JPS6168395A - Growing method of diamond crystal - Google Patents

Growing method of diamond crystal

Info

Publication number
JPS6168395A
JPS6168395A JP59190607A JP19060784A JPS6168395A JP S6168395 A JPS6168395 A JP S6168395A JP 59190607 A JP59190607 A JP 59190607A JP 19060784 A JP19060784 A JP 19060784A JP S6168395 A JPS6168395 A JP S6168395A
Authority
JP
Japan
Prior art keywords
diamond
seeds
plate
crystals
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59190607A
Other languages
Japanese (ja)
Other versions
JPS6357099B2 (en
Inventor
Eiichi Iizuka
栄一 飯塚
Shinji Kashima
加島 慎治
Tomoji Santo
山東 知二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59190607A priority Critical patent/JPS6168395A/en
Publication of JPS6168395A publication Critical patent/JPS6168395A/en
Publication of JPS6357099B2 publication Critical patent/JPS6357099B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To obtain a crystal having a small distribution width of grain sizes, high rate of crystal growth and excellent mechanical characteristics by disposing diamond seeds in a specific form and growing the same until the crystal grains having specific grain sizes are obtd. CONSTITUTION:Many recesses 2 to be put therein with the seeds are perforated to a flux metallic plate 1. Such recesses 2 are regularly perforated at equal intervals in such a way that the spaces l between the adjacent recesses are 50-300mu as the spaces between the adjacent crystal particles after the crystal growth. The flux metal plates 1 embedded with the diamond seeds 3 in the recesses 2 are superposed on non-diamond carbon plates 4 in such a manner that the surfaces disposed with the diamond seeds are positioned on the opposite (boundary) side. The superposed plates or the laminated plates laminated with the plural superposed plates are put under the pressure and temp. conditions in the stable region of the diamond growth, by which the diamond crystals are grown.

Description

【発明の詳細な説明】 本発明は、高温、高圧下でダイヤモンドを合成する際、
種子となるダイヤモンド粒子を用いて結晶を成長させる
方法に関する。
[Detailed Description of the Invention] The present invention provides a method for synthesizing diamond under high temperature and high pressure.
This invention relates to a method of growing crystals using diamond particles as seeds.

従来の技術 一般に静水圧法でダイヤモンドを合成する場合、発生す
る核の数を制御し、相平衡線のごく近傍にある温度と圧
力の下で結晶を成長させることが包有物の少ない、形の
良い結晶を得るポイントである。したがって、種子とな
るダイヤモンド粒子を用いることは、結晶成長の中心と
なる核の数を制御する上において有効々手段である。
Conventional technology Generally, when synthesizing diamond using the hydrostatic method, it is necessary to control the number of nuclei generated and grow the crystal at a temperature and pressure that is very close to the phase equilibrium line. This is the key to obtaining good crystals. Therefore, using diamond particles as seeds is an effective means for controlling the number of nuclei that become the center of crystal growth.

上記静水圧法によりダイヤモンドを合成する場合の結晶
の成長方法には、温度差成長法と薄膜成長法とがある。
Crystal growth methods for synthesizing diamond using the hydrostatic pressure method include a temperature difference growth method and a thin film growth method.

前者は、種子とグラファイトのような非ダイヤモンド炭
素(以下「原料炭素」という)を温度勾配を有する溶媒
金属を間にして存在させ、低温側の種子を成長させる方
法である。また、後者は、種子となるダイヤモンド粒子
の周囲に付着した溶媒金属の薄い膜を介して原料炭素を
溶解させ炭素とダイヤモンドの溶解度差によってダイヤ
モンド結晶を成長させる方法である。薄膜成長法では、
種子を予めおかずに合成中に核発生を行なわせることも
できるが、種子を用いれば核の数の制御が容易となる。
The former is a method in which seeds and non-diamond carbon such as graphite (hereinafter referred to as "raw material carbon") are present with a solvent metal having a temperature gradient in between, and the seeds on the low temperature side are grown. The latter is a method in which raw carbon is dissolved through a thin film of solvent metal attached to the periphery of diamond particles serving as seeds, and diamond crystals are grown due to the solubility difference between carbon and diamond. In the thin film growth method,
Although it is possible to generate nuclei during synthesis without using seeds in advance, the number of nuclei can be easily controlled by using seeds.

しかし、如何に核の数を制御し得たとしても炭素濃度の
過飽和度の高い領域でダイヤモンド結晶を成長させた場
合は、良い結晶は得ちれず、結晶の形も悪くな)さらに
溶媒金属、炭素、気泡など不純物の包有も多くなる。
However, no matter how much the number of nuclei can be controlled, if diamond crystals are grown in a region with a high degree of supersaturation of carbon concentration, good crystals will not be obtained and the shape of the crystals will be poor. It also contains more impurities such as carbon and air bubbles.

過飽和度を下げるには、ダイヤモンド安定領域側の相平
衡線のごく近傍にある温度、圧力条件に保持する必要が
ある。しかし、工業的な超高圧合成装置において、反応
部の温度と圧力を定常的に測定し、目的とする値にコン
トロールするととは極めて困難である。
In order to reduce the degree of supersaturation, it is necessary to maintain the temperature and pressure conditions very close to the phase equilibrium line on the side of the diamond stability region. However, in industrial ultra-high pressure synthesis equipment, it is extremely difficult to constantly measure the temperature and pressure in the reaction zone and control them to desired values.

