JPS6168122A - Recovering method of dimethylformamide - Google Patents

Recovering method of dimethylformamide

Info

Publication number
JPS6168122A
JPS6168122A JP59188896A JP18889684A JPS6168122A JP S6168122 A JPS6168122 A JP S6168122A JP 59188896 A JP59188896 A JP 59188896A JP 18889684 A JP18889684 A JP 18889684A JP S6168122 A JPS6168122 A JP S6168122A
Authority
JP
Japan
Prior art keywords
activated carbon
dmf
steam
acf
dimethylformamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59188896A
Other languages
Japanese (ja)
Other versions
JPH0410368B2 (en
Inventor
Kenji Seki
賢司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Engineering and Construction Co Ltd
Original Assignee
Toho Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Engineering and Construction Co Ltd filed Critical Toho Chemical Engineering and Construction Co Ltd
Priority to JP59188896A priority Critical patent/JPS6168122A/en
Publication of JPS6168122A publication Critical patent/JPS6168122A/en
Publication of JPH0410368B2 publication Critical patent/JPH0410368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To recover efficiently the dimethylformamide in waste gas and to regenerate without deteriorating the adsorption performance of fibrous activated carbon by adsorbing and removing dimethylformamide with the fibrous activated carbon, and desorbing with high-temp. steam in the specified temp. range. CONSTITUTION:Waste gas contg. dimethylformamide is passed from a supply port 1 through a cylindrical fibrous activated carbon adsorption bed 4 in an adsorption can 3, and discharged from a discharge port 5 as purified gas. Meanwhile, steam at 160-200 deg.C for desorption is supplied from a steam supply pipe 7 to regenerate the fibrous activated carbon bed 4. After org. solvents adsorbed by the fibrous activated carbon are desorbed, the solvents are taken out as desorbed steam 8 through a valve mechanism 2, and separated into each contained component through a condensation stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ジメチルホルムアミド(以下DMFと記す)
含有排ガスから繊維状活性炭(以下ACFと記す)を用
いてDMFを回収する方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to dimethylformamide (hereinafter referred to as DMF)
The present invention relates to a method for recovering DMF from contained exhaust gas using fibrous activated carbon (hereinafter referred to as ACF).

〔従来の技術及び問題点〕[Conventional technology and problems]

DMFは優れた有機溶媒であって、DMF単独又はメチ
ルエチルケトン(以下MEKと記す)、トルエンなどの
有機溶媒と共に広く用いられており、乾燥機等より発生
するこれら有機溶媒含有排ガスから、これら有機溶媒を
捕捉回収することは環境対策上及び経済上からも必要で
ある。
DMF is an excellent organic solvent and is widely used alone or together with organic solvents such as methyl ethyl ketone (hereinafter referred to as MEK) and toluene. Capturing and recovering is necessary from both environmental and economical points of view.

一般に気相系の有機溶媒を回収する方法として、活性炭
を利用する方法は広く行われており、有効な方法の一つ
である。
Generally, as a method for recovering gas-phase organic solvents, a method using activated carbon is widely practiced and is one of the effective methods.

しかしながら、DMFを活性炭に吸着させ直接スチーム
再生し、DMFを回収する方法は行われていない。これ
は、DMFを吸着した活性炭をスチーム脱着する場合、
活性炭の再生可能温度にまでスチーム温度を高くすると
DMFが分解し、安定回収できず、DMFが分解しない
温度では、活性炭の再生ができないためである。
However, no method has been used to recover DMF by adsorbing DMF onto activated carbon and directly regenerating it with steam. This is when steam desorption is performed on activated carbon that has adsorbed DMF.
This is because if the steam temperature is raised to a temperature at which activated carbon can be regenerated, DMF decomposes and cannot be stably recovered, and activated carbon cannot be regenerated at a temperature at which DMF does not decompose.

環境対策上の問題からDMFを活性炭に吸着させた場合
には再生時DMFは分解廃棄されていた。
Due to environmental concerns, when DMF is adsorbed onto activated carbon, the DMF is decomposed and disposed of during regeneration.

