JPS6167268A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPS6167268A
JPS6167268A JP18813184A JP18813184A JPS6167268A JP S6167268 A JPS6167268 A JP S6167268A JP 18813184 A JP18813184 A JP 18813184A JP 18813184 A JP18813184 A JP 18813184A JP S6167268 A JPS6167268 A JP S6167268A
Authority
JP
Japan
Prior art keywords
film
region
cdse
semiconductor layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18813184A
Other languages
Japanese (ja)
Inventor
Kuni Ogawa
小川 久仁
Koji Nomura
幸治 野村
Masaharu Terauchi
正治 寺内
Atsushi Abe
阿部 惇
Koji Nitta
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18813184A priority Critical patent/JPS6167268A/en
Publication of JPS6167268A publication Critical patent/JPS6167268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve TFT characteristic by forming the first semiconductor region of a low resistivity through a gate insulating film on a region which contains a gate electrode, and forming the second semiconductor region of high resistivity around the first region, thereby improving the boundary between the insulating layer and the semiconductor layer in the same degree as a metal mask type. CONSTITUTION:After a gate electrode 8 made of aluminum is formed on an insulating substrate 7 of glass or the like, aluminum is sputtered on the substrate 7 and the electrode 8 to form an Al2O3 film 9, and a CdSe film is formed thereon. A photoresist is coated on the overall surface of the high resistance CdSe film 10, the pattern of a photoresist film 14 of the prescribed shape is formed, and an impurity 15 for imparting an N type conductivity is formed on the films 10, 14. After the film 14 and the impurity 15 thereon are removed, the impurity 15 adhered onto the film 10 is heat treated, uniformly diffused in the film 10, and converted into a low resistance CdSe film 11. Since this region is used as the channel region of a thin film transistor, an element having a high gm can be obtained. Then, source and drain electrodes 12, 13 made of aluminum or the like are formed on the region which contains the film 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜トランジスタの改良に関し、特にゲート絶
縁膜と半導体層との界面を良好にした薄膜トランジスタ
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in thin film transistors, and particularly to a thin film transistor with a good interface between a gate insulating film and a semiconductor layer, and a method for manufacturing the same.

(従来例の構成とその問題点) CdSeを半導体層とする薄膜トランジスタの従来例を
第1図に示す。ガラス基板1上にAg等の金属層で形成
したゲート電極2、AN、O,等からなるゲ−ト絶縁膜
3、n形の導電型を与える不純物1例えばIn、Ga、
AN等を含んだCdSeからなる半導体層4゜A&等の
金属層からなるソース電極5およびドレイン電極6とか
ら構成されている。このような構造の薄膜トランジスタ
において所定の領域に半導体層を形成する方法として、
半導体の付着領域以外を金属薄片でカバーするメタルマ
スク方式とIC技術として周知のフォトレジスト膜を用
いるフォトリソグラフィ方式とがある。蒸着法などによ
りCdSeを付着する領域の形状が数10μ国以下にな
るとメタルマスク方式は精度の点で難がしくフォトリン
グラフィ方式を用いざるを得ない。この場合には、Cd
Seを確実にかつ容易に所定領域のみに形成するために
、フォトレジスト膜を用いたりフトオフ法が通常使われ
ている。この方法は、ゲート絶縁膜3上にフォトレジス
ト膜を全面塗布形成した後、露光、現像処理によりCd
Seを付着する領域のみのフォトレジスト膜を除去する
。この後、全面にCdSeを蒸着法などにより付着した
後フォトレジスト膜およびフォトレジスト膜上のCdS
eを除去する方法である。この従来の方法では、CdS
eを付着する領域中に、フォトレジスト膜の残渣やフォ
トレジスト膜中に含まれる不純物の付着、また露光、現
像処理中のプロセスの汚染があると、薄膜トランジスタ
においてチャネル領域となる絶縁層とCdSe層との界
面は非常に汚れた状態となり、キャリアのトラップ・レ
ベル等も多く発生し、良好なトランジスタ特性を得るこ
とができない。例えば、同一構成で同一形状のCd5e
−TPTをメタルマスク方式およびフォトリソグラフィ
方式で試作した時の各々の電気特性を表に比較して示す
(Structure of a conventional example and its problems) A conventional example of a thin film transistor using CdSe as a semiconductor layer is shown in FIG. A gate electrode 2 formed of a metal layer such as Ag on a glass substrate 1, a gate insulating film 3 made of AN, O, etc., an impurity 1 imparting n-type conductivity, such as In, Ga, etc.
It is composed of a semiconductor layer 4 made of CdSe containing AN, etc., and a source electrode 5 and a drain electrode 6 made of a metal layer such as A&. As a method for forming a semiconductor layer in a predetermined region in a thin film transistor having such a structure,
There are two methods: a metal mask method in which areas other than the area to which the semiconductor is attached are covered with a metal thin piece, and a photolithography method using a photoresist film, which is well known as IC technology. When the shape of the region to which CdSe is deposited by vapor deposition or the like is less than several tens of microns, the metal mask method becomes difficult in terms of accuracy, and the photolithography method must be used. In this case, Cd
In order to reliably and easily form Se only in predetermined areas, a photoresist film or a foot-off method is usually used. In this method, a photoresist film is coated on the entire surface of the gate insulating film 3, and then Cd
The photoresist film is removed only from the region where Se is to be attached. After that, CdSe is deposited on the entire surface by vapor deposition, etc., and then the photoresist film and the CdSe on the photoresist film are deposited.
This is a method of removing e. In this conventional method, CdS
If there is residue of the photoresist film, impurities contained in the photoresist film, or contamination from the exposure and development processes in the area where the CdSe film is deposited, the insulating layer and CdSe layer, which will become the channel region of the thin film transistor, will be damaged. The interface with the substrate becomes extremely dirty, and many trap levels of carriers occur, making it impossible to obtain good transistor characteristics. For example, Cd5e with the same configuration and shape
-The table shows a comparison of the electrical characteristics of TPT manufactured using a metal mask method and a photolithography method.