また、溶媒金属と原料炭素とダイヤモンド種子とを混合
し、混合物を円柱状に成型し、高圧装置に装填して、そ
の中で結晶を成長させる方法が知られている。この方法
は、種子を混合物中に均一に分散させるのが困難であり
、結晶成長にバラツキを生じ易い。
Furthermore, a method is known in which a solvent metal, raw carbon, and diamond seeds are mixed, the mixture is formed into a cylinder, the molded mixture is loaded into a high-pressure device, and crystals are grown therein. This method makes it difficult to uniformly disperse the seeds in the mixture, and tends to cause variations in crystal growth.

また、溶媒金属粉末および思料炭素粉末のいずれか一方
または両方にダイヤモンド種子を配合し、それぞれの粉
末を薄板状に成形し、得られた溶媒金属薄板と原料炭素
薄板とを交互に多数積層して、所定の温度、圧力条件下
に結晶を成長させる方法が知られている。この方法も、
結晶成長にバラツキを生じ易く、粒度分布巾の小さいダ
イヤモンド結晶を得るのは困難である。
In addition, diamond seeds are blended into either or both of the solvent metal powder and the carbon powder, each powder is formed into a thin plate, and the obtained solvent metal thin plates and raw carbon thin plates are alternately laminated in large numbers. , a method of growing crystals under predetermined temperature and pressure conditions is known. This method also
It is difficult to obtain diamond crystals with a narrow particle size distribution because crystal growth tends to vary.

非ダイヤモンド炭素のロッドt&はディスク中に多数の
孔を穿設し、この孔中にダイヤモンド種子を入れ、この
口、ドまたはディスクに触媒金属を隣接配置したものを
所定の温度・圧力条件下において結晶を成長させる方法
が提案されている(米国特許第3,423,177号)
。この方法は、・、−結晶成長にバラツキを生じ易く、
粒度を制御することが困難で、且つダイヤモンド結晶生
成量が少いという問題点がある。しかも、結晶成長過程
における成長率が比較的小さく、圧壊強度その他の機械
的強度に劣る。
A non-diamond carbon rod t& has a large number of holes in the disk, diamond seeds are placed in the holes, and a catalyst metal is placed adjacent to the hole, hole or disk, and the rod is heated under specified temperature and pressure conditions. A method for growing crystals has been proposed (U.S. Pat. No. 3,423,177).
. This method tends to cause variations in crystal growth;
There are problems in that it is difficult to control the particle size and the amount of diamond crystals produced is small. Moreover, the growth rate during the crystal growth process is relatively small, and the crushing strength and other mechanical strengths are inferior.

本発明の目的は、上記のような従来の技術の問題点を解
決し、粒度の分布幅が小さく、且つ、結晶成長率が大き
く、熱衝撃強度、圧壊強度その他の機械的特性に優るダ
イヤモンド結晶を高い生産性を以って製造できる方法を
提供するKある。
The purpose of the present invention is to solve the problems of the conventional technology as described above, and to provide a diamond crystal that has a small particle size distribution width, a high crystal growth rate, and has excellent thermal shock strength, crushing strength, and other mechanical properties. K provides a method for manufacturing with high productivity.

本発明に係るダイヤモンド結晶の成長法は、溶媒金属板
および非ダイヤモンド炭素板の少くとも一方の板の面上
に多数のダイヤモンド種子を配置し、該ダイヤモンド種
子配置面が界面側に位置するように溶媒金属板と非ダイ
ヤモンド炭素板とを重ね合せた重合板またはそのような
重合板を複数積層した積層物、あるいは、溶媒金属と非
ダイヤモンド炭素との混合物の板の面上に多数のダイヤ
モンド種子を配置したyまたはそのような板を複数積層
した積層物をダイヤモンド安定領域の圧力・温度条件下
においてダイヤモンド結晶を成長せしめる方法でありて
、ダイヤモンド種子として粒径50μm以下のダイヤモ
ンド粒子を実質的に等間隔に且つ結晶成長後の隣接結晶
粒子間の間隔が50〜300μmとなるように規則的に
配置し、さらに種子粒径の5倍以上の径を有するダイヤ
モンド結晶粒子が得られるまで成長せしめることを特徴
とする特 溶媒金属板および非ダイヤモンド炭素板の少くとも一方
の板の面上またはそのような溶媒金属と非ダイヤモンド
炭素との混合物の板の面上にダイヤモンド種子を実質的
に等間隔に且つ結晶成長後の隣接結晶粒子間の間隔が所
定範囲となるように規則的に配置する。
The method for growing diamond crystals according to the present invention includes arranging a large number of diamond seeds on the surface of at least one of a solvent metal plate and a non-diamond carbon plate, and disposing the diamond seeds so that the surface on which the diamond seeds are arranged is located on the interface side. A large number of diamond seeds are placed on the surface of a polymer plate of a solvent metal plate and a non-diamond carbon plate, a laminate of a plurality of such polymer plates, or a plate of a mixture of a solvent metal and a non-diamond carbon. This is a method in which diamond crystals are grown using a laminate made by laminating a plurality of such plates or a plurality of such plates under pressure and temperature conditions in the diamond stability region, and diamond particles with a particle size of 50 μm or less are used as diamond seeds. They are arranged regularly so that the distance between adjacent crystal grains after crystal growth is 50 to 300 μm, and further grown until diamond crystal grains having a diameter of 5 times or more than the seed grain size are obtained. on the surface of at least one of the characterized solvent metal plate and non-diamond carbon plate, or on the surface of the plate of a mixture of such solvent metal and non-diamond carbon, with diamond seeds substantially equally spaced and After crystal growth, the adjacent crystal grains are arranged regularly so that the distance between them falls within a predetermined range.