最近開発、実用化されlCA CFは排ガス中の低濃度
有機溶媒の好適な吸着材として広く用いられている。こ
のACFに、排ガス中のDMFを吸着させた場合、上記
活性炭の場合と同様な問題が懸念され、しかもACFが
活性炭に較べ高価であることと相俟って、ACFにDM
Fを直接吸着させることは行わず、予め活性炭にて吸着
捕捉し、次いで他の有機溶媒はACFへの吸着及び脱着
によって回収され、活性炭に吸着した[)MFは、活性
炭の再賦活の1lIi廃棄されているのが現状である。
Recently developed and put into practical use, lCA CF is widely used as a suitable adsorbent for low concentration organic solvents in exhaust gas. If this ACF were to adsorb DMF in the exhaust gas, there would be concerns about the same problems as in the case of activated carbon, and in addition, ACF is more expensive than activated carbon.
F is not directly adsorbed, but is adsorbed and captured in advance with activated carbon, and then other organic solvents are recovered by adsorption and desorption to ACF. This is the current situation.

本発明者はこのような問題を解決し、排ガス中のDMF
を、効率よく回収する方法を検討の結果本発明に至った
The inventor of the present invention has solved such problems and
The present invention was developed as a result of research into a method for efficiently recovering .

(発明の構成〕 本発明は、DMFを含む排ガス中からDMFを回収する
に当り、該排ガスをACF吸着層に通してDMFを吸着
除去し、清浄空気として放出すると共に、DMFに吸着
したACFを160〜200℃の水蒸気にて脱着するこ
とを特徴とするDMFの回収方法である。
(Structure of the Invention) In recovering DMF from exhaust gas containing DMF, the present invention passes the exhaust gas through an ACF adsorption layer to adsorb and remove DMF, and releases it as clean air. This is a DMF recovery method characterized by desorption using water vapor at 160 to 200°C.

本発明によるとACFを用いてDMFの脱着としては考
えられない高温において脱着プることによって、排ガス
中から効率よ<DMFの回収が可能であると共に、AC
Fの吸着性能を低下させることなく再生することができ
るものである。
According to the present invention, it is possible to efficiently recover DMF from exhaust gas by using ACF to desorb DMF at a high temperature that is unthinkable for desorption of DMF.
It can be regenerated without reducing F adsorption performance.

本発明において処理の対象とされる排ガスはDMFの外
にMEK1トルエン、酢酸エチルなどの有機溶媒ガスを
含む混合ガスであることもできる。
The exhaust gas to be treated in the present invention can also be a mixed gas containing organic solvent gas such as MEK1 toluene and ethyl acetate in addition to DMF.

本発明において用いられるACFは既知の八〇F、例え
ばレーヨン系ACF、アクリル系へ〇F、フェノール系
ACFなどであるが、DMFはアミド系であるため比表
面積300〜3000m’ /Qのアクリル系ACFが
DMFに対し、特に高い吸着能を示し、このものを使用
するとACF@着缶の容積が小さくなり、その結果速か
な脱着が行われ高い回収率でDMFを回収できる。
The ACF used in the present invention is a known 80F, such as rayon-based ACF, acrylic-based ○F, phenol-based ACF, etc., but DMF is an amide-based acrylic-based ACF with a specific surface area of 300 to 3000 m'/Q. ACF exhibits a particularly high adsorption capacity for DMF, and when it is used, the volume of the ACF@adsorption can is reduced, resulting in rapid desorption and recovery of DMF at a high recovery rate.

本発明においては、ACFによってDMFを吸着除去さ
れた排ガスは清浄空気として放出されると共に、DMF
を吸着したACFは160〜200℃のスチームで脱着
処理される。温度が160℃未満の場合には、繰返し使
用によって徐々にACFの吸着能(比表面積により評価
される)が低下し、また200℃超の場合はDMFの回
収率が低下する(後掲第1表参照)。
In the present invention, the exhaust gas from which DMF has been adsorbed and removed by the ACF is released as clean air, and the DMF
The adsorbed ACF is desorbed using steam at 160 to 200°C. If the temperature is less than 160°C, the adsorption capacity of ACF (evaluated by specific surface area) will gradually decrease with repeated use, and if the temperature is over 200°C, the recovery rate of DMF will decrease (see Section 1 below). (see table).