表 の場合には、閾値電圧V、は増加し、トランジスタ特性
から求めたCdSeの移動度μは極端に減少する。
In the case of the table, the threshold voltage V increases, and the mobility μ of CdSe determined from the transistor characteristics extremely decreases.

また電子のCdSe膜中の移動度μは減少しドレイン電
流工。も少なくなりかっ工。の安定性も悪い。ゲート絶
縁膜とCdSe層との界面に与えるフォトレジスト膜工
程の影響が、 TPTの特性の劣化に大きく作用してい
ることは明らかである。
In addition, the electron mobility μ in the CdSe film decreases and the drain current decreases. There are also fewer brackets. The stability is also poor. It is clear that the influence of the photoresist film process on the interface between the gate insulating film and the CdSe layer has a large effect on the deterioration of the TPT characteristics.

(発明の目的) 本発明の目的は、以上のような従来技術に鑑み、絶縁層
と半導体層との界面をメタルマスク方式と同程度に良好
にし、 TFTの特性の改善を図ることにある。
(Objective of the Invention) In view of the above-mentioned conventional techniques, an object of the present invention is to improve the characteristics of a TFT by making the interface between an insulating layer and a semiconductor layer as good as that of a metal mask method.

(発明の構成) 本発明は上記目的を達成するために、少なくともゲート
市極を含む領域上にゲート絶縁膜を介して低抵抗率の所
定形状の第1の半導体領域が形成されており、前記ゲー
ト絶縁膜上の前記第1の半導体領域の周囲に高抵抗率の
第2の半導体領域が形成されており、少なくとも前記ゲ
ート電極上の前記第1の半導体領域上にソースおよびド
レイン電極が形成されていることを特徴とする薄膜トラ
ンジスタおよびその製□造方法を提供する。すなわち、
本発明による薄膜トランジスタは、ゲート絶縁膜上全面
に形成した高抵抗CdSe膜上にフォトリングラフィ方
式によるフォトレジスト膜のパターン形成を行ない所定
領域のみにn形の導電性を与える不純物を付着した後、
熱処理を施しCdSe中に前記不純物を拡散させて低抵
抗率のCdSe膜を形成しTPTのアクティブ領域とす
る。この方法によって、TPTのチャンネル領域となる
ゲート絶縁膜とCdSe膜との界面には、従来例に見ら
れたフォトリソグラフィ方式によるフォトレジスト膜工
程での汚れはほとんど無くなり、TFTの特性はメタル
マスク方式の場合と同程度のV?+μ、■。を得ること
ができた。
(Structure of the Invention) In order to achieve the above object, the present invention includes forming a first semiconductor region having a predetermined shape and having a low resistivity over a region including at least a gate electrode with a gate insulating film interposed therebetween; A second semiconductor region with high resistivity is formed around the first semiconductor region on the gate insulating film, and source and drain electrodes are formed on at least the first semiconductor region on the gate electrode. A thin film transistor and a method for manufacturing the same are provided. That is,
In the thin film transistor according to the present invention, a photoresist film is patterned by a photolithography method on a high-resistance CdSe film formed on the entire surface of a gate insulating film, and an impurity that gives n-type conductivity is deposited only in a predetermined region.
A heat treatment is performed to diffuse the impurity into CdSe to form a CdSe film with low resistivity, which becomes the active region of the TPT. With this method, the interface between the gate insulating film and the CdSe film, which forms the channel region of the TPT, is almost completely free of contamination caused by the photoresist film process using the photolithography method, which was seen in conventional examples, and the characteristics of the TFT are similar to those of the metal mask method. The same V as in the case of ? +μ、■. I was able to get

