JPS6166707A - Production of crosslinkable, thermally reversible high polymer compound - Google Patents

Production of crosslinkable, thermally reversible high polymer compound

Info

Publication number
JPS6166707A
JPS6166707A JP18859784A JP18859784A JPS6166707A JP S6166707 A JPS6166707 A JP S6166707A JP 18859784 A JP18859784 A JP 18859784A JP 18859784 A JP18859784 A JP 18859784A JP S6166707 A JPS6166707 A JP S6166707A
Authority
JP
Japan
Prior art keywords
methylolacrylamide
copolymer
formula
reaction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18859784A
Other languages
Japanese (ja)
Other versions
JPS6215565B2 (en
Inventor
Shoji Ito
昭二 伊藤
Setsuko Furuya
古屋 せつ子
Kensaku Mizoguchi
溝口 健作
Masao Suda
須田 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18859784A priority Critical patent/JPS6166707A/en
Publication of JPS6166707A publication Critical patent/JPS6166707A/en
Publication of JPS6215565B2 publication Critical patent/JPS6215565B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled novel compound useful in a wide field such as a light screening material for green house, etc., a separating membrane, etc., easily crosslinkable by heating, by copolymerizing radically a specific compound with N-methylolacrylamide in a solution state. CONSTITUTION:1mol compound (e.g., N-isopropylacrylamide, etc.) shown by the formula I (R1 is H, or methyl; R2 is n-propyl, isopropyl, or cyclopropyl) is radically polymerized with <=1mol N-methylolacrylamide shown by the formu la CH2=CH-CONHCH2OH in a solvent such as water, etc. in a solution state, to give the aimed compound consisting of units shown by the formula III and the formula IV. Preferably the reaction is carried out at 100-200 deg.C for 1-150min.

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は、架橋性を有する新規な熱可逆高分子化合物及
びその架橋成形体の製造方法に関するものであり、これ
ら化合物及びその架橋成形体は、温室等の遮光体、玩具
、インテリア、水呼吸体、被覆剤、捺染剤、接着剤、分
離膜、メカノケミカル材料等産業上の利用分野に利用さ
れるものと考えられる。
Detailed Description of the Invention a. Industrial Application Field The present invention relates to a novel thermoreversible polymer compound having crosslinking properties and a method for producing a crosslinked molded product thereof, and these compounds and a crosslinked molded product thereof are It is thought that it will be used in industrial fields such as light-shielding bodies for greenhouses, toys, interiors, water-breathing bodies, coatings, printing agents, adhesives, separation membranes, mechanochemical materials, etc.

b 従来の技術 水溶性高分子化合物のうち、水溶液状態である温度(転
移温度あるいは曇点)以上で析出白濁し、その温度以下
では溶解透明化するという特殊な可逆的溶解挙動を示す
ものは熱可逆高分子と呼ばれ、遮光体や吸着剤等に応用
されつつある。しかしながら、熱可逆高分子はそのまま
では、低温で水に溶解し散逸する可能性がある。したが
って、これを利用するにあたってはその水溶液を積層透
明板状体内に注入して利用する遮光体のような場合除き
、低温条件下で形状保持を可能ならしめ、その散逸を防
止するため、架橋成形化、担体へのグラフト等、何らか
の不溶化・固定化を行わなければならない。簡単な不溶
化・固定化が可能となれば、熱可逆高分子の利用範囲は
、alこ示すごとく分離膜やメカノケミカル材料等にま
で著るしく拡大されることとなろう。
b. Conventional technology Among water-soluble polymer compounds, those that exhibit a special reversible dissolution behavior in which they precipitate and become cloudy at a temperature above a certain temperature (transition temperature or cloud point) in an aqueous solution state, and dissolve and become transparent below that temperature. It is called a reversible polymer and is being applied to light shielding materials, adsorbents, etc. However, thermoreversible polymers may dissolve in water and dissipate at low temperatures. Therefore, when using this, except for cases such as light shielding bodies in which the aqueous solution is injected into laminated transparent plate bodies, cross-linking molding is required to maintain the shape under low temperature conditions and prevent its dissipation. Some kind of insolubilization/immobilization must be performed, such as oxidation or grafting onto a carrier. If simple insolubilization and immobilization were possible, the scope of use of thermoreversible polymers would be significantly expanded to include separation membranes, mechanochemical materials, etc., as shown in the example of Al.

