JPS6170333A - Drive control device of air conditioner - Google Patents

Drive control device of air conditioner

Info

Publication number
JPS6170333A
JPS6170333A JP59192160A JP19216084A JPS6170333A JP S6170333 A JPS6170333 A JP S6170333A JP 59192160 A JP59192160 A JP 59192160A JP 19216084 A JP19216084 A JP 19216084A JP S6170333 A JPS6170333 A JP S6170333A
Authority
JP
Japan
Prior art keywords
room temperature
compressor
signal
frequency setting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59192160A
Other languages
Japanese (ja)
Inventor
Juichi Ikeda
池田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59192160A priority Critical patent/JPS6170333A/en
Publication of JPS6170333A publication Critical patent/JPS6170333A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to reduce the air conditioning ability of the air conditioner without changing the amount of the air flow amount or resetting a room temperature target value when the blown-off air flow is felt cold or hot by enabling a person in a room to lower and control directly manually the maximum capacitance of a compressor. CONSTITUTION:When a signal emitted from detecting means 16 for detecting the room temperature and a signal emitted from setting means for setting a room temperature target value 18 are input to frequency setting signal generating means 35, a frequency setting signal is generated in accordance with a deviation between both signals thereby to control the rotational speed of a rotational speed variable type compressor 3 by means of an inverter 22. When the blown off air is felt cold or hot by the person in the room, a compressor capacitance control switch 25 which can be manually operated is manipulated thereby to actuate control means 40 for lowering and controlling the maximum value of a frequency setting signal generated by signal generating means 35 receiving the signal from the switch 25.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転数可変型圧m機を備えた空気調和装置の
運転制御装置の改良に関し、詳しくは、在室者が過冷却
感や過暖房感を感じた場合における圧縮機の容置制御対
策に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement in the operation control device of an air conditioner equipped with a variable rotation speed type pressure machine. This invention relates to compressor capacity control measures when a feeling of overheating is felt.

(従来の抜術) 従来より、この種の空気調和装置の運転ゐり陣装 、鷹
として、例えば特開昭59−56649号公報に開示さ
れるように、室内温度を検出する室温検出手段と、室温
目標値を設定する室温設定手段と、上記室温検出手段お
よび室W gQ定手段の両信号を受け、実際室温と室温
目標値との温度a差に応じた信号を出力する偏差信号出
力手段とを備え、該偏差信号出力手段の偏差信号に基づ
いて回転数可変型圧m機を回転数1NJIIlすること
により、実際宅温と室温目標値との温麿錫差が大きい場
合には圧縮1幾の高回転駆動により空調能力を大きくす
る一方、上記温r!X偏差が小さい場合には圧縮機の低
回転駆動により空調能力を小さくして、実際室温を室温
目標値に短時間で能率良く収束させるようにしたものが
知られている。
(Conventional Extraction Technique) Conventionally, when operating this type of air conditioner, a room temperature detection means and a room temperature detection means for detecting the indoor temperature have been used. , room temperature setting means for setting a room temperature target value, and deviation signal output means for receiving signals from both the room temperature detection means and the room W gQ determination means and outputting a signal corresponding to the temperature difference a between the actual room temperature and the room temperature target value. By increasing the rotation speed of the variable speed compressor to 1NJIIl based on the deviation signal of the deviation signal output means, if the temperature difference between the actual house temperature and the room temperature target value is large, the compression is increased to 1NJIIl. While the air conditioning capacity is increased by high rotational speed drive, the above temperature r! It is known that when the X deviation is small, the air conditioning capacity is reduced by driving the compressor at a low rotation speed so that the actual room temperature can efficiently converge to the target room temperature value in a short time.

(発明が解決しようとする問題点) ところで、冷房運転時当初や換気を目的として窓を開け
た場合の外乱発生時のように、冷却負荷が非常に大きい
場合には、圧縮機の高回転駆動による大きな冷房能力に
より室内を迅速に冷房することが好ましいが、その後次
第に室温が低下して室温目標値に到達しないものの学内
全体が一様にm1ei低下してくると、冷風吹出口近傍
に居る在室 者は上記大きい冷房能力に相当する冷風を
直接受けて室温目標値に達していないにも拘わらず寒く
感じることがある。この場合、在室者は冷房能力を低減
すべく、通常、■!alスイッチにより冷風の吹出量を
少なく設定したり、あるいは■室温ら標値を若干高く再
設定することにより、冷房能力を低減することが考えら
れる。
(Problem to be Solved by the Invention) By the way, when the cooling load is extremely large, such as when a disturbance occurs at the beginning of cooling operation or when a window is opened for ventilation, the compressor must be driven at high speed. Although it is preferable to quickly cool the room with the large cooling capacity of the Occupants in the room may feel cold even though the room temperature has not reached the target value because they are directly exposed to the cold air corresponding to the above-mentioned large cooling capacity. In this case, the occupants usually reduce the cooling capacity by ■! It is possible to reduce the cooling capacity by setting the amount of cold air blown to a smaller value using the al switch, or by resetting the target value slightly higher than the room temperature.

しかしながら、前者の場合には、冷風吹出量の減少変化
に伴い気流分布が変化して室内の上部と下部との温度差
が大きくなったり、あるいは圧縮機の容量が変化しない
ことから冷風の吹出温度が低くなり、かえって空調機近
傍に居る在室者はさらに寒く感じることになるなどの不
具合が生じる。
However, in the former case, the airflow distribution changes as the amount of cold air blows decreases, increasing the temperature difference between the upper and lower parts of the room, or the compressor capacity does not change, causing the cold air blowout temperature to change. This causes problems such as people living near the air conditioner feeling even colder.