種子となるダイヤモンド粒子を規則的に配置するには種
々の方法を採ることができる。最も好ましい方法は、板
の面上に多数の凹孔を穿設し、各凹孔にダイヤモンド粒
子を1個宛入れる方法である。溶媒金属板、非ダイヤモ
ンド炭素板または溶媒金属と非ダイヤモンドとの混合物
の板に凹孔を穿つには微小径ドリル等を用いる機械的方
法によることができ、また、溶媒金属板の場合には機械
的方法の他に、フォトエツチングを含むエツチング法、
放電加工による方法、レーザ加工による方法などが適用
できる。
Various methods can be used to regularly arrange the diamond particles that serve as seeds. The most preferred method is to drill a large number of holes on the surface of the plate and place one diamond particle in each hole. Holes can be drilled in a solvent metal plate, a non-diamond carbon plate, or a mixture of solvent metal and non-diamond by a mechanical method using a micro-diameter drill. In addition to standard methods, etching methods including photo etching,
A method using electric discharge machining, a method using laser processing, etc. can be applied.

各凹孔にダイヤモンド種子を入れるには、穿孔板上に種
子をばらまき適当な振動を与えればよい。
To insert diamond seeds into each recessed hole, it is sufficient to scatter the seeds on a perforated plate and apply appropriate vibrations.

この場合、ダイヤモンド種子は導電性物質で被覆、特に
、金属でメッキされていることが好ましい。
In this case, the diamond seeds are preferably coated with an electrically conductive material, in particular plated with metal.

金属でメッキすることKよシ種子形状が丸味を帯び、ま
た帯電防止性が付与されるため凹孔に入れ易くなる。メ
ッキする金属は溶媒金属と同一金属であることが望まし
い。
Plating with metal gives the seeds a rounded shape and antistatic properties, making them easier to insert into the holes. It is desirable that the metal to be plated is the same as the solvent metal.

また、ダイヤモンド種子を金属等で被覆しておくと、高
圧の結晶成長条件下にダイヤモンド種子が原料炭素と直
接接触するのを断つ利点がある。
Furthermore, coating the diamond seeds with a metal or the like has the advantage of cutting off direct contact between the diamond seeds and the raw carbon under high-pressure crystal growth conditions.

場合には、通常種子を入れた後、凹孔の開孔部を金属板
等で遮閉する。l!シが°望(しλ)。
In such cases, the opening of the concave hole is usually closed off with a metal plate or the like after the seeds are put in. l!しが° desired (shiλ).

上記凹孔に代えて、貫通孔を穿設してもよいが、貫通孔
でないほうが種子の取扱い上有利である。
Although a through hole may be provided in place of the recessed hole, it is more advantageous to handle the seeds if the hole is not a through hole.

上記のように凹孔を穿設する方法に代えて、板に種子を
直接圧入することもできる。また、表面に微量の接着性
物質をスボ、ト状に塗布し、その部分に裸または金属被
覆された種子を接着させることもできる。また適当な開
孔部を持つ網を使用したシ、電子部品自動配置装置を用
いて規則的配置を行なうことができる。
Instead of drilling the holes as described above, it is also possible to press the seeds directly into the board. It is also possible to apply a small amount of an adhesive substance to the surface in the form of grooves and grooves, and then adhere bare or metal-covered seeds to the areas. In addition, regular placement can be performed using a mesh having appropriate openings and an automatic electronic component placement device.

第1図は、溶媒金属板に種子を入れるべき多数の凹孔2
を穿設せる状態を示している。第2図は、多数の凹孔2
を実質的に等間隔に且つ隣接凹孔間の間隔tが結晶成長
後の隣接結晶粒子間の間隔として50〜300μmとな
るように規則的に穿設した状態を示している。凹孔の配
置パターンは、第2図のような基盤目状に限定されるも
のではなく、各凹孔が実質的に等間隔に保持される限シ
他のパターンを採ることができる。
Figure 1 shows the number of holes 2 in which seeds are to be placed in the solvent metal plate.
This shows the state in which the hole is being drilled. Figure 2 shows a large number of concave holes 2.
The figure shows a state where the holes are regularly drilled at substantially equal intervals and the distance t between adjacent recesses is 50 to 300 μm as the distance between adjacent crystal grains after crystal growth. The arrangement pattern of the recesses is not limited to the grid pattern shown in FIG. 2, but other patterns may be adopted as long as the recesses are maintained at substantially equal intervals.

