる
。従って00での置換骨の限度は20チ以下であること
が必要である。これらの原料粉末から超塑性鍛造用合金
を製造するには、これらの粉末を容器に入れ、−800
〜2000気圧下で1025〜1250℃で30〜20
0分高温高圧処理(以下HIPIP処理う)する。
] It is necessary that 20% + y% = 1.2 16.
5 8 6 6. If this value exceeds 1.2, harmful phases such as sigma phase will be generated7, which will cause large cracks to occur during extrusion processing. Note that a part of Ni can be replaced with CO. When the amount of substitution exceeds 20%, harmful phases such as sigma phase are generated, which causes coarse cracks to occur during extrusion processing. Therefore, the limit of replacement bone in 00 must be 20 inches or less. To produce a superplastic forging alloy from these raw powders, place these powders in a container and heat them to -800
30-20 at 1025-1250℃ under ~2000 atmospheres
High temperature and high pressure treatment (hereinafter referred to as HIPIP treatment) is performed for 0 minutes.

このI(IP処理は超塑性変形抵抗の低下には直接結び
つかないが、粉末が焼結するため、その後の押出加工の
操作が容易となる利点がある。
This I (IP treatment) does not directly lead to a reduction in superplastic deformation resistance, but since the powder is sintered, it has the advantage of facilitating subsequent extrusion processing operations.

例えば押出用容器に挿入する際減圧処理や封入処理が必
要としなくなり、作業性が向上する。
For example, when inserting into an extrusion container, there is no need for depressurization treatment or encapsulation treatment, which improves work efficiency.

F(IP処理の条件は、温度1025〜1250℃、圧
力800〜2000気圧、処理時間は30〜200分で
あることが好ましい。
F(IP treatment conditions are preferably a temperature of 1025 to 1250°C, a pressure of 800 to 2000 atm, and a treatment time of 30 to 200 minutes.

処理温度が1025℃より低いと粉末が十分焼結しなく
、1250℃を超えると合金が一部溶融して有害組織を
生成し、押出加工の際割れを生ずる原因となる。処理圧
力が800気圧未満では粉末が十分焼結固化しなく、2
000気圧を超えるとそれに相当する高圧装置を必W”
L、実質的するう押出加工条件は押出温度1050〜1
225℃、押出比4〜15であることが最も好ましい。
If the processing temperature is lower than 1025° C., the powder will not be sufficiently sintered, and if it exceeds 1250° C., the alloy will partially melt and form a harmful structure, which may cause cracking during extrusion processing. If the processing pressure is less than 800 atm, the powder will not be sufficiently sintered and solidified, and 2
If the pressure exceeds 1,000 atmospheres, a corresponding high-pressure device is required.
L, the actual extrusion processing conditions are extrusion temperature 1050-1
Most preferred is 225°C and an extrusion ratio of 4 to 15.

押出温度が1050℃未満では押出しによって割れが生
じ、実用的なものが得られなく、その温度が1225℃
を超えると結晶粒の微細化が不十分となり、超塑性変形
抵抗が小さくならない。
If the extrusion temperature is less than 1050°C, cracks will occur during extrusion, making it impossible to obtain a practical product;
If it exceeds, grain refinement becomes insufficient and superplastic deformation resistance does not become small.

押出比が4より小さいと結晶粒の微細化が不十分で、超
塑性変形抵抗が小さくならなく、その値が15を紹える
と押出しができなくなる。
If the extrusion ratio is less than 4, the crystal grains will not be refined enough and the superplastic deformation resistance will not become small, and if the value exceeds 15, extrusion will no longer be possible.

実施例 表1に示す組成の本発明のNi基合金及びガンマプライ
ム量の少ない既存合金の几ene95合金他2合金で試
験片を作った。
EXAMPLE Test specimens were made using the Ni-based alloy of the present invention having the composition shown in Table 1, the existing alloy ENE95 alloy with a small amount of gamma prime, and two other alloys.

た。Ta.

試験片の大きさは、平行部長さ20vm、平行部室径3
.5籠とした。
The size of the test piece is: parallel part length 20vm, parallel part chamber diameter 3
.. There were 5 baskets.