C発明が解決しようとする問題点 本発明の目的は、熱可逆高分子の有する以上のごとき問
題点を除去することにあり、具体的には、架橋性を有す
る新規な熱可逆高分子の製造方法と、得られた架橋性熱
可逆高分子の簡易な架橋方法を提供することにある。
C Problems to be Solved by the Invention The purpose of the present invention is to eliminate the above-mentioned problems of thermoreversible polymers, and specifically, to produce a novel thermoreversible polymer having crosslinking properties. It is an object of the present invention to provide a method and a simple method for crosslinking the obtained crosslinkable thermoreversible polymer.

d 問題点を解決するための手段 本発明者らは、上記の事情に鑑み熱可逆高分子の架橋成
形体を開発すべ(研究を続けた結果、−般式CH=CC
0NHRx t’表ワサレル化合物1モルにN−メチロ
ールアクリルアミド(CH2=CH−Co−NH−CH
20H)を1モルを超えない量で加え溶液状態でラジカ
ル共重合させることによりから成る共重合体が熱可逆特
性ならびに熱架橋性能を有することを見い出しこの知見
に基づいて本発明を完成するに至った。
d Means for Solving the Problems In view of the above circumstances, the inventors of the present invention should develop a crosslinked molded body of thermoreversible polymer (as a result of continued research, the general formula: CH=CC
0NHRx t' table N-methylol acrylamide (CH2=CH-Co-NH-CH
It was discovered that a copolymer obtained by radical copolymerizing in a solution state by adding 20H) in an amount not exceeding 1 mole has thermoreversible properties and thermal crosslinking properties, and based on this knowledge, the present invention was completed. Ta.

すなわち、本発明の第一の特徴は、一般式CHz””C
C0NHRtで示される化合物1モルにN−メチロール
アクリルアミド(CH2=CH−CONHC&OH)、
微1モル、を、超えない量で加え、塊状あるいは均一に
混合しうる溶媒を反応媒体に用いて溶液状態でラジカル
共重合させることにより架橋性を有する熱可逆高分子を
製造することにある。このような反応媒体は、特に制限
はないが、水、アルコールi、N、N−ジエチルアセト
アミド、ジメチルスルホキシド、アセトン、ジオキサン
、テトラヒドロフラン、ベンゼン、クロロホルム、四塩
化炭素等を挙げることができ、これらは単独でもよいし
、2種以上組み合わせて使用することもできる。この場
合、共重合成分の全濃度については、特に制限はないが
、好ましくは1〜100%である。重合方法についても
ラジカル重合であればよ(、例えば、放射線照射、光照
射あるいは、通常のラジカル重合開始剤存在量で加熱す
るなど、通常知られた任意の方法で行うことができる。
That is, the first feature of the present invention is that the general formula CHz""C
N-methylolacrylamide (CH2=CH-CONHC&OH) to 1 mol of the compound represented by C0NHRt,
The purpose is to produce a thermoreversible polymer having crosslinking properties by adding not more than 1 mol of the polymer and carrying out radical copolymerization in a solution state using a bulk or uniformly miscible solvent as a reaction medium. Such a reaction medium is not particularly limited, but may include water, alcohol i, N, N-diethylacetamide, dimethyl sulfoxide, acetone, dioxane, tetrahydrofuran, benzene, chloroform, carbon tetrachloride, etc. They may be used alone or in combination of two or more. In this case, the total concentration of copolymer components is not particularly limited, but is preferably 1 to 100%. The polymerization method may be radical polymerization (eg, radiation irradiation, light irradiation, or heating in the amount of a normal radical polymerization initiator), and any commonly known method can be used.