凹孔2にダイヤモンド種子3を埋設せる溶媒金属板1は
、ダイヤモンド種子配置面が対向(界面)側に位置する
ように溶媒金属板1と非ダイヤモンド炭素板4を重ね合
わせた重合物をそのまま、または、第3図に示すように
、そのような重合物を複数積層した積層物としてダイヤ
モンド結晶安定領域の圧力・温度条件下においてダイヤ
モンド結晶を成長せしめる。
The solvent metal plate 1 in which the diamond seeds 3 are buried in the concave holes 2 is a polymer made by stacking the solvent metal plate 1 and the non-diamond carbon plate 4 so that the diamond seed placement surfaces are located on the opposing (interface) side. Alternatively, as shown in FIG. 3, a diamond crystal is grown as a laminate in which a plurality of such polymers are laminated under pressure and temperature conditions in the diamond crystal stable region.

ダイヤモンド種子は溶媒金属板ではなく、非ダイヤモン
ド炭素板の面上もしくは溶媒金属板と非ダイヤモンド炭
素板の両方の板の面上に配置することができる。また、
溶媒金μ粉末と非ダイヤモンド粉末との混合物をホ、ド
ブレス等を用いて圧縮成型して作成せる板の面上に配置
するとともできる。
The diamond seeds can be placed on the surface of the non-diamond carbon plate rather than on the solvent metal plate, or on the surfaces of both the solvent metal plate and the non-diamond carbon plate. Also,
It is also possible to place a mixture of solvent gold μ powder and non-diamond powder on the surface of a plate made by compression molding using a dobress or the like.

本発明においては、第1に、ダイヤモンド種子を実質的
に等間隔に且つ結晶成長後の隣接結晶粒子間の間隔が5
0〜300μmとなるように規則的に配置することが肝
要である。結晶粒子間の間隔が50μm未満であると、
結晶成長過程において種子相互間の干渉のため粒子同志
がくっつき合りたシ、成長を阻害されたフして、粒度分
布の小さい良質な成長結晶ができ難くなる。間隔が30
0μmを超えると局部的な過飽和度のアンバランスを生
じ、結晶成長にバラツキを生じるため、粒度分布が大き
くなる。また、生産性が低下する。
In the present invention, firstly, the diamond seeds are arranged at substantially equal intervals and the distance between adjacent crystal grains after crystal growth is 5.
It is important to arrange them regularly so that the thickness is 0 to 300 μm. When the spacing between crystal grains is less than 50 μm,
During the crystal growth process, grains stick together due to interference between seeds, which inhibits growth and makes it difficult to produce high-quality grown crystals with a small grain size distribution. interval is 30
If it exceeds 0 μm, a local imbalance in the degree of supersaturation occurs, which causes variations in crystal growth, resulting in a large particle size distribution. Also, productivity decreases.

本発明の第2の主%9は、ダイヤモンド種子として粒径
50μm以下の粒子を用いて少くとも5倍(粒径におい
て)成長せしめることである。このように小粒径の粒子
を用いて高倍率の結晶成長を行うことによって高品質、
特に熱衝撃強度、圧壊強度その他の機械的強度に優る結
晶を得ることができる。このように機械的強度に優る結
晶が得られるのは次の理由に基づくと考えられる。すな
わち、本来種子を用いて成長させた粒子は種子を用いな
い単結晶に比べて弱いが、成長率が大きいと種子と成長
面との界面の割合が小さいためその影響が相対的に小さ
くなるためである。種子の粒径が50μmよシ大である
と高倍率成長が困難となる。一般には、粒径10〜50
μmのものが用いられる。また、成長倍率は格別限定さ
れないが、粒径において、一般に5〜10倍、特に好ま
しくは約7倍である。
The second main aspect of the present invention is to use particles with a particle size of 50 μm or less as diamond seeds and grow them at least five times (in terms of particle size). In this way, high quality,
In particular, crystals having excellent thermal shock strength, crushing strength, and other mechanical strengths can be obtained. The reason why a crystal with such excellent mechanical strength can be obtained is considered to be based on the following reason. In other words, particles grown using seeds are originally weaker than single crystals that do not use seeds, but when the growth rate is high, the ratio of the interface between the seed and the growth surface is small, so the influence becomes relatively small. It is. If the grain size of the seeds is as large as 50 μm, high-magnification growth becomes difficult. Generally, the particle size is 10-50
μm is used. Although the growth rate is not particularly limited, the particle size is generally 5 to 10 times, particularly preferably about 7 times.

溶媒金属としては、鉄、コバルト、ニッケル等の周期律
表■族の金属やクロム、タンタル等通常ダイヤモンド合
成において溶媒金属として使用されているものが用いら
れる。
As the solvent metal, metals of Group I of the periodic table such as iron, cobalt, and nickel, as well as those normally used as solvent metals in diamond synthesis, such as chromium and tantalum, are used.

溶媒金属への炭素の溶解性の制御、あるいはダイヤモン
ド種子と炭素との接触の抑制、さもKは酸素や窒素がダ
イヤモンドに混入するのを防ぐ固定化剤として他の金属
または化合物を溶媒金属重量に基づき、50重量%以下
程度の範囲で添加することができる。かかる金属および
化合物としてはMg、 Ca、 Ti、Zr 、 V%
 Nb 、 Zn、 YSMoqW、 Cu、 Au、
 Ag、 Sl 、 B、 At5G@、 In。
Controlling the solubility of carbon in solvent metals, or suppressing contact between diamond seeds and carbon, or K is used as a fixing agent to prevent oxygen and nitrogen from entering the diamond by adding other metals or compounds to the solvent metal weight. Based on the above, it can be added in an amount of about 50% by weight or less. Such metals and compounds include Mg, Ca, Ti, Zr, V%
Nb, Zn, YSMoqW, Cu, Au,
Ag, Sl, B, At5G@, In.