ACF吸着層の構造としてはACFのフェルト、織物、
または繊維状のまま支持体にて円筒状に固定された構造
とし、使用するのがよい。
The structure of the ACF adsorption layer is ACF felt, woven fabric,
Alternatively, it is preferable to use a structure in which the fibers are fixed in a cylindrical shape with a support.

このようなACF吸着層を装着したACF吸着塔として
は第1図に示された装置とするのがよい。
As an ACF adsorption tower equipped with such an ACF adsorption layer, the apparatus shown in FIG. 1 is preferable.

第1図は、ACFe着塔の断面図を示すものである。第
1図において1は排ガスの供給口であり、弁機構を有す
る入口部2かう、吸着缶3内に供給される。吸着缶3内
には円筒状ACF吸着層4が配されており、缶内に供給
された排ガスは、この円筒状ACF吸着層を通り、清浄
ガスとして排出口5を経て缶外に排出される。図中矢印
6はガスの流動方向を示す。
FIG. 1 shows a cross-sectional view of an ACFe deposition tower. In FIG. 1, reference numeral 1 denotes a supply port for exhaust gas, which is supplied into an adsorption canister 3 through an inlet portion 2 having a valve mechanism. A cylindrical ACF adsorption layer 4 is disposed inside the adsorption can 3, and the exhaust gas supplied into the can passes through this cylindrical ACF adsorption layer and is discharged as clean gas to the outside of the can via an outlet 5. . Arrow 6 in the figure indicates the direction of gas flow.

一方、脱着用水蒸気はスチーム供給管7から缶内に供給
噴出され、ACF吸着層4を通り、@着されている有機
溶姪を脱着後、弁tag 2を経て12看蒸気8として
取出され、ACF吸着層4は再生される。脱着蒸気8は
凝縮工程を経て、既知の方法にて、各含有成分毎に分離
される。
On the other hand, the steam for desorption is supplied and ejected into the can from the steam supply pipe 7, passes through the ACF adsorption layer 4, desorbs the attached organic melt, and is then taken out as steam 8 through the valve tag 2. The ACF adsorption layer 4 is regenerated. The desorbed vapor 8 undergoes a condensation step and is separated into each component by a known method.

以上の如き脱着−脱着装置によると、ACF吸着層の下
部から高温のスチームが供給されることとなるため、A
CF@着層の有効な活用が可能となる。
According to the desorption-desorption device as described above, high-temperature steam is supplied from the lower part of the ACF adsorption layer.
Effective use of CF@adhesion layer becomes possible.

本発明において、供給される排ガスはDMFを含むガス
であって、その濃度は特に制限されないが、DMFIN
度が特に高い場合、あるいは排ガス中に繊維屑などの固
形物、高分子物質などが含まれる場合は、予めスクラバ
ー水洗処理してのちACF吸着層に供給するのがよく、
スクラバー水洗処理によって水に溶解したDMFは既知
の方法によって回収される。
In the present invention, the exhaust gas to be supplied is a gas containing DMF, and its concentration is not particularly limited.
If the concentration is particularly high, or if the exhaust gas contains solid matter such as fiber waste, polymeric substances, etc., it is best to wash the scrubber with water before supplying it to the ACF adsorption layer.
DMF dissolved in water by the scrubber washing process is recovered by known methods.

本発明の実施に際して、例えば混合布I幾溶媒含有排ガ
スで、DMF比が低い場合、これら混合有機溶媒を吸着
したACFの脱着は、毎回本発明方法を適用する必要は
なく、DMFの吸着缶が蓄積し、ACFの吸着能力が低
下したときに適用すればよい。
When carrying out the present invention, for example, when the DMF ratio is low in a mixed cloth I mixed solvent-containing exhaust gas, it is not necessary to apply the method of the present invention every time to desorb ACF that has adsorbed these mixed organic solvents, and the DMF adsorption can is used. It may be applied when the adsorption capacity of ACF decreases due to accumulation.

例えばMEKが含まれる場合120℃のスチームでの脱
着が充分可能であり、その方がエネルギーコスト的にも
好ましい。
For example, when MEK is included, it is possible to fully desorb it with steam at 120° C., which is preferable in terms of energy cost.