この共重合体は、成形体に加工するため適当な分子量を
もつもの、例えばクロロホルム溶液ないしメタノール溶
液で30℃における極限粘度〔η〕=0.01〜6.0
程度のものが実用的であり特に〔η)=0.1〜3.0
のものが好ましい。
This copolymer has an appropriate molecular weight for processing into molded articles, such as a chloroform solution or a methanol solution with an intrinsic viscosity [η] of 0.01 to 6.0 at 30°C.
It is practical to have a value of [η) = 0.1 to 3.0.
Preferably.

本発明方法で得られる共重合体は、加熱によりN−メチ
ロール基が脱水反応を起こし容易に架橋する。本発明の
第2の特徴はこの事実を利用した簡易な熱可逆架橋成形
体の製造法にある。すなわち、本発明方法によれば、キ
ャスト法、湿式紡糸等の任意の方法で成形された共重合
体からなる試料を乾式加熱処理するのみで水不溶性の架
橋成形体を得ることが可能である。架橋反応条件は、共
重合体中のB単位含有量、反応温度、反応時間の三つの
要因に依存する。一般的1ζは、B単位含有量が大であ
れば反応温度が低く反応時間が短い。
In the copolymer obtained by the method of the present invention, N-methylol groups undergo a dehydration reaction upon heating and are easily crosslinked. The second feature of the present invention resides in a simple method for producing a thermoreversibly crosslinked molded article that takes advantage of this fact. That is, according to the method of the present invention, it is possible to obtain a water-insoluble crosslinked molded product simply by dry heat treating a sample made of a copolymer molded by any method such as casting or wet spinning. The crosslinking reaction conditions depend on three factors: B unit content in the copolymer, reaction temperature, and reaction time. In general 1ζ, if the B unit content is large, the reaction temperature is low and the reaction time is short.

B単位含有量が小であれば、反応温度が高(、反応時間
が長い。通常は、反応温度100℃〜200°C1反応
時間1〜500分が好ましい。
If the B unit content is small, the reaction temperature is high (and the reaction time is long. Usually, a reaction temperature of 100°C to 200°C and a reaction time of 1 to 500 minutes is preferable.

本発明方法で得られる熱可逆高分子化合物水溶液の転移
温度は、A単位の種類とB単位の含有量に依存する。す
なわち転移温度は、A単位だけの転移温度から共重合体
中のB単位含有量の増加と共に、高温側に移動する。B
単位の含有量が50%を超えると水溶性高分子となる。
The transition temperature of the thermoreversible polymer compound aqueous solution obtained by the method of the present invention depends on the type of A unit and the content of B unit. That is, the transition temperature moves from the transition temperature of only A units to a higher temperature side as the content of B units in the copolymer increases. B
When the unit content exceeds 50%, the polymer becomes water-soluble.

そのため、共重合体中のB単位の含有量には制限があり
、Aの種類にもよるが、B単位含有量は、0.1モル%
〜50モル%としなければならない。
Therefore, there is a limit to the content of B units in the copolymer, and although it depends on the type of A, the B unit content is 0.1 mol%.
~50 mol%.

B単位の含有量によって、転移温度が変化することは、
−面でこれによって転移温度を調節できることを意味し
ており、したがって本発明により、B単位含有MO11
モル%〜50モル%の範囲内で、目的に応じた任意の転
移温度を有する熱可逆高分子架橋成形体が入手しつるこ
ととなる。
The transition temperature changes depending on the content of B units.
- face, which means that the transition temperature can be adjusted, and therefore, according to the present invention, the B unit-containing MO11
A thermoreversible polymer crosslinked molded article having an arbitrary transition temperature depending on the purpose can be obtained within the range of mol % to 50 mol %.