Sn、Pb及びカーバイド、ポライド等を挙げることが
できる。
Sn, Pb, carbide, polide, etc. can be mentioned.

原料炭素(非ダイヤモンド炭素)としては黒鉛等ダイヤ
モンド合成に常用されるものを用いることができる。
As the raw material carbon (non-diamond carbon), carbons commonly used in diamond synthesis, such as graphite, can be used.

ダイヤモンド安定領域の圧力・温度条件下においてダイ
ヤモンド結晶の成長を行う。一般に、温度1300〜1
900℃、圧力45〜70 kbの範囲が採られる。結
晶成長時間は約10〜60分である0 上記のような反応系において、その反応によって生成が
期待し得るダイヤモンドの総成長量に対し、種子1個当
シの平均成長希望量と種子の数の積が一致するように種
子の数を決めてやれば、狙った粒度のダイヤモンドを分
布幅狭く得ることができる。上記期待し得る総成長量を
系統的に知るには、最終荷重を種々変えたダイヤモンド
合成を行い、成長量を求めておけばよい。ダイヤモンド
の量を多く取るためには、合成装置の許される範囲内で
最終荷重を高くすればよいが、但し、種子密度が高くな
)過ぎると成長した粒子が干渉し合うようになる。なお
、粒度分布幅を狭くする方法として、反応部の温度分布
、圧力分布を考慮して、水平方向および上下方向の種子
配列の間隔、種子の大きさ等を適宜変えることが有効で
ある。
Diamond crystals are grown under pressure and temperature conditions in the diamond stable region. Generally, temperature 1300-1
A temperature range of 900° C. and a pressure of 45 to 70 kb is taken. The crystal growth time is approximately 10 to 60 minutes.0 In the reaction system described above, the average desired growth amount per seed and the number of seeds are calculated based on the total amount of diamond growth that can be expected to be produced by the reaction. By determining the number of seeds so that the product of the two values matches, it is possible to obtain diamonds with the desired particle size in a narrow distribution. In order to systematically know the expected total amount of growth, it is sufficient to perform diamond synthesis with various final loads and determine the amount of growth. In order to obtain a large amount of diamond, the final load can be increased within the range allowed by the synthesis equipment, but if the seed density is too high, the grown particles will interfere with each other. In addition, as a method of narrowing the particle size distribution width, it is effective to take into consideration the temperature distribution and pressure distribution of the reaction part and change the spacing of the seed arrangement in the horizontal direction and the vertical direction, the size of the seeds, etc. as appropriate.

本発明はどの様な原料炭素物質、溶媒物質等の反応物質
においても有効であるが、特に結晶成長速度の遅い反応
系において効果的である。
The present invention is effective for any reactants such as raw carbon materials and solvent materials, but is particularly effective for reaction systems where the crystal growth rate is slow.

発明の効果 種子となるダイヤモンド粒子を上記要件を満足するよう
に規則正しく配置することによ勺、種子ごとに生ずる結
晶成長の条件のバラツキは小さくなシ、また反応空間内
の温度、圧力のミクロなバラツキも減少し、近接し過ぎ
た種子の成長に伴なう種子相互間の干渉もなくなり、非
常に粒度分布巾のせまいダイヤモンド結晶粒子を得るこ
とができる。また、粒径の小さい種子を用いて高倍率の
 ・成長を行うことによって機械的強度、特に熱衝撃強
度に優れた高品質のダイヤモンド結晶を得ることができ
る。
Effects of the Invention By regularly arranging the diamond particles that serve as seeds to meet the above requirements, variations in crystal growth conditions that occur from seed to seed can be minimized, and the microscopic temperature and pressure in the reaction space can be minimized. Variations are also reduced, interference between seeds caused by seeds growing too close together is eliminated, and diamond crystal particles with an extremely narrow particle size distribution can be obtained. In addition, high-quality diamond crystals with excellent mechanical strength, especially thermal shock strength, can be obtained by performing high-magnification growth using seeds with small grain sizes.