また、後者の場合には、室温目標(直が実際室温より高
く再設定されることが少なくなく、このため、圧縮機が
直ちに停止し、その結果、その後において圧縮機が再始
動して冷房能力が冷房負荷にバランスするまでのあいだ
法)&冷房を行い1りず、室内快適性が低下するという
欠点が生じる。以上、冷房運転時の場合を例に上げて説
明したが、このことは暖房運転時においても同様である
Also, in the latter case, the room temperature target (direct) is often reset to a higher value than the actual room temperature, which causes the compressor to shut down immediately, with the result that the compressor is subsequently restarted and the cooling capacity is increased. Until the air conditioner is balanced with the cooling load, cooling is not performed until the air conditioner is balanced with the cooling load, resulting in a decrease in indoor comfort. The above description has been made using the case of cooling operation as an example, but this also applies to heating operation.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、上記の如く在室者が吹出風を寒く(又は熱く)感
じるような圧縮機の大容量での運転時には、該圧縮機の
最大容量を在室者が直接に手動で低下制限し得るように
するごとにより、従来の如<lN1fftを変化させた
り室温目標1直を再設定することなく空調能力を低減し
て、上記従来の欠点を解消することにある。
The present invention has been made in view of the above, and its purpose is to prevent the compressor from operating at a large capacity when the airflow feels cold (or hot) to the occupants as described above. By allowing occupants to directly manually lower the maximum capacity of The aim is to eliminate the shortcomings of

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示すように、回転数可変型圧縮機(3)を備えた空気
調和llff1において、室内温度を検出する室温検出
手段(16)と、V温目標直を設定する室温設定手段(
18)と、上記室温検出手段く16)および室温設定手
段(18)の両信号を受け、実際室温(ts)と室温目
標値(tv)との温度偏差(Δt)に応じた周波数設定
信号を発生する周波数設定信号発生手段(35)と、該
周波数設定信号発生手段(35)の信号に基づき上記回
転数可変型圧縮FM(3)を回転数制御するインパーク
(22)と、マニュアル操作される圧縮機容量制御スイ
ッチ(25)と、該圧縮機容量制御スイッチ(25)の
信号を受けて上記周波数設定信号発生手段(35)で発
生する周波数設定信号の最大値を所定値に低下制限する
圧縮機最人容爵制限手段(4o)とを備える構成とした
ものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. A room temperature detection means (16) for detecting the temperature, and a room temperature setting means (16) for setting the V temperature target.
18), the room temperature detection means 16) and the room temperature setting means (18), and generates a frequency setting signal according to the temperature deviation (Δt) between the actual room temperature (ts) and the room temperature target value (tv). A frequency setting signal generation means (35) to generate, an impark (22) for controlling the rotation speed of the rotation speed variable compression FM (3) based on the signal of the frequency setting signal generation means (35), and an impark (22) that is manually operated. and a compressor capacity control switch (25) that receives a signal from the compressor capacity control switch (25) and limits the maximum value of the frequency setting signal generated by the frequency setting signal generating means (35) to a predetermined value. Compressor maximum capacity limit means (4o).

(作用) 以上によ、す、本発明では、圧縮機の大容量運転時、実
際室温が目標i温に到達していないにも拘わらず在室台
が吹出風を寒く又は熱く感じるような場合には、この在
室者により圧縮機容量制御スイッチが操作されて回転数
可変型圧縮機の最大容量が所定値に低下制限されること
によって、風量が変化したり目標室温が再設定されたり
することなく空調能力が低減されて、実際室温が上記容
量の低減された圧縮機の連続運転により目標室温に徐々
に収束され、在室者が吹出風を寒く又は熱く体感するの
が解消されるのである。
(Function) According to the above, in the present invention, when the compressor is operated at a large capacity, the table in the room feels the blowing air cold or hot even though the actual room temperature has not reached the target i temperature. In this case, the compressor capacity control switch is operated by the person in the room, and the maximum capacity of the variable rotation speed compressor is reduced to a predetermined value, thereby changing the air volume or resetting the target room temperature. The air conditioning capacity is reduced without any problems, and the actual room temperature gradually converges to the target room temperature due to the continuous operation of the compressor with reduced capacity, which eliminates the feeling of cold or hot air being blown out by the occupants of the room. be.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて詳
細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.

第2図は本発明をヒートポンプ式冷暖房側りこ適用した
実施例を示し、(1)は室外は、(2)は室内機であっ
て、室外機(1)はその内部に回転数可変型の圧縮m(
3)、四路切換弁(7)、冷暖房用膨張は構(4a)、
暖房用膨張機構(4b)、室外熱交換器(5)および上
記暖房用膨張機構(4b)に並列に設けられ冷房時は開
放状態を維持し、暖房時は圧縮R(3)の回転数が所定
値以上のとき開く電磁弁(SV)とを備えている。
Fig. 2 shows an embodiment in which the present invention is applied to the heat pump air conditioning side. (1) is an outdoor unit, (2) is an indoor unit, and the outdoor unit (1) has a variable rotation speed type inside. Compression m(
3), four-way switching valve (7), expansion mechanism for heating and cooling (4a),
It is provided in parallel with the heating expansion mechanism (4b), the outdoor heat exchanger (5), and the heating expansion mechanism (4b), and maintains an open state during cooling, and the rotation speed of compression R (3) during heating. It is equipped with a solenoid valve (SV) that opens when the value exceeds a predetermined value.