(実施例の説明) 以下1本発明を実施例に従って詳細に説明する。(Explanation of Examples) Hereinafter, the present invention will be explained in detail according to examples.

第2図は本発明の一実施例をなす1膜トランジスタの構
成を示す断面図である。2000人程度0厚みを有する
Aρ等の金属からなるゲート電極8を備えたガラス等の
絶縁性基板7上に4000人程度0厚さを有するAl、
03等からなるゲート絶縁膜9が形成されている。前記
ゲート絶縁膜9上に1000人程度0厚さを有し、その
抵抗率が106〜10’Ω・■程度のCdSe等からな
る高抵抗の半導体層10が形成されでおり、前記高抵抗
半導体層10中で少なくともゲート電極8を含む領域上
に、 Ga、In、1等のn形の導電率を与える不純物
を含む抵抗率が103〜IO4Ω・国程度のCdSe等
からなる所定形状の低抵抗の半導体領域11が形成され
ている。少なくとも前記低抵抗の半導体領域11を含む
領域上に2000人程度0厚さを有するAN等からなる
ソース電極12およびドレイン電極13が形成されてい
る。本発明による構造では、半導体層10はゲート絶縁
膜9上に微細な領域を限定することなく形成されている
ため、絶縁膜上に直接フォトレジスト膜を塗布形成し、
微細パターンを作成する工程がないため、従来問題とな
っていたフォトレジスト膜工程によるゲート絶縁膜9と
半導体層10との界面の汚熟は全く発生しない。薄11
1;Jトランジスタの微細なチャネルと領域の決定は前
記高抵抗半導体層10上にフォトリングラフィ方式によ
り作製した微細な半導体領域11中にn形の導電率を与
える不純物を導入することにより、電気的に活性な低抵
抗の半導体領域を形成することにより行なわれる。この
時、前記高抵抗半導体層10上に直接フォトレジスト膜
が塗布形成されるが、この際の汚染は前記高抵抗半導体
層表面に限定され、絶縁膜と半導体層との界面には何等
悪い影響を与えなかった。また、ソース電極やドレイン
電極に対しても薄膜トランジスタの動作上問題となるよ
うな悪い影響は見っからながった。・本発明による構造
の薄膜トランジスタのv7は約1v、μは約200aJ
/v、sとメタルマスク方式で作製した薄膜トランジス
タをほぼ同様の特性が得られた。
FIG. 2 is a cross-sectional view showing the structure of a single-film transistor that constitutes an embodiment of the present invention. An insulating substrate 7 made of glass or the like is provided with a gate electrode 8 made of a metal such as Aρ having a thickness of about 2000, and Al having a thickness of about 4000,
A gate insulating film 9 made of 03 or the like is formed. A high-resistance semiconductor layer 10 made of CdSe or the like is formed on the gate insulating film 9 and has a thickness of about 1,000 Ω and a resistivity of about 10 6 to 10' Ω·■. On the region including at least the gate electrode 8 in the layer 10, a low resistance film of a predetermined shape made of CdSe or the like having a resistivity of about 103 to IO4Ω including impurities such as Ga, In, 1, etc. that gives n-type conductivity is placed. A semiconductor region 11 is formed. A source electrode 12 and a drain electrode 13 made of AN or the like having a thickness of approximately 2,000 mm are formed on a region including at least the low-resistance semiconductor region 11. In the structure according to the present invention, since the semiconductor layer 10 is formed on the gate insulating film 9 without defining a fine region, a photoresist film is directly applied and formed on the insulating film.
Since there is no process of creating a fine pattern, there is no contamination of the interface between the gate insulating film 9 and the semiconductor layer 10 due to the photoresist film process, which has been a problem in the past. Thin 11
1; The fine channel and region of the J transistor are determined by introducing an impurity giving n-type conductivity into the fine semiconductor region 11 formed on the high-resistance semiconductor layer 10 by photolithography. This is done by forming a low-resistance semiconductor region that is actively active. At this time, a photoresist film is directly applied and formed on the high resistance semiconductor layer 10, but contamination at this time is limited to the surface of the high resistance semiconductor layer, and there is no adverse effect on the interface between the insulating film and the semiconductor layer. did not give. Further, there was no apparent adverse effect on the source electrode or drain electrode that would cause problems in the operation of the thin film transistor.・V7 of the thin film transistor having the structure according to the present invention is approximately 1V, and μ is approximately 200aJ.
Almost the same characteristics were obtained for the thin film transistor manufactured by the metal mask method as /v,s.