実施例 以下、実施例について本発明を具体的に説明する0 〔実施例1〕 内径28.6+mq高さ38朋のろう石鯛容器内に反応
物質として直径28.6間、厚さ0.25 mxのFe
7O−Ni30の合金板と、同じ直径の厚さ1.6朋の
黒鉛板とを交互に多数積層配置して反応物質とした。上
記合金板は、予め、フォトエツチング法によって合金板
に中心間隔0.6 朋となるように基盤目の交点に0.
1 tnmφX 0.1 mx深さの孔を設け、名札に
粒度35〜40μmのダイヤモンド粒子を1ケ宛配置し
ておいた。上記積層体の上下両端を黒鉛板で保温し、さ
らに鉄製のキャップで蓋をし、ベルト型超高圧合成装艶
に装着して加圧するとともに、反応部に通電し直接加熱
した。反応条件は次のように設定した。すなわち、圧力
を50 kbとし、次に1450℃に昇温し、次いで2
0分を要して57 kbまで昇圧した。
EXAMPLES The present invention will be specifically described below with reference to examples.0 [Example 1] A reactant was placed in a waxy sea bream container with an inner diameter of 28.6 mq and a height of 38 mx. Fe of
A large number of 7O-Ni30 alloy plates and graphite plates of the same diameter and 1.6 mm thick were alternately stacked and used as reactants. The above-mentioned alloy plate was prepared in advance by photo-etching so that the distance between the centers of the alloy plate was 0.6 mm at the intersection of the base grains.
A hole with a depth of 1 tnmφX 0.1 mx was provided, and one diamond particle with a particle size of 35 to 40 μm was placed on the name tag. The upper and lower ends of the laminate were insulated with graphite plates, and then covered with iron caps, and attached to a belt-type ultra-high-pressure synthetic glaze to apply pressure, and the reaction section was heated directly by electricity. The reaction conditions were set as follows. That is, the pressure was set to 50 kb, then the temperature was increased to 1450°C, and then the temperature was increased to 2
It took 0 minutes to increase the pressure to 57 kb.

この結果、約5?のダイヤモンドが得られたが、そのう
ち40%が300〜425μmの粒度に集中していた。
This result is about 5? of diamond was obtained, of which 40% was concentrated in the particle size of 300-425 μm.

良結晶のものの生成率は、同量の種子と黒鉛粉末と上記
合金粉末の混合物から得た成型体を使用した従来法に比
して2倍に向上した。
The production rate of good crystals was doubled compared to the conventional method using a molded body obtained from a mixture of the same amount of seeds, graphite powder, and the above-mentioned alloy powder.

〔実施例2〕 実施例1の反応において使用した合金板上に予め微量の
即乾性接着剤(商品名アラルダイト)を中心間隔0.6
 ntとなるように基盤目の交点にスポット状につけ、
これに粒度30〜40μmのダイヤモンド粒子に30μ
m厚さのN1コートしたものを接着した他は、実施例1
と全く同じ操作によってダイヤモンドを合成した。その
結果実施例1とほぼ同じ結果が得られた。但し、接着剤
量が多い場合には、結晶の透明性が失なわれた。
[Example 2] A small amount of quick-drying adhesive (trade name: Araldite) was placed in advance on the alloy plate used in the reaction of Example 1 at a center spacing of 0.6.
Apply it in a spot shape at the intersection of the base grains so that it becomes nt.
Add 30 μm to diamond particles with a particle size of 30 to 40 μm.
Example 1 except that a N1 coated material with a thickness of m was bonded.
Diamond was synthesized using exactly the same procedure. As a result, almost the same results as in Example 1 were obtained. However, when the amount of adhesive was large, the transparency of the crystals was lost.

〔実庶例3〕 実施例1の反応系において黒鉛板の方に孔をうがち種子
を配置した他は、実施例1と同じ操作釦よってダイヤモ
ンド結晶を成長させた。その結果、結晶の大きさが若干
小さくなった他は実施例1とほぼ同様な結果が得られた
[Practical Example 3] Diamond crystals were grown using the same operation buttons as in Example 1, except that the seeds were placed in the reaction system with holes in the graphite plate. As a result, almost the same results as in Example 1 were obtained, except that the crystal size was slightly smaller.

〔実施例4〕 実施例1において、粒度として、300〜425μmを
狙い、収量が、この系で想定される8訃にマツチするよ
うに種子の数を決めた。この種子を全て配置するために
、合金板、黒鉛板の厚みをそれぞれ0.25朋、1.0
關とし、種子を入れる孔の間隔も0.5 utに縮めた
。この系に実施例1と同様の操作を行々りたところ、収
量7.6gr、、300〜425μm収率約50%でお
った。良品率は、同量の種子と黒鉛粉末と上記合金粉末
の混合物から得た成型体を使用した従来法と比較して2
倍強であった。
[Example 4] In Example 1, the grain size was aimed at 300 to 425 μm, and the number of seeds was determined so that the yield would match the eight grains expected in this system. In order to arrange all of these seeds, the thickness of the alloy plate and graphite plate is 0.25 mm and 1.0 mm, respectively.
The distance between the holes in which seeds are placed was also reduced to 0.5 ut. When this system was subjected to the same operations as in Example 1, the yield was 7.6 gr, and the yield of 300 to 425 μm was approximately 50%. The yield rate was 2% higher than that of the conventional method using molded bodies obtained from a mixture of the same amount of seeds, graphite powder, and the above-mentioned alloy powder.
It was twice as strong.

〔比較例1〕 実施例1と同様な方法によシダイヤモンド結晶を生長さ
せた。但し、孔間隔(中心間隔) 0.6 龍、孔径0
.3 mφ、種子粒度150〜200μmとした。その
他の条件は実施例1と同一に設定した。
[Comparative Example 1] Diamond crystals were grown in the same manner as in Example 1. However, hole spacing (center spacing) 0.6 Dragon, hole diameter 0
.. 3 mφ, and the seed particle size was 150 to 200 μm. Other conditions were set the same as in Example 1.

収量6μ、300〜425μm収率40チであった。The yield was 6μ, 300-425μm, and the yield was 40cm.