また、室内は(2)はその内部に室内熱交換器(6)を
備えている。そして、上記各機器(3)〜(7)、<S
V)はそれぞれ冷媒配管(8)・・・により連結されて
冷媒循環系統(9)が形成されており、冷房運転時には
四路切換弁(7)を図中実線の如く切換えて冷媒を図中
実線矢印の如く循環させることにより、冷媒が有する熱
量を室外熱交換器(5)で室外空気に放熱したのら、室
内熱交換器(6)で室内空気から熱量を吸熱、すること
を繰返して室内の冷房を行う一方、暖房運転時には四路
切換弁(7)を図中破線の如く切換えて冷媒を図中破線
矢印の如く循環させることにより、熱量の授受を上記と
は逆にして室内の暖房を行うようになされている。
Further, the indoor heat exchanger (2) is provided with an indoor heat exchanger (6) therein. Then, each of the above devices (3) to (7), <S
V) are connected by refrigerant piping (8) to form a refrigerant circulation system (9), and during cooling operation, the four-way selector valve (7) is switched as shown by the solid line in the figure to transfer the refrigerant. By circulating the refrigerant as shown by the solid arrow, the heat contained in the refrigerant is radiated to the outdoor air in the outdoor heat exchanger (5), and then the heat is absorbed from the indoor air in the indoor heat exchanger (6), which is repeated. While cooling the room, during heating operation, the four-way selector valve (7) is switched as shown by the broken line in the figure, and the refrigerant is circulated as shown by the broken line arrow in the figure, thereby transferring heat in the room in the opposite direction. It is designed to provide heating.

そして、上記回転数可変型圧縮機(3)は第3図にも示
す制御装置(15)により回転数制御されるものである
。すなわち、第3図の制御装置(15)において、(1
6)は室温を検出する負の抵抗温度特性のサーミスタ等
で構成されたv温検出手段、(17)は該室温検出手段
(16)からの実際室温信号をアナログ−デジタル変換
する   ・A/D変換器、(18)は、室温目標値を
設定するための操作スイッチ(19)と該操作スイッチ
(19)により設定した設定tlt[(Tv)(室温目
標値)を点灯表示する?!数個の発光ダイオード(20
a >・・・を備えた設定値表示器(20)とで構成さ
れた室温設定手段、(21)は上記室温検出手段(16
)からの実際室温信号および操作スイッチ(19)から
の操作信号を受け、上記設定値表示器(20)に設定値
(Tv )を点灯表示するとともに、第7図(イ)およ
び(ロ)の70−チセートに基づいた周波数設定信号を
発生するマイクロコンピュータ、(22)は該マイクロ
コンピュータ(21)からの周波数設定信号に基づいて
上記回転数可変型圧縮機(3)を回転数制御するインバ
ータである。
The rotation speed of the variable rotation speed compressor (3) is controlled by a control device (15) also shown in FIG. That is, in the control device (15) of FIG.
6) is a v-temperature detection means composed of a thermistor with a negative resistance-temperature characteristic for detecting room temperature, and (17) is an analog-to-digital converter of the actual room temperature signal from the room temperature detection means (16). A/D The converter (18) lights up and displays the operating switch (19) for setting the room temperature target value and the setting tlt[(Tv) (room temperature target value) set by the operating switch (19). ! Several light emitting diodes (20
Room temperature setting means (21) is composed of a set value display (20) equipped with a>..., room temperature detection means (16)
) and an operation signal from the operation switch (19), the set value (Tv) is displayed on the set value display (20) and the set value (Tv) shown in Fig. 7 (a) and (b) is received. 70-a microcomputer that generates a frequency setting signal based on tisate, and (22) an inverter that controls the rotation speed of the variable rotation speed compressor (3) based on the frequency setting signal from the microcomputer (21). be.

また、(25)は室内の適宜場所に配置されてマニュア
ル操作される圧縮薗容惜制御スイッチを構成するパワー
セーブスイッチであって、該パワーセーブスイッチ(2
5)の操作に柚づくパワーセーブ信号は上記マイクロコ
ンピュータ(21)に入力されている。
Further, (25) is a power save switch constituting a compression control switch that is placed at an appropriate location in the room and manually operated.
The power save signal required for the operation in step 5) is input to the microcomputer (21).

さらに、(30)は上記マイクロコンピュータ(21)
に信号の授受可能に接続されたROMであって、該RO
M (30)の内部には、第4図に示すように実際室温
(Ts )と設定1+TI(Tv)との偏差ΔT (=
Ts −Tv )に対応する高温側頭h!!(Zr )
、(Z2 )、(Zl)、 安定領[(Zr ) #ヨ
ヒ低m側領kid(Zs )、  (Zs )、  (
Zl)からなる7つの温度領域が予め入力記憶されてい
るとともに、第5図に示すように、回転数可変型圧縮機
(3)の運転周波数を7種(0,30゜40.50,6
0,70.75Hz )に区分したステップN(N=1
〜7)が予め入力記憶されている。
Furthermore, (30) is the microcomputer (21)
A ROM connected to the RO so as to be able to send and receive signals.
Inside M (30), as shown in Fig. 4, there is a deviation ΔT (=
Ts − Tv ) corresponding to the high temperature temporal h! ! (Zr)
, (Z2), (Zl), stable region [(Zr) #yohi low m side region kid (Zs), (Zs), (
Seven temperature ranges consisting of Zl) are input and stored in advance, and seven operating frequencies (0, 30°, 40.50, 6
0,70.75Hz) step N (N=1
to 7) are input and stored in advance.