これらの試験片を1050℃で初期歪速度lX10−’
/秒の変形速度で引張超塑性変形させたつその結果は表
IK示す通りであった。
These test pieces were heated at 1050°C with an initial strain rate of lX10-'
The results of tensile superplastic deformation at a deformation rate of /sec are shown in Table IK.

1100℃の熱力学的平衡状態におけるガンマプライム
量と再結晶粒径の関係は第1図の通りである。また、再
結晶粒径と超塑性変形抵抗の関係は第2図の通りである
The relationship between the amount of gamma prime and the recrystallized grain size in a thermodynamic equilibrium state of 1100° C. is shown in FIG. Furthermore, the relationship between recrystallized grain size and superplastic deformation resistance is shown in FIG.

この結果から明らかなように、At+Ti+Nb+Mo
+Wが19〜280間である本発明合金が70体積−以
上のガンマプライムへ含有し、これは既存押出加工によ
る再結晶粒径が小さくなっており、超塑性変形抵抗が大
幅に低下している。
As is clear from this result, At+Ti+Nb+Mo
The alloy of the present invention with +W between 19 and 280 is contained in gamma prime of 70 volume or more, which means that the recrystallized grain size due to existing extrusion processing has become smaller, and the superplastic deformation resistance has been significantly reduced. .

発明の効果 本発明のNi基合金は押出加工により、結晶粒径を極め
て微細なものとなし得、また超塑性変形抵抗が小さく、
大型製品や複雑な形状品も容易に鍛造し得られる優れた
効果を有し、また、この合金も極めて容易に製造し得ら
れる効果も有する。
Effects of the Invention The Ni-based alloy of the present invention can be made to have an extremely fine crystal grain size by extrusion processing, and has low superplastic deformation resistance.
It has an excellent effect in that large products and products with complicated shapes can be easily forged, and this alloy also has the advantage that it can be produced extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1100℃の熱力学的平衡状態におけるガンマ
プライム険と再結晶粒径の関係図、第2図は再結晶粒径
と超塑性変形抵抗の関係図で ・あるう 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  −
Figure 1 is a relationship diagram between gamma prime steepness and recrystallized grain size in a thermodynamic equilibrium state of 1100°C, and Figure 2 is a relationship diagram between recrystallized grain size and superplastic deformation resistance. Ryu Kawa, Director of the Metals and Materials Technology Research Institute -

Claims (3)

【特許請求の範囲】[Claims] (1)1100℃の温度での熱力学的平衡状態において
、70体積%以上のガンマプライム相を含有したものか
らなる超塑性鍛造用Ni基合金。
(1) A superplastic Ni-based alloy for forging that contains 70% by volume or more of a gamma prime phase in a thermodynamic equilibrium state at a temperature of 1100°C.
(2)Ni基合金組成が、原子%で、Al28%以下、
Ti16.5%以下、Nb8%以下、Mo6%以下、W
6%以下、Cr14%以下、C1%以下、B0.2%以
下、Zr0.1%以下を含有し、Al+Ti+Nb+M
o+W=19〜28%、かつTi/16.5+Nb/8
+Mo/6+W/6≦1.2であり、残部が実質的にN
iあるいはその20%までをCoで置換した組成である
特許請求範囲第1項記載の超塑性鍛造用Ni基合金。
(2) Ni-based alloy composition is Al28% or less in atomic %,
Ti 16.5% or less, Nb 8% or less, Mo 6% or less, W
6% or less, Cr14% or less, C1% or less, B0.2% or less, Zr0.1% or less, Al+Ti+Nb+M
o+W=19-28% and Ti/16.5+Nb/8
+Mo/6+W/6≦1.2, and the remainder is substantially N
The Ni-based alloy for superplastic forging according to claim 1, which has a composition in which i or up to 20% of it is replaced with Co.
(3)原子%で、Al28%以下、Ti16.5%以下
Nb8%以下、Mo6%以下、W6%以下、Cr14%
以下、C1%以下、B0.2%以下、Zr0.1%以下
含有し、 At+Ti+Nb+Mo+W=19〜28%で、Ti/
16.5+Nb/8+Mo/6+W/6≦1.2%であ
り、残部が実質的にNiあるいはその20%までをCo
で置換した組成の粉末を、800〜2000気圧下で、
1025〜1250℃で30〜200分高温高圧処理し
た後、1025〜1250℃、押出し比4〜15で押出
すことを特徴とする1100℃の温度での熱力学平衡状
態において70体積%以上のガンマプライム相を含有す
る超塑性鍛造用Ni基合金の製造法。
(3) In atomic %, Al: 28% or less, Ti: 16.5% or less, Nb: 8% or less, Mo: 6% or less, W: 6% or less, Cr: 14%
Below, it contains C1% or less, B0.2% or less, Zr0.1% or less, At+Ti+Nb+Mo+W=19-28%, Ti/
16.5+Nb/8+Mo/6+W/6≦1.2%, and the remainder is substantially Ni or up to 20% of it is Co.
Powder with a composition substituted with
Gamma of 70% by volume or more in a thermodynamic equilibrium state at a temperature of 1100°C, characterized by subjecting it to high temperature and high pressure treatment at 1025 to 1250°C for 30 to 200 minutes, and then extruding at 1025 to 1250°C and an extrusion ratio of 4 to 15. A method for producing a Ni-based alloy for superplastic forging containing a prime phase.
JP19397884A 1984-09-18 1984-09-18 Ni base alloy for super plasticity forging and its manufacture Granted JPS6173852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19397884A JPS6173852A (en) 1984-09-18 1984-09-18 Ni base alloy for super plasticity forging and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19397884A JPS6173852A (en) 1984-09-18 1984-09-18 Ni base alloy for super plasticity forging and its manufacture