A単位のみからなる熱可逆高分子の熱応答感度はきわめ
て高く、その水溶液は転移温度において瞬間的に白濁あ
るいは透明化する。この感度は、B単位成分との共重合
により、そのB単位含有量の増加と共に低下する。しか
し、低下の割合は小さく、本発明方法における架橋性熱
可逆高分子の熱応答感度は良好である。
A thermoreversible polymer consisting only of A units has extremely high thermal response sensitivity, and its aqueous solution instantaneously becomes cloudy or transparent at the transition temperature. This sensitivity decreases as the B unit content increases due to copolymerization with the B unit component. However, the rate of decrease is small, and the thermal response sensitivity of the crosslinkable thermoreversible polymer in the method of the present invention is good.

e 実施例 次に実施例により本発明の詳細な説明する。e Example Next, the present invention will be explained in detail with reference to Examples.

実施例 I N−メチロールアクリルアミド及びN−イソプロピルア
クリルアミド(CHz =C−C0NHCH(CH3)
2)の組合せ仕込量を変えて種々の組成比の共重合体を
製造した。重合開始剤としてアゾビスイソブチロニトリ
ルを用い、その濃度5〜/−メタノール溶液2011L
(を所定の組成及び濃度のモノマー溶液に投入、反応温
度50°Cで14時間反応させた。反応後、反応溶液を
アセトン溶液とし、ジエチルエーテルに沈澱させ、ポリ
マーを回収した。共重合体中のN−メチロールアクリル
アミド分率は、重合率10096と仮定して算出した。
Example I N-methylolacrylamide and N-isopropylacrylamide (CHz = C-C0NHCH(CH3)
Copolymers with various composition ratios were produced by changing the combination and amount of 2). Using azobisisobutyronitrile as a polymerization initiator, 2011L of methanol solution with a concentration of 5~/-
() was added to a monomer solution with a predetermined composition and concentration and reacted for 14 hours at a reaction temperature of 50°C. After the reaction, the reaction solution was made into an acetone solution and precipitated in diethyl ether to recover the polymer. In the copolymer The N-methylol acrylamide fraction was calculated assuming a polymerization rate of 10,096.

得られた熱可逆高分子の転移温度は、その水溶液の温度
に伴う:晃透過率変化から決定した。すなわち、196
a度のポリマー水溶液を調整して、温度コントロール付
分光光度計にセットし、昇温速度1℃/ mjnで昇温
させながら波長s o o nmでの光透過事変化を測
定すると第1図のごとき結果が得られる。
The transition temperature of the obtained thermoreversible polymer was determined from the change in transmittance associated with the temperature of its aqueous solution. That is, 196
When an aqueous polymer solution of a degree is prepared, set in a spectrophotometer with temperature control, and the change in light transmission at a wavelength of s o o nm is measured while increasing the temperature at a rate of 1°C/mjn, the results in Figure 1 are obtained. You will get results like this.

転移温度は、この図で、光透過率が初期透過率の局とな
る点から決定した。
The transition temperature was determined from the point in this figure where the optical transmittance is at the initial transmittance.

各実験におけるモノマー仕込量、共重合体中のN−メチ
ロールアクリルアミド分率、転移温度を第1表にまとめ
て示す。
Table 1 summarizes the amount of monomer charged, the N-methylolacrylamide fraction in the copolymer, and the transition temperature in each experiment.