次に、上記マイクロコンピュータ(21)の作動を冷房
運転時の場合について説明する。該マイクロコンピュー
タ(21)は第6図に示す如く、実際室m(Ts>が冷
房運転により実線矢印の如く下降し、図中符号■の如く
設定(1α(Tv )に達してr@差(ΔT)が領域(
z4)から領域(Zs )に移行した時にはステップN
を1段下げるとともに、さらに下降して実際室温(Ts
 )が図中符号■の如<TV−0,5℃に達して備差(
ΔT)が領域(Zs)から(Z6)に移行した時にはス
テップNを2段下げ、また実際室F(Ts)が図中符号
■の如<TV−1,0℃に達して領vA(Zs)から(
z7)に移行した時にはステップNを最小値の「2」に
設定し、一方、実際V温(Ts )が破線矢印の如く上
界し、図中符号■の如<TV+0.5℃に達して偶差(
ΔT)がfI滅(Z4)から領域(z3)に移行した時
にはステップNを1段上げるとともに、ざらに上昇して
図中符号([F]の如<Tv +1.0’Ck:達Lr
¥1域(Z2)に移行した時にはステップNを2段上げ
、また実際V fA(Ts)が図中符号■の如<TV+
1.5℃に達して領域(Zr>に移行した時にはステッ
プNを最大値の「7」にセットするよう作動するもので
あり、これらの作動は具体的には第7図(イ)および(
ロ)の運転開始フローおよび周波数判別フローに基づい
て行われる(尚、第7図(イ)、および(ロ)中81〜
S25はステップ番号を示す)。
Next, the operation of the microcomputer (21) will be described for the case of cooling operation. As shown in FIG. 6, the microcomputer (21) detects that the actual room m (Ts> falls as indicated by the solid line arrow during the cooling operation, reaches the setting (1α (Tv) as indicated by the symbol ■ in the figure, and calculates the r@ difference (Ts). ΔT) is the area (
z4) to the area (Zs), step N
As well as lowering the temperature by one level, it further decreases to the actual room temperature (Ts
) reaches <TV-0.5℃ as indicated by the symbol ■ in the figure, and the difference (
When ΔT) moves from the region (Zs) to (Z6), step N is lowered by two steps, and when the actual room F(Ts) reaches <TV-1,0°C as shown by the symbol ■ in the figure, the region vA(Zs )from(
z7), step N is set to the minimum value "2", and on the other hand, the actual V temperature (Ts) rises as shown by the broken line arrow and reaches <TV+0.5°C as shown by the symbol ■ in the figure. Even difference (
When ΔT) moves from fI extinction (Z4) to region (z3), the step N is raised by one step, and it rises roughly until it becomes as shown by the symbol ([F] in the figure <Tv +1.0'Ck: reached Lr
When moving to the ¥1 area (Z2), the step N is raised by two steps, and the actual V fA (Ts) becomes <TV+ as shown by the symbol ■ in the figure.
When the temperature reaches 1.5°C and shifts to the region (Zr>), the step N is set to the maximum value "7", and these operations are specifically shown in Figure 7 (a) and (
This is done based on the operation start flow and frequency determination flow in (b) (see Figure 7 (a) and 81 to (b)).
S25 indicates a step number).

すなわち、第7図(イ)の運転開始フローにおいて、先
ずSlにおいて後述する初回起動終了フラグFが「1」
か否かを判定し、Noの場合つまり初回起動時には、S
lにおいて室温検出手段(16)の実際室部信号と操作
スイッチ(19)の操作信号に応じた設定値(Tv )
とに基づいて温度幅差(ΔT)(−Ts −Tv )を
篩用したのち、該湿度幅差(ΔT)が「0」以上か否か
を判別する。そして、ΔT<OのNOの場合には冷房運
転を要しないと判断してS3においてステップNを「1
」に、つまり圧縮機(3)の停止状態を推持してリター
ンする。一方、ΔT≧OのYESの場合には冷房運転が
必要であると判断してS4においてステップNを最大値
の「7」に初期設定してインバータ(22)に最大周波
数の周波数設定信号を出力したのち、S5において初回
起動終了フラグFを「1」にヒツトしてリターンする。
In other words, in the operation start flow shown in FIG.
If it is No, that is, at the first startup, S
The set value (Tv) according to the actual room signal of the room temperature detection means (16) and the operation signal of the operation switch (19) at l.
After sieving the temperature width difference (ΔT) (-Ts - Tv) based on the following, it is determined whether the humidity width difference (ΔT) is greater than or equal to "0". If ΔT<O (NO), it is determined that cooling operation is not required, and step N is set to "1" in S3.
”, that is, the compressor (3) is maintained in a stopped state and returns. On the other hand, if ΔT≧O (YES), it is determined that cooling operation is necessary, and in S4, step N is initialized to the maximum value "7" and a frequency setting signal of the maximum frequency is output to the inverter (22). After that, in S5, the initial startup end flag F is set to "1" and the process returns.