〔砥粒強度試験〕[Abrasive grain strength test]

上記各側で得られた結晶粒子の砥粒強度を次のように測
定し喪。すなわち、成長後の単粒圧壊強度をその!まお
よび10001:窒素雰囲気中で1時間焼成後に測定し
た。結果を表−1に示す(データは50粒の平均値)0 表−1(単粒圧壊強度) 実施例1   27      21 比較例1   21      12 上記絋果から、比較例1(種子の粒度が大きく、結晶成
長率が低い)の結晶は特に熱衝撃強度に劣ることが判る
The abrasive grain strength of the crystal grains obtained on each side above was measured as follows. In other words, the single grain crushing strength after growth is that! Ma and 10001: Measured after firing in a nitrogen atmosphere for 1 hour. The results are shown in Table 1 (data is the average value of 50 seeds) 0 Table 1 (Single grain crushing strength) Example 1 27 21 Comparative example 1 21 12 From the above-mentioned seeds, Comparative example 1 (seeds with large grain size) It can be seen that crystals with a low crystal growth rate are particularly poor in thermal shock strength.

〔石材切断試験〕[Stone cutting test]

ダイヤモンド結晶粒子とコバルト粉末との混合物(20
:80重量比)をホ、ドブレスを用いて焼結して薄いシ
ートを作成した。このシートを裁断したものを鉄系金属
円板350+mφの外周面上に貼付して切削用ブレード
を作成した。このブレードを用いて下記条件下に石材切
断試験を行った。
Mixture of diamond crystal particles and cobalt powder (20
:80 weight ratio) was sintered using a Dobress machine to create a thin sheet. This sheet was cut and pasted on the outer peripheral surface of a ferrous metal disk 350+mφ to create a cutting blade. A stone cutting test was conducted using this blade under the following conditions.

方式:湿式、被切断石材:白みかげ石、ブレード周速:
 1,600m/分、ブレード送り:3m15+切込長
ニア朋/パス。
Method: Wet, Stone to be cut: White granite, Blade peripheral speed:
1,600m/min, blade feed: 3m15 + depth of cut near/pass.

石材切断面1−轟シのブレードの摩耗量(直径減小量龍
)を測定した結果および切削中の安定性(電力負荷の変
動〕を観察した結果を表−2に示す0 以下余白 表−2 実施例1    0.52      良好比較例1 
   1.30      不良
Stone cutting surface 1 - Table 2 shows the results of measuring the amount of wear (diameter reduction) of the Todoroki blade and observing the stability during cutting (variations in power load). 2 Example 1 0.52 Good comparative example 1
1.30 Defective

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ダイヤモンド種子を配置するための凹孔を穿
設せる溶媒金属板の断面図であシ、第2図は、第1図に
示す溶媒金属板の平面図であり、 第3図は、第1図および第2図に示す溶媒金属板に多数
のダイヤモンド種子を配置したものと原料炭素板とを多
数交互に積層した状態を示す断面図である。 1:溶媒金属板、2:凹孔、3:ダイヤモンド種子、4
:非ダイヤモンド炭素板。 OO。
FIG. 1 is a cross-sectional view of a solvent metal plate in which a concave hole for placing a diamond seed is bored, FIG. 2 is a plan view of the solvent metal plate shown in FIG. 1, and FIG. 2 is a sectional view showing a state in which a large number of diamond seeds arranged on the solvent metal plate shown in FIGS. 1 and 2 and a large number of raw material carbon plates are alternately laminated. 1: Solvent metal plate, 2: Hole, 3: Diamond seed, 4
: Non-diamond carbon plate. OO.

Claims (1)