(発明の効果〕 本発明方法によると、160〜200℃特に170〜1
90℃の水蒸気を用い、ACFに吸着したDMFを脱着
することによって、第1表に示した通り、繰返し使用に
よっても、ACFの吸着能は低下せず、しかも高い収率
でDMFを回収することができる。
(Effects of the invention) According to the method of the present invention, temperature of 160 to 200℃, especially 170 to 1
By desorbing DMF adsorbed on ACF using water vapor at 90°C, as shown in Table 1, the adsorption capacity of ACF does not decrease even with repeated use, and DMF can be recovered in high yield. I can do it.

第  1  表 注(1)実験方法: D M F 1300ppmを含
む排ガスをACFm着層に通してDMFを吸着させ表に
記載のスチームにて脱着した。
Table 1 Note (1) Experimental method: Exhaust gas containing 1300 ppm of DMF was passed through an ACFm deposition layer to adsorb DMF, and desorbed using steam as described in the table.

このときの供給盪と凝縮水溶液中のDMFli度とより
求めた。
It was determined from the supply rate at this time and the degree of DMFli in the condensed aqueous solution.

注(2)No■、■2■は本発明例、N ol、5は比
較例 本発明において再生したACFの比表面積は12801
1’ /g 、1300m ’ /Qで当初の比表面積
の約95%を維持した。
Note (2) No. ■, ■2■ are examples of the present invention, No. 1, 5 are comparative examples. The specific surface area of the ACF regenerated in the present invention is 12801
About 95% of the original specific surface area was maintained at 1'/g and 1300 m'/Q.

同様の操作を5 、000回繰返したがACFの比表面
積の低下は見られなかった。
Although the same operation was repeated 5,000 times, no decrease in the specific surface area of ACF was observed.

脱@温度を135℃で行った場合はサイクル時間が次第
に短くなり500回目頃より半分の時間で破過するよう
になり回収率も低下し実用的でなくなった。
When the de@-temperature was carried out at 135° C., the cycle time gradually became shorter, and from around the 500th cycle, the cycle time reached a breakthrough in half the time, and the recovery rate also decreased, making it impractical.

実施例 D M F 1200ppm%M E K 2800E
)I)IR1トルエン11000pp 1酢酸エチル1
30ppmを含むモデル排ガスを、比表面積1200m
 ’ /(Jのアクリル系ACFフェルト3kgを円筒
状に充填した第1図に示すACFCFm着層1111/
分にて供給した。このとき、ACFCFm着層排出され
るガス中の各成分の含有量は何れも10ppm以下であ
ったのでこのまま大気中に放出した。排出されるガス中
のMEK含有量が10ppmを越える直前にモデル排ガ
スの供給を止め、180℃のスチームを供給し脱着した
Example D MF 1200ppm% M E K 2800E
)I) IR1 Toluene 11000pp 1 Ethyl acetate 1
A model exhaust gas containing 30 ppm was treated with a specific surface area of 1200 m.
'/(ACFCFm adhesion layer 1111 shown in Fig. 1 filled with 3 kg of J acrylic ACF felt in a cylindrical shape)
Supplied in minutes. At this time, since the content of each component in the gas discharged from the ACFCFm layer was 10 ppm or less, the gas was discharged as it was into the atmosphere. Immediately before the MEK content in the emitted gas exceeded 10 ppm, the supply of model exhaust gas was stopped, and steam at 180° C. was supplied for desorption.

脱着スチームを凝縮し、更に分離器にて水層と非水層と
に分離し、水層はDMFを約3%含む水溶液であり活性
炭に通してDMFを吸着させ、塩化メチレンにて脱着及
び蒸留し、DMFを回収した。その結果DMFの回収率
は約92%であった。またMEK1トルエン及酢酸エチ
ルの回収率は何れも90%を越えた。
The desorption steam is condensed and further separated into an aqueous layer and a non-aqueous layer in a separator. The aqueous layer is an aqueous solution containing about 3% DMF, which is passed through activated carbon to adsorb DMF, and then desorbed and distilled using methylene chloride. Then, DMF was collected. As a result, the recovery rate of DMF was about 92%. Furthermore, the recoveries of MEK1 toluene and ethyl acetate both exceeded 90%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられるACFCFm着層例を示す
断面図である。
FIG. 1 is a sectional view showing an example of ACFCFm layer deposition used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] ジメチルホルムアミドを含む排ガス中からジメチルホル
ムアミドを回収するに当り、該排ガスを繊維状活性炭吸
着層を通してジメチルホルムアミドを吸着除去し、清浄
空気として放出すると共に、ジメチルホルムアミドを吸
着した繊維状活性炭を160〜200℃のスチームにて
脱着することを特徴とするジメチルホルムアミドの回収
方法。
In recovering dimethylformamide from exhaust gas containing dimethylformamide, the exhaust gas is passed through a fibrous activated carbon adsorption layer to adsorb and remove dimethylformamide and released as clean air. A method for recovering dimethylformamide, which is characterized by desorption using steam at ℃.
JP59188896A 1984-09-11 1984-09-11 Recovering method of dimethylformamide Granted JPS6168122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188896A JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188896A JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Publications (2)