第   1   表 仕込量     重合体 1   0    2.05  0   30.32 
  0.11   1.96  5.3  33.03
   0.28   1.79  13.5  37.
54   0.54   1.61  25.1  4
4.05   0.69   1.69  29.0 
 47.06   1.02   1.06  49.
0  77.57   2.02   0   100
   −これらの結果より得られた共重合体は熱応答感
度がすぐれ、かつ共重合体中のN−メチロールアクリル
アミドの含有量により広範囲に転移温度を変化させうる
ことが判った。
Table 1 Charge amount Polymer 1 0 2.05 0 30.32
0.11 1.96 5.3 33.03
0.28 1.79 13.5 37.
54 0.54 1.61 25.1 4
4.05 0.69 1.69 29.0
47.06 1.02 1.06 49.
0 77.57 2.02 0 100
- From these results, it was found that the copolymer obtained has excellent thermal response sensitivity and that the transition temperature can be varied over a wide range depending on the content of N-methylolacrylamide in the copolymer.

また、実験Nα3の試料をフィルム状に成形し、150
℃で1時間乾式加熱しなところ、加熱前の形状を保って
架橋することが認められた。
In addition, the sample of experiment Nα3 was molded into a film, and 150
When dry-heated at ℃ for 1 hour, crosslinking was observed while maintaining the shape before heating.

実施例 2 N−メチロールアクリルアミド及びN −n−プロピル
アクリルアミド(Cル=CHC0NH(CH2)2CH
3)の組合せ仕込量を変えて種々の組成比の共重合体を
製造した。重合開始剤としてアゾビスイソブチロニトリ
ルを用い、その濃度5M9/mJのメタノール溶液25
17を所定の組成及び濃度のモノマー溶液に投入、反応
濃度50°Cで400時間反応せた。反応後、メタノー
ル溶液をアセトン溶液とし、ジエチルエーテルに沈澱さ
せポリマーを回収した。共重合体中のN−メチロールア
クリルアミド分率は、重合率10096と仮定して算出
した。
Example 2 N-methylolacrylamide and N-n-propylacrylamide (C=CHC0NH(CH2)2CH
Copolymers having various composition ratios were produced by changing the combinations and amounts of 3). Using azobisisobutyronitrile as a polymerization initiator, a methanol solution with a concentration of 5M9/mJ 25
No. 17 was added to a monomer solution having a predetermined composition and concentration, and the reaction was carried out at a reaction concentration of 50° C. for 400 hours. After the reaction, the methanol solution was made into an acetone solution, and the polymer was recovered by precipitation in diethyl ether. The N-methylolacrylamide fraction in the copolymer was calculated assuming a polymerization rate of 10,096.

°1癲移温度は実施例1の方法で求めた。The °1 transition temperature was determined by the method of Example 1.

各実験におけるモノマー仕込量、共重合体中のN−メチ
ロールアクリルアミド分率・転移温度の関係を第2表に
まとめて示す。
Table 2 summarizes the relationship between the amount of monomer charged, the N-methylolacrylamide fraction in the copolymer, and the transition temperature in each experiment.

第   2   表 仕込量       重合体 13   0    2.25    0  21.0
14   0.11    2.15    5.4 
 24.015   020    2.04    
9.9  27.216   0.40    1.8
0    19.9  32.317   0.61 
   1.58   30.1  39.018   
0.90    1.26   44.4  56.5
19   120    0.91    59.6 
 −これらの結果より、実施例1と同様に共重合体中の
N−メチロールアクリルアミド含有量により広範囲に転
移温度を変化させうることが判った。
Table 2 Charge amount Polymer 13 0 2.25 0 21.0
14 0.11 2.15 5.4
24.015 020 2.04
9.9 27.216 0.40 1.8
0 19.9 32.317 0.61
1.58 30.1 39.018
0.90 1.26 44.4 56.5
19 120 0.91 59.6
- From these results, as in Example 1, it was found that the transition temperature could be varied over a wide range depending on the N-methylolacrylamide content in the copolymer.

また、実験Nl115の試料をフィルム状に成形し、1
50°Cで1時間乾式加熱したところ、加熱前の形状を
保ち架橋することが認められた。
In addition, the sample of experiment Nl115 was molded into a film shape, and 1
When dry heated at 50°C for 1 hour, it was observed that the shape before heating was maintained and crosslinking occurred.