【特許請求の範囲】 1、溶媒金属板および非ダイヤモンド炭素板の少くとも
一方の板の面上に多数のダイヤモンド種子を配置し、該
ダイヤモンド種子配置面が界面側に位置するように溶媒
金属板と非ダイヤモンド炭素板とを重ね合せた重合板ま
たはそのような重合板を複数積層した積層物、あるいは
、溶媒金属と非ダイヤモンド炭素との混合物の板の面上
に多数のダイヤモンド種子を配置した板またはそのよう
な板を複数積層した積層物をダイヤモンド安定領域の圧
力・温度条件下においてダイヤモンド結晶を成長せしめ
る方法であって、ダイヤモンド種子として粒径50μm
以下のダイヤモンド粒子を実質的に等間隔に且つ結晶成
長後の隣接結晶粒子間の間隔が50〜300μmとなる
ように規則的に配置し、さらに種子粒径の5倍以上の径
を有するダイヤモンド結晶粒子が得られるまで成長せし
めることを特徴とするダイヤモンド結晶の成長法。 2、溶媒金属板および非ダイヤモンド炭素板の少くとも
一方の板の面上に多数の凹孔を、実質的に等間隔に且つ
隣接凹孔間の間隔が結晶成長後の隣接結晶粒子間の間隔
として50〜300μmとなるように規則的に穿設し、
各凹孔にダイヤモンド種子を1個宛入れる特許請求の範
囲第1項記載のダイヤモンド結晶の成長法。 3、溶媒金属板の面上に多数の凹孔を穿設する特許請求
の範囲第2項記載のダイヤモンド結晶の成長法。 4、ダイヤモンド種子に金属メッキを施したうえ各凹孔
に入れる特許請求の範囲第2項または第3項記載のダイ
ヤモンド結晶の成長法。
[Claims] 1. A large number of diamond seeds are arranged on the surface of at least one of the solvent metal plate and the non-diamond carbon plate, and the solvent metal plate is arranged such that the diamond seed placement surface is located on the interface side. and a non-diamond carbon plate, or a laminate made of a plurality of such polymerized plates, or a plate in which a large number of diamond seeds are arranged on the surface of a plate of a mixture of solvent metal and non-diamond carbon. Alternatively, it is a method of growing diamond crystals using a laminate made by laminating a plurality of such plates under pressure and temperature conditions in the diamond stability region, and using diamond seeds as diamond seeds with a particle size of 50 μm.
Diamond crystals in which the following diamond particles are regularly arranged at substantially equal intervals and the distance between adjacent crystal grains after crystal growth is 50 to 300 μm, and further have a diameter of 5 times or more the seed grain size. A method for growing diamond crystals, which is characterized by growing diamond crystals until particles are obtained. 2. A large number of concave holes are formed on the surface of at least one of the solvent metal plate and the non-diamond carbon plate at substantially equal intervals, and the distance between adjacent concave holes is equal to the distance between adjacent crystal grains after crystal growth. Holes are drilled regularly to a thickness of 50 to 300 μm,
A method for growing diamond crystals according to claim 1, in which one diamond seed is placed in each concave hole. 3. The method for growing diamond crystals according to claim 2, wherein a large number of concave holes are formed on the surface of the solvent metal plate. 4. A method for growing diamond crystals according to claim 2 or 3, in which diamond seeds are plated with metal and placed in each of the recesses.
JP59190607A 1984-09-13 1984-09-13 Growing method of diamond crystal Granted JPS6168395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190607A JPS6168395A (en) 1984-09-13 1984-09-13 Growing method of diamond crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190607A JPS6168395A (en) 1984-09-13 1984-09-13 Growing method of diamond crystal

Publications (2)

Publication Number Publication Date
JPS6168395A true JPS6168395A (en) 1986-04-08
JPS6357099B2 JPS6357099B2 (en) 1988-11-10

Family

ID=16260880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190607A Granted JPS6168395A (en) 1984-09-13 1984-09-13 Growing method of diamond crystal

Country Status (1)

Country Link
JP (1) JPS6168395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001827A1 (en) * 1988-06-03 1992-02-06 Massachusetts Institute Of Technology Oriented diamond crystals
US5194070A (en) * 1991-07-22 1993-03-16 Sumitomo Electric Industries, Ltd. Process for production of diamond abrasive grains
JP2015511930A (en) * 2012-03-15 2015-04-23 エレメント シックス テクノロジーズ リミテッド Method for producing a synthetic single crystal diamond material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331990B1 (en) * 2000-11-09 2007-04-11 Element Six (PTY) Ltd A method of producing ultra-hard abrasive particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS58161995A (en) * 1982-03-19 1983-09-26 Sumitomo Electric Ind Ltd Method for synthesizing diamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS58161995A (en) * 1982-03-19 1983-09-26 Sumitomo Electric Ind Ltd Method for synthesizing diamond

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001827A1 (en) * 1988-06-03 1992-02-06 Massachusetts Institute Of Technology Oriented diamond crystals
US5194070A (en) * 1991-07-22 1993-03-16 Sumitomo Electric Industries, Ltd. Process for production of diamond abrasive grains
JP2015511930A (en) * 2012-03-15 2015-04-23 エレメント シックス テクノロジーズ リミテッド Method for producing a synthetic single crystal diamond material
US10370773B2 (en) 2012-03-15 2019-08-06 Element Six Technologies Limited Process for manufacturing synthetic single crystal diamond material using a pressure driven growth process and a plurality of seed pads with each seed pad comprising a plurality of single crystal diamond seeds

Also Published As

Publication number Publication date
JPS6357099B2 (en) 1988-11-10

Similar Documents

Publication Publication Date Title
US4547257A (en) Method for growing diamond crystals
US4551195A (en) Method for growing boron nitride crystals of cubic system
US7585366B2 (en) High pressure superabrasive particle synthesis
US6627168B1 (en) Method for growing diamond and cubic boron nitride crystals
US7368013B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US7404857B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
CA2124394C (en) Method of making an abrasive compact
US3871840A (en) Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites
EP0626237B1 (en) A method of making an abrasive compact
EP0407568B1 (en) Abrasive tool and method for making
JP2546558B2 (en) Diamond abrasive grain synthesis method
US4892693A (en) Method of making filament growth composite
JPS6020804A (en) Polycrystalline diamond equipped with high surface irregularpart and production thereof
US5454343A (en) Method for production of diamond particles
JPS6168395A (en) Growing method of diamond crystal
JPS6357098B2 (en)
JPH0360797B2 (en)
JPS59169918A (en) Synthesis of diamond
JP4190196B2 (en) Diamond synthesis method
JP3597033B2 (en) Crystal growth method of diamond or cubic boron nitride
KR960000943B1 (en) Synthesis of diamond
JPS61117106A (en) Synthesis of cubic boron nitride
JPS59169910A (en) Crystal growth of cubic boron nitride
JPH0685865B2 (en) Diamond synthesis
HU197776B (en) Process for producing tools at least a part of surfaces thereof being super hard