この結果、本発明の薄膜トランジスタでは、フォトリン
グラフィ方式を用いた微細なチャネル形状をしているに
もかかわらず、その絶縁膜と半導体層との界面はメタル
マスク方式の場合と同程度の清浄さであることが明らか
であり、その電気特性は従来構造の薄膜トランジスタに
比べ大幅に改善された。
As a result, in the thin film transistor of the present invention, despite having a fine channel shape using the photolithography method, the interface between the insulating film and the semiconductor layer is as clean as that in the case of the metal mask method. It is clear that the electrical characteristics are significantly improved compared to thin film transistors with conventional structures.

次に第3図を用いて本発明の薄膜トランジスタの装置方
法の一例を示す。
Next, an example of a method for manufacturing a thin film transistor according to the present invention will be described with reference to FIG.

ガラス等の絶縁性基板7上に抵抗加熱法を用いた真空蒸
着等により約2000人の厚さのAQ等からなるゲート
電極8を所定の形状に作製する。しかる後、前記絶縁性
基板7およびゲート電極8上にAr:O,=3:1,4
 X 1O−3Torrの雰囲気ガス中で例えばAQを
スパッタすることにより約4000人の厚さのAt’2
0.膜9を形成する。つづいて、約300℃に加熱した
前記1.O,膜9上に例えば抵抗加熱法を用いた真空蒸
着により約1000人の厚みのCdSe膜を0.5人/
sec程度の速さで形成する。このようにして作製した
CdSe膜の組成は化学量論比に非常に近い値でありま
た、その電気抵抗率は10’〜10’Ω・口と高い値を
示す。また、その移動度μは多結晶粒界での電位障壁の
影響を受けて0.1a(/v、s程度の小さな値を示す
(第3図(A))。
On an insulating substrate 7 made of glass or the like, a gate electrode 8 made of AQ or the like having a thickness of about 2,000 wafers is fabricated in a predetermined shape by vacuum evaporation using a resistance heating method or the like. After that, Ar:O,=3:1,4 is applied on the insulating substrate 7 and gate electrode 8.
At'2 with a thickness of about 4000 by sputtering, for example, AQ in an atmospheric gas of
0. A film 9 is formed. Next, the above 1. heated to about 300°C. O, a CdSe film with a thickness of about 1,000 layers is deposited on the film 9 by vacuum deposition using, for example, a resistance heating method.
It is formed at a speed of about sec. The composition of the CdSe film produced in this manner is very close to the stoichiometric ratio, and its electrical resistivity is as high as 10' to 10' Ω. Further, the mobility μ shows a small value of about 0.1a(/v,s) due to the influence of the potential barrier at the polycrystalline grain boundary (FIG. 3(A)).

前記高抵抗CdSe膜10上の全面にフォトレジスト(
例えばAZ1300:商品名)を約1.5μmの厚さに
塗布した後、周知のフォトリソグラフィ法により所定形
状のフォトレジスト膜14のパターンを形成する。
A photoresist (
For example, after applying AZ1300 (trade name) to a thickness of about 1.5 μm, a pattern of a photoresist film 14 having a predetermined shape is formed by a well-known photolithography method.

しかる後、例えば抵抗加熱法を用いた真空蒸着により、
n形の導電性を与える不純物151例えばGa 、 I
n 、 AN等を数人程度の厚さで前記高抵抗CdSe
膜lOおよびフォトレジスト膜14上に形成する(第3
図(B))。
After that, for example, by vacuum deposition using a resistance heating method,
Impurity 151 that provides n-type conductivity, such as Ga, I
The high-resistance CdSe is coated with a thickness of several layers, such as AN, AN, etc.
Formed on the film 1O and the photoresist film 14 (third
Figure (B)).