実施例 3 N−メチロールアクリルアミド及びN−シクロH− プロピルアクリルアミド(CH2=CH−CONH−C
HI   )Cル の組合せ仕込量を変えて種々の組成比の共重合体を製造
した。重合開始剤としてアゾビスイソブチロニトリルを
用い、その濃度5119/m/メタノール溶液2011
11を所定の組成及び濃度のモノマー溶液を投入し、反
応温度50℃で40時間反応させた。
Example 3 N-methylolacrylamide and N-cycloH-propylacrylamide (CH2=CH-CONH-C
Copolymers with various composition ratios were produced by changing the combination and charging amount of HI)Cl. Using azobisisobutyronitrile as a polymerization initiator, its concentration was 5119/m/methanol solution 2011
A monomer solution having a predetermined composition and concentration was added to No. 11, and the mixture was reacted at a reaction temperature of 50° C. for 40 hours.

反応後メタノール溶液をアセトン溶液とし、ジエチルエ
ーテルに沈澱させポリマーを回収した。
After the reaction, the methanol solution was made into an acetone solution, and the polymer was recovered by precipitation in diethyl ether.

共重合体中のN−メチロールアクリルアミド分率は、重
合率10096と仮定して算出した。転移温度は、実施
例1の方法で求めた。
The N-methylolacrylamide fraction in the copolymer was calculated assuming a polymerization rate of 10,096. The transition temperature was determined by the method of Example 1.

各実験におけるモノマー仕込量、共重合体中のN−メチ
ロールアクリルアミド分率俸転移温度の関係を第3表に
まとめて示す。
Table 3 summarizes the relationship between the amount of monomer charged, the N-methylolacrylamide fraction in the copolymer, and the transition temperature in each experiment.

第   3   表 仕込蓋       重合体 22  0    2.20   0   45.02
3  0.19   1.96   9.6   55
.624  0.40   1.76   20.0 
  67.225  0.58   1.50   2
9.8   81.626  0.87   1.33
   41.8   −27  0.99   113
   49.0   −これらの結果より、実施例1と
同様に共重合体のN−メチロールアクリルアミドの含有
量により広範囲に転移温度を変化させうろことが判った
3rd table charging lid Polymer 22 0 2.20 0 45.02
3 0.19 1.96 9.6 55
.. 624 0.40 1.76 20.0
67.225 0.58 1.50 2
9.8 81.626 0.87 1.33
41.8 -27 0.99 113
49.0 - From these results, as in Example 1, it was found that the transition temperature could be varied over a wide range depending on the content of N-methylolacrylamide in the copolymer.

また実験Nα23の試料をフィルム状に成形した試料を
150°Cで1時間加熱したところ、加熱前の形状を保
ち架橋することが認められた。
Further, when a sample obtained by molding the sample of Experiment Nα23 into a film shape was heated at 150° C. for 1 hour, it was observed that the sample maintained its shape before heating and was crosslinked.

実施例 4 N−メチロールアクリルアミド及びN−イソプH3 0ピルメタクリルアミド(CH2=CC0NHCH(C
Hz)2)め組合せ仕込量を変えて種々の組成比の共重
合体を製造した。重合開始剤としてアゾビスイソブチロ
ニトリルを用い、その濃度5*/dのメタノール溶液2
0麗lを所定の組成、濃度の七ツマー溶液に投入し、反
応温度50°Cで70時間反応させた。反応後メタノー
ル溶液をアセトン溶液とし、ジエチルエーテルに沈澱さ
せポリマーを回収した。共重合体中のN−メチロールア
クリルアミド分率は重合率10096と仮定して算出し
た。転移温度は、実施例1の方法で求めた。
Example 4 N-methylol acrylamide and N-isopropylmethacrylamide (CH2=CC0NHCH(C
Copolymers with various composition ratios were produced by changing the combinations of Hz) and 2) and the amount of charge. Using azobisisobutyronitrile as a polymerization initiator, methanol solution 2 with a concentration of 5*/d
0.0 L was added to a 7-mer solution with a predetermined composition and concentration, and the mixture was reacted at a reaction temperature of 50°C for 70 hours. After the reaction, the methanol solution was made into an acetone solution, and the polymer was recovered by precipitation in diethyl ether. The N-methylolacrylamide fraction in the copolymer was calculated assuming a polymerization rate of 10,096. The transition temperature was determined by the method of Example 1.