そして、SIにおいてF=1のYESの場合つまり冷房
運転の起動が終了した後は、Scにおいて温度幅差(6
丁)がrOJか否かつまり実際室1(Ts’)が冷房運
転により設定1a(Tv)に達したか否かを判定し、Δ
T≠0のNoの場合にはS7においてパワーセーブスイ
ッチ(25)からのパワーセーブ信号を受信したか否か
を判別し、受信したYESの場合には圧mfi(3)の
最人容予を制限する必要があると判断してS8において
ステップNを中間1m (例えば「3」)に再設定した
のちリターンする一方、パワーセーブ信号を受信してい
ないNoの場合には直ちにリターンする。
If F=1 is YES in SI, that is, after the start of cooling operation is completed, the temperature width difference (6

If T≠0 (No), it is determined in S7 whether or not a power save signal has been received from the power save switch (25), and if YES, the maximum capacity of pressure mfi (3) is determined. If it is determined that it is necessary to limit the number, the step N is reset to an intermediate value of 1 m (for example, "3") in S8, and then the process returns. If the answer is No, where no power save signal has been received, the process immediately returns.

一方、上記S6でΔT−0のYESの場合には、Sつに
おいてステップNを2段下げたのちリターンする。そし
て次回は、第7図(ロ)の周波数判別フローに進んで実
際室温(Ts)に応じたステップNの増減制御を開始す
る。
On the other hand, if ΔT-0 is YES in S6, step N is lowered by two steps in S steps, and then the process returns. Next time, the process proceeds to the frequency determination flow shown in FIG. 7(b) and starts increasing/decreasing control in step N according to the actual room temperature (Ts).

そして、第7図(ロ)周波数判別フローのS +。FIG. 7 (b) S + of the frequency discrimination flow.

において現在の温度偏差(ΔT)が第4図の高温側rr
4域(Z+)〜(I3)にあるか否かを判定し、tri
側領1或(Z+ ) 〜(I3 ) に@6Y6S(0
11合には、さらにS++において現在の温度幅差(Δ
T)の属する温度領域(Zi )を前回処理で求めた温
度偏差(ΔT’ )の属するfA度領領域Zi’)と比
較して現在の温度幅差(ΔT)が初めて温度領ta(Z
j)から領bi!(Zx)に移行したか否かを判定し、
移行したYESの場合にはS 12におい【ステップN
を1段上げたのら、リターンする。
, the current temperature deviation (ΔT) is on the high temperature side rr in Figure 4.
Determine whether or not it is in the 4th region (Z+) to (I3), and
Side territory 1 or (Z+) ~ (I3) @6Y6S (0
In the 11th match, the current temperature width difference (Δ
Comparing the temperature range (Zi) to which T) belongs with the fA temperature range Zi') to which the temperature deviation (ΔT') obtained in the previous process belongs, the current temperature width difference (ΔT) is the first temperature range ta(Z
j) from territory bi! Determine whether or not it has shifted to (Zx),
If YES, the process goes to S12 [Step N
After raising it one step, return.

一方、S oにおいて領域(I3)に移行しないNOの
場合には、さらに813において現在のlfi 13!
[1差(ΔT)が初めて領域(I3)から領域(I2)
に移行したか否かを判定し、領域(I2)に移行したY
ESの場合にはS 14においてステップNを2段上げ
たのちリターンする。、また、S 13で領域(I2)
に移行しないNoの場合にはさらにS +sにおいて現
在のIlt偏差(6丁)が初めて領域(I2)から領[
(Z+)に移行したか否かを判定し、移行したYESの
場合にはS16においてステップNを最大Inの「7」
にセットしたのち、SI2においてパワーセーブスイッ
チ(25)からのパワーセーブ信号を受信したか否かを
判別し1.受信したYESの場合には圧縮機(3)の最
人容吊を制限する必要があると判断してS +aにおい
てステップNを中間値(例えば「3」)に再設定したの
ちリターンする一方、パワーセーブ信号を受信していな
いNoの場合には直ちにリターンする。
On the other hand, in the case of NO to not move to area (I3) in S o, the current lfi 13!
[1 difference (ΔT) from region (I3) to region (I2) for the first time
It is determined whether or not Y has transitioned to area (I2).
In the case of ES, step N is increased by two steps in S14, and then the process returns. , and also the area (I2) in S13
In the case of No, the current Ilt deviation (6 teeth) changes from the area (I2) to the area [
It is determined whether or not it has shifted to (Z+), and if it is YES that it has shifted, step N is set to "7" of the maximum In in S16.
After setting , it is determined in SI2 whether or not a power save signal from the power save switch (25) has been received.1. In the case of the received YES, it is determined that it is necessary to limit the maximum capacity of the compressor (3), and in S+a, step N is reset to an intermediate value (for example, "3"), and then the process returns. If the answer is No, as the power save signal has not been received, return immediately.

一方、S +sで領域(Zl)に移行しないNoの場合
には直ちにリターンする。
On the other hand, in the case of No to not move to the area (Zl) at S+s, the process immediately returns.