Publication Number Publication Date
JPS6168122A true JPS6168122A (en) 1986-04-08
JPH0410368B2 JPH0410368B2 (en) 1992-02-25

Family

ID=16231774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188896A Granted JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Country Status (1)

Country Link
JP (1) JPS6168122A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342719A (en) * 1986-08-08 1988-02-23 Kubota Ltd Method for deodorizing odorized gas
US5908490A (en) * 1996-05-20 1999-06-01 Toho Chemical Engineering And Construction Co., Ltd. Organic solvent recovering system and organic solvent recovering method
CN103570576A (en) * 2012-07-20 2014-02-12 中国石油化工集团公司 Regeneration system and regeneration method for circulating solvent of cracked C5 separation device
CN108976144A (en) * 2018-08-31 2018-12-11 潍坊中汇化工有限公司 A kind of method of biopharmaceutical production DMF waste liquid purification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035067A (en) * 1973-07-24 1975-04-03
JPS5148769A (en) * 1974-10-24 1976-04-27 Ota Toshuki

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035067A (en) * 1973-07-24 1975-04-03
JPS5148769A (en) * 1974-10-24 1976-04-27 Ota Toshuki

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342719A (en) * 1986-08-08 1988-02-23 Kubota Ltd Method for deodorizing odorized gas
US5908490A (en) * 1996-05-20 1999-06-01 Toho Chemical Engineering And Construction Co., Ltd. Organic solvent recovering system and organic solvent recovering method
CN103570576A (en) * 2012-07-20 2014-02-12 中国石油化工集团公司 Regeneration system and regeneration method for circulating solvent of cracked C5 separation device
CN108976144A (en) * 2018-08-31 2018-12-11 潍坊中汇化工有限公司 A kind of method of biopharmaceutical production DMF waste liquid purification

Also Published As

Publication number Publication date
JPH0410368B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
FI81968B (en) FOERFARANDE FOER TILLVARATAGANDE AV I GASER BEFINTLIGA FOERORENINGAR.
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
JP2000000425A (en) Treatment of low-concentration gaseous organic solvent and its treatment apparatus
JPS6168122A (en) Recovering method of dimethylformamide
JP4548891B2 (en) Organic solvent recovery method
JPS6320020A (en) Adsorbing and desorbing method by activated carbon
JP3069578B2 (en) Solvent recovery method and apparatus
JP4574884B2 (en) Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JPH0671130A (en) Apparatus for treating gas containing vapor of water-soluble organic substance
JP3922449B2 (en) Organic solvent recovery system
JPS59116115A (en) Method for recovering carbon monoxide
JPH0938445A (en) Method for regenerating adsorption tower
JPS5775121A (en) Method and apparatus for treating waste gas at coating
JPH04102623U (en) Adsorption treatment equipment for gas containing low concentration solvent
JPS62244423A (en) Method for recovering solvent
KR100451281B1 (en) A method of recovering solvent with low boiling point
JP7400230B2 (en) Organic solvent recovery method and organic solvent recovery system
JPH11276840A (en) Method and device for recovering organic solvent
JP5115279B2 (en) Adsorption recovery device
CN211098274U (en) Organic waste gas two-stage adsorption recovery processing system
JP2013071115A (en) Organic solvent recovery system
JP3788814B2 (en) Solvent recovery method
JPH0646494Y2 (en) Solvent gas recovery device
JPS606626A (en) Recovery of low-boiling solvent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term