各実験におけるモノマー仕込量、共重合体中のN−メチ
ロールアクリルアミド分率、転移温度の関係を第4表に
まとめて示す。
Table 4 summarizes the relationship among the amount of monomer charged, the N-methylolacrylamide fraction in the copolymer, and the transition temperature in each experiment.

第   4   表 仕込量      重合体 す 33     1.02      1.4U    
   4 /、6     8(j、Zこれらの結果よ
り、実施例1と同様に共重合体のN−メチロールアクリ
ルアミドの含有量により広範囲に転移温度を・変化させ
うろことが判った。
Table 4 Charge amount Polymer 33 1.02 1.4U
4/, 6 8 (j, Z) From these results, it was found that, as in Example 1, the transition temperature could be varied over a wide range depending on the content of N-methylolacrylamide in the copolymer.

また、実験Nα29の試料をフィルム状に成形し、15
0”Cで1時間加熱したところ、加熱前の形状を保ち架
橋することが認められた。
In addition, the sample of experiment Nα29 was molded into a film shape, and 15
When heated at 0''C for 1 hour, it was observed that the shape before heating was maintained and crosslinking occurred.

実施例 5 N−メチロールアクリルアミド1.30g%N−イソプ
ロピルアクリルアミド12.07g、アゾビスイソブチ
ロニトリルを含むメタノール溶液(濃度5〜/IAり1
00rLtをアンプルに入れ、液体ちっ素を用いて減圧
脱気を行い、上部をバーナーで封じた。これを50°C
の恒温槽に入れ、24時間放置し重合させた。反応後、
開封しメタノールを減圧除去した。さらにこれをアセト
ン溶液としジエチルエーテル中に沈澱させポリマーを回
収した。
Example 5 A methanol solution containing 1.30 g of N-methylolacrylamide, 12.07 g of N-isopropylacrylamide, and azobisisobutyronitrile (concentration 5 to 1
00rLt was placed in an ampoule, degassed under reduced pressure using liquid nitrogen, and the upper part was sealed with a burner. 50°C
The mixture was placed in a constant temperature bath and allowed to stand for 24 hours to polymerize. After the reaction,
The container was opened and methanol was removed under reduced pressure. Furthermore, this was made into an acetone solution and precipitated in diethyl ether to recover the polymer.

共重合体中のN−メチロールアクリルアミド分率は、1
0.7%であった。この共重合体196水溶液の転移温
度は、36.0°Cであった。又、この共重合体の極限
粘度は、クロロホルム溶液としテ30°Cでの粘度測定
より[η]=0.48であった。
The N-methylolacrylamide fraction in the copolymer is 1
It was 0.7%. The transition temperature of this copolymer 196 aqueous solution was 36.0°C. Further, the intrinsic viscosity of this copolymer was [η]=0.48, as determined by measuring the viscosity in a chloroform solution at 30°C.

この共重合体ヲア七トン1こ溶かし、テフロン板上に流
して風乾し、フィルムを作成した。このフィルム状成形
体を乾式加熱処理した時の処理条件と架橋状態との関係
を第5表に示す。
Seven tons of this copolymer was dissolved, poured onto a Teflon plate, and air-dried to form a film. Table 5 shows the relationship between the processing conditions and the crosslinking state when this film-like molded product was subjected to dry heat treatment.