また、上記S +aにおいて現在の塩度(9差(ΔT)
が?S温側領14(Z+)〜(I3)にないNoの場合
には、819において現在の温度幅差(ΔT)が安定領
域(I4)にあるか否かを判定し、安定領域(Za)に
あるYESの場合にはステップNが適正であると判断し
て直ちにリターンする一方、安定領域(I4)にないN
Oの場合には現在の温度偏差(ΔT)が低温側領域(I
5)〜(I7)にあると判断してS 20に進む。
In addition, in the above S + a, the current salinity (9 difference (ΔT)
but? In the case of No in the S temperature side region 14 (Z+) to (I3), it is determined in 819 whether or not the current temperature width difference (ΔT) is in the stable region (I4), and the stable region (Za) is determined. If YES is found in step N, it is determined that step N is appropriate and returns immediately, while if N is not in the stable region (I4)
In the case of O, the current temperature deviation (ΔT) is in the low temperature side region (I
5) to (I7) and proceeds to S20.

続いて、S ?oにおいて温度@差(ΔT)が初めて領
域(Z、、)から領域〈75)に移イテしたか否かを判
定し、移行したYESの場合にはS21においてステッ
プNを1段下げたのち、リターンする一方、領域(z5
)に移行しないNOの場合には822において現在の温
度偏差(ΔT〉が初めて領M(Zs)から領fii(Z
s)に移行したか否かを判定し、移行したYESの場合
にはS23においてステップNを2段下げたのら、リタ
ーンする。一方、822に一#いr領m(Z6)l:移
行シl!J ’v’ N Oの場合には、さらに824
において現在の温度偏差(ΔT)が初めrta域<26
 ) カラ9AIJi (Zy )に移行したか否かを
判定し、移行したYESの場合には825においてステ
ップNを最小値の「2」にセットしたのら、リターンす
る一方、領[(Z7)に移行しないNoの場合には直ち
にリターンする。
Next, S? At o, it is determined whether the temperature @ difference (ΔT) has shifted from the region (Z, , ) to the region <75) for the first time, and if YES, step N is lowered by one step in S21, and then While returning, the area (z5
), in 822 the current temperature deviation (ΔT) changes from region M (Zs) to region fii (Z
It is determined whether or not the process has moved to step s), and if YES, step N is lowered by two steps in S23, and then the process returns. On the other hand, 822 has one territory (Z6): Transition! In the case of J 'v' N O, further 824
The current temperature deviation (ΔT) is initially in the rta range < 26
) It is determined whether or not the transition has been made to the empty 9AIJi (Zy), and if it is YES, the step N is set to the minimum value "2" at 825, and while returning, the transition is made to the territory [(Z7) If the answer is No, the process returns immediately.

よって、実際室W(tS)が第6図の符号■の温度に達
したとぎにはステップNを1段下げ((S20)、(8
2+>)、符号■の温度に達したときにはステップNを
2段下げ((822)、(S23))、また符号■の瀉
魔に達したときにはステップNを最小値のr2Jにセッ
トしく (324)’、  (S乙))、一方、実際室
温(ts)が符号■の温度に達したときにはステップを
1段上げ((So ) 、  <、SI2 ))、符号
■の温度に達したときにはステップNを2段上げ((8
13)、(S+4))、また符号■の温度に達したとき
には最大値の「7」にセットする< (S’s > 、
  (S’s )’)ことにより、実際室温(ts)と
室温目標1Nv)との温度偏差(ΔT)が大きいときほ
ど大きい周波数設定信号を発生するようにした周波数設
定信号発生手段(35)を構成している。また、S2お
よびS 17でパワーセーブ信号を受信した場合には、
それぞれSsおよびS +sでステップNを中間値の「
3」に設定することにより、上記周波数設定信号発生手
段(35)で発生する周波Wi設定信号の最大111(
75)−1z)を所定1n(40Hz)に低下制限する
ようにした圧縮a最大容量υノ限手段(40)を構成し
ている。
Therefore, as soon as the actual room W(tS) reaches the temperature indicated by the symbol ■ in FIG. 6, step N is lowered by one step ((S20),
2+>), when the temperature with symbol ■ is reached, step N should be lowered by two steps ((822), (S23)), and when the temperature with symbol ■ is reached, step N should be set to the minimum value r2J (324 )', (S B)), On the other hand, when the actual room temperature (ts) reaches the temperature with the symbol ■, the step is raised by one step ((So), <, SI2)), and when the temperature reaches the temperature with the symbol ■, the step is increased. Raise N by 2 steps ((8
13), (S+4)), and when the temperature with symbol ■ is reached, set it to the maximum value "7"<(S's>)
(S's)'), the frequency setting signal generating means (35) generates a larger frequency setting signal as the temperature deviation (ΔT) between the actual room temperature (ts) and the room temperature target 1Nv) is larger. It consists of Also, if a power save signal is received in S2 and S17,
Step N is set to an intermediate value of “Ss and S +s, respectively.
3'', the maximum frequency Wi setting signal generated by the frequency setting signal generating means (35) is 111 (
75)-1z) to a predetermined value of 1n (40 Hz).

したがって、上記実施例においては、冷房運転開始時(
S2)や窓を開1プた場合の大きな外乱の発生時(S’
s)などの冷房負荷が非常に大きい場合には、当初、ス
テップNが最大値の「7」に選定されて(SJ 、 S
’s ) 、圧縮機(3)が7582に相当する最大容
量で運転され、その結果、最大の冷房能力でもって学内
の急速冷房が行われる。
Therefore, in the above embodiment, when the cooling operation starts (
S2) or when a large disturbance occurs when the window is opened (S'
When the cooling load is very large, such as in case s), step N is initially set to the maximum value of "7" (SJ, S
's), the compressor (3) is operated at the maximum capacity corresponding to 7582, and as a result, the campus is rapidly cooled with maximum cooling capacity.