アセトン中での超音波洗浄などにより前記フォトレジス
ト膜14およびその上の不純物15を除去したのち、前
記高抵抗CdSe膜10上に付着している不純物15に
非酸化性雰囲気中で200℃−1時間程度の熱処理を施
こし、前記不純物15を前記高抵抗CdSe膜10中に
均一に拡散せしめ、前記高抵抗CdSe膜10を低抵抗
で電気的に活性なCdSe膜11に変換する。
After removing the photoresist film 14 and the impurities 15 thereon by ultrasonic cleaning in acetone, etc., the impurities 15 adhering to the high resistance CdSe film 10 are heated at 200° C.-1 in a non-oxidizing atmosphere. A heat treatment is performed for about an hour to uniformly diffuse the impurity 15 into the high-resistance CdSe film 10 and convert the high-resistance CdSe film 10 into a low-resistance, electrically active CdSe film 11.

この低抵抗CdSe@llの抵抗率は103〜10’Ω
・■であり、その移動度は、各多結晶粒界のn形に反転
していた電位障壁がn形の不純物により低減されるため
約200alt/v、sと非常に大きな値になる。この
領域を薄膜トランジスタのチャネル領域として使用する
ため高g1の素子が得られる(第3図(C))。
The resistivity of this low resistance CdSe@ll is 103~10'Ω
・■, and its mobility becomes a very large value of about 200 alt/v,s because the potential barrier that was inverted to n-type at each polycrystalline grain boundary is reduced by n-type impurities. Since this region is used as a channel region of a thin film transistor, a high g1 element can be obtained (FIG. 3(C)).

この後5例えば周知のフォトリソグラフィ法を用いて所
定形状のAQ等からなるソース電極12およびドレイン
電極13を前記低抵抗CdSe膜11を含む領域に形成
する(第3図(D))。
Thereafter, a source electrode 12 and a drain electrode 13 made of AQ or the like having a predetermined shape are formed in a region including the low resistance CdSe film 11 using, for example, a well-known photolithography method (FIG. 3(D)).

このように本発明による薄膜トランジスタの製造方法に
よれば、ゲート絶縁膜9上にフォトレジスト膜を塗布す
ることは全く必要ないので、従来、フォトレジスト膜や
その中の不純物のゲート絶縁膜9上への付着あるいは所
定のパターン形成時の汚染などにより発生していた薄膜
トランジスタの特性上の問題点が全く無くなった。
As described above, according to the method of manufacturing a thin film transistor according to the present invention, there is no need to apply a photoresist film on the gate insulating film 9, so that conventionally, the photoresist film and impurities therein are not coated on the gate insulating film 9. Problems in the characteristics of thin film transistors, which were caused by adhesion of particles or contamination during the formation of a predetermined pattern, have completely disappeared.

(発明の効果) 以上の説明から明らかなように1本発明によれば、フォ
トリングラフィ法を用いて作製した微細パターンの薄1
摸トランジスタの電気特性を、メタルマスク法により作
製した薄膜トランジスタの特性と同程度に容易に高める
ことができ、各種表示装置の駆動等に広く利用できるも
のである。
(Effects of the Invention) As is clear from the above description, according to the present invention, a thin 1
The electrical characteristics of the simulated transistor can be easily improved to the same level as the characteristics of a thin film transistor manufactured by the metal mask method, and can be widely used for driving various display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の薄膜トランジスタの断面図、第2図は
本発明の薄膜トランジスタの断面図、第3図は本発明の
薄膜トランジスタの製造方法の一例を示す図である。 2.8 ・・ゲート電極、 4,11 ・・低抵抗率半
導体領域、10  ・・高抵抗率半導体層、  5゜1
2・・・ ソース電極、6.13・・・ ドレイン電極
。 特許出願人 松下電器産業株式会社 第1図 第2図 第3図 (A) (B)
FIG. 1 is a sectional view of a conventional thin film transistor, FIG. 2 is a sectional view of a thin film transistor of the present invention, and FIG. 3 is a diagram showing an example of a method for manufacturing a thin film transistor of the present invention. 2.8...Gate electrode, 4,11...Low resistivity semiconductor region, 10...High resistivity semiconductor layer, 5゜1
2... Source electrode, 6.13... Drain electrode. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 Figure 2 Figure 3 (A) (B)

Claims (3)