Publications (2)

Publication Number Publication Date
JPS6173852A true JPS6173852A (en) 1986-04-16
JPS6362577B2 JPS6362577B2 (en) 1988-12-02

Family

ID=16316938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19397884A Granted JPS6173852A (en) 1984-09-18 1984-09-18 Ni base alloy for super plasticity forging and its manufacture

Country Status (1)

Country Link
JP (1) JPS6173852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447828A (en) * 1987-08-12 1989-02-22 Agency Ind Science Techn Turbin disk by super plastic forging of different alloys

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516696C2 (en) 1999-12-23 2002-02-12 Perstorp Flooring Ab Process for producing surface elements comprising an upper decorative layer as well as surface elements produced according to the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447828A (en) * 1987-08-12 1989-02-22 Agency Ind Science Techn Turbin disk by super plastic forging of different alloys

Also Published As

Publication number Publication date
JPS6362577B2 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
EP0361524B1 (en) Ni-base superalloy and method for producing the same
KR102356191B1 (en) high strength titanium alloy
NL8403732A (en) METHOD FOR FORGING SUPER ALLOYS.
JPH05148599A (en) Preparation of titanium alloy part comprising improved hot processing working and obtained part
US4386976A (en) Dispersion-strengthened nickel-base alloy
EP1658388B1 (en) High temperature powder metallurgy superalloy with enhanced fatigue creep resistance
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
EP0260510B1 (en) Thermomechanical method of forming fatigue crack resistant nickel base superalloys and product formed
US3702791A (en) Method of forming superalloys
JPH02301545A (en) Production of high temperature creep resist- ing semifinished product or molded parts made of high melting temperature metal
JPS6173852A (en) Ni base alloy for super plasticity forging and its manufacture
JPH03219037A (en) Ni base shape memory alloy and its manufacture
KR100359187B1 (en) Intermetallic Nickel-Aluminum Alloy
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
US5160557A (en) Method for improving low temperature ductility of directionally solidified iron-aluminides
JPH03243741A (en) Ti-al series sintered body and its manufacture
US4481034A (en) Process for producing high hafnium carbide containing alloys
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPS6326192B2 (en)
US5306364A (en) High toughness tungsten based heavy alloy containing La and Ca. manufacturing thereof
JPS6221856B2 (en)
JP4035617B2 (en) Iridium-based alloy and manufacturing method thereof
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
GB2248849A (en) Process for working a beta type titanium alloy
AT264856B (en) Powder metallurgical alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term