そして、1記急速冷房により全肉の冷房負荷が減少して
上記最大の冷房能力とバランスし、案内が一様に温度低
下した状態では、空Itfi近傍に居る在室者は上記最
大の冷房能力に相応する冷風を寒く感じることがある。
Then, when the cooling load of all the meat is reduced by the rapid cooling mentioned above and is balanced with the above maximum cooling capacity, and the temperature of the guide is uniformly lowered, the occupants near the empty Itfi will be able to reach the above maximum cooling capacity. The cold air that corresponds to this may feel cold.

しかし、その際、在室者によりパワーセーブスイッチ(
25)が操作されると、ステップNが強制的に中間値の
r3Jに選定されて(Ss、S’s)、第8図に示すよ
うに圧縮機(3)の容量が上記75H7に相当する最大
容■から40Hzに相当する中間容量に低下制限される
ので、その分、冷房能力が低減されて、在室者が冷風を
寒く感じるのが解消されることになる。
However, at that time, the power save switch (
25) is operated, step N is forcibly selected to the intermediate value r3J (Ss, S's), and as shown in FIG. 8, the capacity of the compressor (3) corresponds to the above 75H7. Since the maximum capacity (2) is limited to an intermediate capacity corresponding to 40 Hz, the cooling capacity is reduced by that amount, and people in the room no longer feel the cold air as cold.

その際、冷風の吹出量は変化しないので、従来の如く気
流分布に変化が生じることがなく、空白の上部と下部ど
の湿度差を小さく保持することができるとともに、圧縮
代の容量低減により冷風の吹出温度を確実に高くして快
適冷房を確保することができる。しかも、圧縮機の容量
低減により省エネルギー化を図ることができるとともに
、圧縮機の不必要な発停を防止でき、上記快適冷房をよ
り有効に確保することができる。
At that time, the amount of cold air blown does not change, so there is no change in airflow distribution as in the past, and the difference in humidity between the upper and lower parts of the blank can be kept small. Comfortable cooling can be ensured by reliably increasing the blowout temperature. Moreover, by reducing the capacity of the compressor, energy can be saved, and unnecessary starting and stopping of the compressor can be prevented, and the above-mentioned comfortable cooling can be more effectively ensured.

尚、上記実施例では、パワーセーブスイッチ(25)を
必要時にON操作したが、これを常時ON状態として圧
縮機(3)の中間容量での運転により省エネルギー運転
するとともに、この状態で冷房能力の不定を感じる場合
にはパワーセーブスイッチ(25)をOFF操作して冷
FJ能力を増大させるよう使用するようにすれば、快適
2調を確保しつつ省エネルギー化が可能である。
In the above embodiment, the power save switch (25) was turned ON when necessary, but by keeping it always ON, the compressor (3) is operated at an intermediate capacity to save energy, and in this state, the cooling capacity is reduced. If you feel unsteady, turn off the power save switch (25) and use it to increase the cold FJ capacity, making it possible to save energy while ensuring a comfortable second tone.

尚、上記実施例ではヒートポンプ式冷暖rFj装置の冷
房運転に適用した場合について説明したが、本発明はそ
の他、その暖房運転あるいは暖房又は冷房専用装置に対
しても同様に適用することができるのは勿論である。
In addition, although the above embodiment describes the case where it is applied to the cooling operation of a heat pump type cooling/heating rFj device, the present invention can also be similarly applied to the heating operation or a heating or cooling-only device. Of course.

(発明の効果) 以上説明したように、本発明の空気調和装置の運転制御
装置によれば、回転数可変型圧縮機の最大客間を、マニ
ュアル操作される圧縮機容量制御スイッチにより必要に
応じて所定値に低下制限するようにしたので、吹出風を
寒く感じたり熱く感じたりするのを解消して快適空調の
向上を図ることができるとともに、省エネルギー化に著
効を発揮するものである。
(Effects of the Invention) As explained above, according to the operation control device for an air conditioner of the present invention, the maximum guest room of the variable rotation speed compressor can be controlled as needed by the manually operated compressor capacity control switch. Since the reduction is limited to a predetermined value, it is possible to improve the comfort of air conditioning by eliminating the feeling of the blowing air being cold or hot, and it is also highly effective in saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図ないし
第8図は本発明の実施例を示し、第2図はヒートポンプ
式冷暖房装置に適用した場合の冷媒配管系統図、第3図
は制御]装置の内部構成を示すブロック図、第4図およ
び第5図はそれぞれROMの記憶内容を示す図、第6図
はマイクロコンピュータの作動説明図、第7図(イ)お
よび(ロ)はそれぞれマイクロコンピュータの作動を説
明するためのフローチャート図、第8図は作#J説明図
である。 (3)・・・回転数可変型圧縮開、(16)・・・室温
検出手段、(18)・・・室温設定手段、(22)・・
・インバータ、(25)・・・パワーセーブスイッチ(
圧縮機容量問罪スイッチ)、(35)・・・周波数設定
信号発土手段、(40)・・・圧縮は最大容量制限手段
。 440   こ 第8図 。; 18(電−7N設定缶l)
Fig. 1 is a block diagram showing the configuration of the present invention, Figs. 2 to 8 show embodiments of the present invention, Fig. 2 is a refrigerant piping system diagram when applied to a heat pump air conditioning system, and Fig. 3 5 is a block diagram showing the internal configuration of the control device, FIGS. 4 and 5 are diagrams each showing the storage contents of the ROM, FIG. 6 is an explanatory diagram of the operation of the microcomputer, and FIGS. 7 (a) and (b) are flowchart diagrams for explaining the operation of the microcomputer, and FIG. 8 is an explanatory diagram of operation #J. (3)...variable rotation speed compression opening, (16)...room temperature detection means, (18)...room temperature setting means, (22)...
・Inverter, (25)...Power save switch (
Compressor capacity check switch), (35)...Frequency setting signal generating means, (40)...Maximum capacity limiting means for compression. 440 Figure 8. ; 18 (Electric-7N setting can l)