【特許請求の範囲】[Claims] (1)少なくともゲート電極を含む領域上にゲート絶縁
膜を介して低抵抗率の所定形状の第1の半導体領域が形
成されており、前記ゲート絶縁膜上の前記第1の半導体
領域の周囲に高抵抗率の第2の半導体領域が形成されて
おり、少なくとも前記ゲート電極上の前記第1の半導体
領域上にソースおよびドレイン電極が形成されているこ
とを特徴とする薄膜トランジスタ。
(1) A first semiconductor region of a predetermined shape with low resistivity is formed on at least a region including a gate electrode via a gate insulating film, and a first semiconductor region of a predetermined shape with low resistivity is formed around the first semiconductor region on the gate insulating film. A thin film transistor characterized in that a second semiconductor region having a high resistivity is formed, and a source and a drain electrode are formed at least on the first semiconductor region above the gate electrode.
(2)前記第1の半導体領域がn形の導電型を与える不
純物を含んだCdSe膜からなり、前記第2の半導体領
域がCdSe膜からなることを特徴とする特許請求の範
囲第(1)項記載の薄膜トランジスタ。
(2) Claim (1) characterized in that the first semiconductor region is made of a CdSe film containing an impurity giving n-type conductivity, and the second semiconductor region is made of a CdSe film. The thin film transistor described in Section 1.
(3)絶縁性基板上に形成したゲート電極を含む領域に
ゲート絶縁膜を形成する工程、前記ゲート絶縁膜上に第
1の半導体層を形成した後、前記第1の半導体層上にフ
ォトレジスト膜を塗布し所定の形状のパターンを形成す
る工程、前記第1の半導体層および前記フォトレジスト
膜上にn形の導電型を与える不純物を付着した後、前記
フォトレジスト膜を除去する工程、前記不純物を前記第
1の半導体層中に拡散せしめ第2の半導体層を形成する
工程、少なくとも前記第2の半導体層を含む領域にソー
スおよびドレイン電極を形成する工程を有することを特
徴とする薄膜トランジスタの製造方法。
(3) A step of forming a gate insulating film in a region including a gate electrode formed on an insulating substrate, after forming a first semiconductor layer on the gate insulating film, applying a photoresist on the first semiconductor layer. a step of applying a film to form a pattern of a predetermined shape; a step of depositing an impurity imparting n-type conductivity on the first semiconductor layer and the photoresist film, and then removing the photoresist film; A thin film transistor comprising the steps of: diffusing impurities into the first semiconductor layer to form a second semiconductor layer; and forming source and drain electrodes in at least a region including the second semiconductor layer. Production method.
JP18813184A 1984-09-10 1984-09-10 Thin film transistor and manufacture thereof Pending JPS6167268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18813184A JPS6167268A (en) 1984-09-10 1984-09-10 Thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18813184A JPS6167268A (en) 1984-09-10 1984-09-10 Thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6167268A true JPS6167268A (en) 1986-04-07

Family

ID=16218270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18813184A Pending JPS6167268A (en) 1984-09-10 1984-09-10 Thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6167268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043113A (en) * 1995-07-31 2000-03-28 1294339 Ontario, Inc. Method of forming self-aligned thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043113A (en) * 1995-07-31 2000-03-28 1294339 Ontario, Inc. Method of forming self-aligned thin film transistor

Similar Documents

Publication Publication Date Title
JPS6151878A (en) Manufacture of thin-film transistor
JPS62124775A (en) Manufacture of thin film transistor by inclined etching and the thin film transistor
JPH0640550B2 (en) Method of manufacturing thin film transistor
US5306653A (en) Method of making thin film transistors
JPH053136B2 (en)
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JPS6167268A (en) Thin film transistor and manufacture thereof
JP3055782B2 (en) How to manufacture thin film transistors
US4536223A (en) Method of lowering contact resistance of implanted contact regions
JPS63177472A (en) Thin-film transistor
JPH07312426A (en) Thin film transistor and its manufacture
JPS6347981A (en) Thin film transistor and manufacture thereof
JPS61105870A (en) Manufacture of thin film transistor
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
JPH0578948B2 (en)
JPH0447970B2 (en)
JP2930053B2 (en) Liquid crystal display device and manufacturing method thereof
JP3016486B2 (en) Thin film transistor
JPH0732255B2 (en) Method of manufacturing thin film transistor
JPH05152331A (en) Manufacturing method of thin film transistor
JPH0544184B2 (en)
JPH0464181B2 (en)
JPS61121366A (en) Manufacture of thin-film transistor
JPH0433129B2 (en)
JPS62241377A (en) Thin film transistor and manufacture thereof