Claims (1)

【特許請求の範囲】[Claims] (1)回転数可変型圧縮機(3)を備えた空気調和装置
において、室内温度を検出する室温検出手段(16)と
、室温目標値を設定する室温設定手段(18)と、上記
室温検出手段(16)および室湿設定手段(18)の両
信号を受け、実際室温(ts)と室温目標値(tv)と
の温度偏差(Δt)に応じた周波数設定信号を発生する
周波数設定信号発生手段(35)と、該周波数設定信号
発生手段(35)の信号に基づき上記回転数可変型圧縮
機(3)を回転数制御するインバータ(22)と、マニ
ュアル操作される圧縮機容量制御スイツチ(25)と、
該圧縮機容量制御スイッチ(25)の信号を受けて上記
周波数設定信号発生手段(35)で発生する周波数設定
信号の最大値を所定値に低下制限する圧縮機最大容量制
限手段(40)とを備えたことを特徴とする空気調和装
置の運転制御装置。
(1) In an air conditioner equipped with a variable rotation speed compressor (3), a room temperature detection means (16) for detecting the indoor temperature, a room temperature setting means (18) for setting a room temperature target value, and the room temperature detection means (18) for setting a room temperature target value. A frequency setting signal generator that receives signals from both the means (16) and the room humidity setting means (18) and generates a frequency setting signal according to the temperature deviation (Δt) between the actual room temperature (ts) and the room temperature target value (tv). means (35), an inverter (22) for controlling the rotation speed of the variable rotation speed compressor (3) based on the signal from the frequency setting signal generation means (35), and a manually operated compressor capacity control switch ( 25) and
compressor maximum capacity limiting means (40) for receiving a signal from the compressor capacity control switch (25) and lowering and limiting the maximum value of the frequency setting signal generated by the frequency setting signal generating means (35) to a predetermined value; An operation control device for an air conditioner, characterized in that:
JP59192160A 1984-09-13 1984-09-13 Drive control device of air conditioner Pending JPS6170333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192160A JPS6170333A (en) 1984-09-13 1984-09-13 Drive control device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192160A JPS6170333A (en) 1984-09-13 1984-09-13 Drive control device of air conditioner

Publications (1)

Publication Number Publication Date
JPS6170333A true JPS6170333A (en) 1986-04-11

Family

ID=16286687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192160A Pending JPS6170333A (en) 1984-09-13 1984-09-13 Drive control device of air conditioner

Country Status (1)

Country Link
JP (1) JPS6170333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509816B2 (en) * 2004-01-15 2009-03-31 Toshiba Carrier Corporation Air conditioner
WO2014068661A1 (en) * 2012-10-30 2014-05-08 三菱電機株式会社 Air-conditioning device, controller, and air-conditioning control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760134A (en) * 1980-09-29 1982-04-10 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760134A (en) * 1980-09-29 1982-04-10 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509816B2 (en) * 2004-01-15 2009-03-31 Toshiba Carrier Corporation Air conditioner
WO2014068661A1 (en) * 2012-10-30 2014-05-08 三菱電機株式会社 Air-conditioning device, controller, and air-conditioning control method
JP5863988B2 (en) * 2012-10-30 2016-02-17 三菱電機株式会社 Air conditioning apparatus, controller, air conditioning control method, and program

Similar Documents

Publication Publication Date Title
KR0164917B1 (en) Operating control method of airconditioner
JP4668769B2 (en) Air conditioner
US5197293A (en) Method of controlling an air conditioning apparatus and air conditioning apparatus using the method
JP2016090113A (en) Air conditioner
KR20010019126A (en) Method for controlling operations of an air conditioner according to selected operation mode and function pattern
JPH0666444A (en) Method of controlling air conditioner
JP2016090115A (en) Air conditioner
JP3080187B2 (en) Control device for air conditioner
JP4417672B2 (en) Air conditioner
JPS6170333A (en) Drive control device of air conditioner
KR20010045980A (en) Method for controlling cooling/heating mode of air conditioner
JPS61208459A (en) Room heating operation of air-conditioning machine
JPS63286643A (en) Air-conditioning machine
JPH055553A (en) Control device for air conditioner
JP4003543B2 (en) Air conditioner
JPS6029540A (en) Air quantity controlling method for air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
JP2611051B2 (en) Air conditioner
JPH109652A (en) Set temperature control method for remote controller of air conditioner
JPS6219885Y2 (en)
JPH06229608A (en) Air conditioner
JPH05187688A (en) Air conditioner
JPH0544978A (en) Heat pump type air conditioner
JPH0518586A (en) Air conditioner
JPS60165450A (en) Heating operation control device for air conditioner