O:水に未溶解(架橋) 第5表から明らかなようにフィルム状成形体を乾式加熱
処理することにより、容易に架橋成形体とすることがで
きた。
O: Not dissolved in water (crosslinked) As is clear from Table 5, a crosslinked molded product could be easily obtained by subjecting the film-like molded product to dry heat treatment.

f 発明の効果 本発明は、一般式CH2=ご一〇〇NH−5で表わされ
ル化合物1モルにN−メチロールアクリルアミドを1モ
ル超えない量で加え溶液状態でラジカル分子化合物の製
造方法および上記共重合体を成形後乾式加熱することを
特徴とする熱可逆高分子架橋成形体の製造方法に関する
ものである。従来、ポリ (N−プロピル(メタ)アク
リルアミド)化合物は、熱可逆特性を有することが知ら
れていたが、本発明によって辱られるN−メチロールア
クリルアミドとの共重合体は、熱可逆特性に加え、架橋
性能を有しており、したがって、成形体を作成後、加熱
処理により、容易に架橋成形ができる性質を有している
。このため、この共重合体はメカノケミカル材料、遮光
材、吸着剤、玩具、分離膜などに広(利用されることに
なると期待される。
f Effects of the Invention The present invention provides a method for producing a radical molecular compound in a solution state by adding N-methylolacrylamide to 1 mole of a compound represented by the general formula CH2=100NH-5 in an amount not exceeding 1 mole; The present invention relates to a method for producing a thermoreversible polymer crosslinked molded article, which comprises dry heating the copolymer after molding. Conventionally, poly(N-propyl(meth)acrylamide) compounds have been known to have thermoreversible properties, but the copolymer with N-methylolacrylamide, which is the subject of the present invention, has thermoreversible properties as well as It has cross-linking properties, and therefore has the property that it can be easily cross-linked by heat treatment after forming a molded object. Therefore, this copolymer is expected to be widely used in mechanochemical materials, light shielding materials, adsorbents, toys, separation membranes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の実験Nal、Nn3、尚5、N1
16で得られた熱可逆高分子水溶液の透過率一温度曲線
である。
FIG. 1 shows the experiment Nal, Nn3, Nao5, N1 of Example 1.
16 is a transmittance-temperature curve of the thermoreversible polymer aqueous solution obtained in step 16.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中のR_1は水素原子又はメチル基、R_2はn−
プロピル基、イソプロピル基、シクロプロピル基である
。) で表わされる化合物1モルにN−メチロールアクリルア
ミド CH_2=CH−CONHCH_2OH を1モルを超えない量で加え、溶液状態でラジカル共重
合させることを特徴とする ▲数式、化学式、表等があります▼単位と▲数式、化学
式、表等があります▼単位から 成る架橋性熱可逆高分子化合物の製造方法
[Claims] 1. General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R_1 is a hydrogen atom or a methyl group, R_2 is n-
They are propyl group, isopropyl group, and cyclopropyl group. ) is characterized by adding N-methylolacrylamide CH_2=CH-CONHCH_2OH in an amount not exceeding 1 mole to 1 mole of the compound represented by ▲Mathematical formula, chemical formula, table, etc.▼Unit and ▲Mathematical formulas, chemical formulas, tables, etc. ▼Production method of crosslinkable thermoreversible polymer compound consisting of units
JP18859784A 1984-09-08 1984-09-08 Production of crosslinkable, thermally reversible high polymer compound Granted JPS6166707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18859784A JPS6166707A (en) 1984-09-08 1984-09-08 Production of crosslinkable, thermally reversible high polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18859784A JPS6166707A (en) 1984-09-08 1984-09-08 Production of crosslinkable, thermally reversible high polymer compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13223286A Division JPS61287931A (en) 1986-06-07 1986-06-07 Production of thermoreversible high-molecular crosslinked molding

Publications (2)

Publication Number Publication Date
JPS6166707A true JPS6166707A (en) 1986-04-05
JPS6215565B2 JPS6215565B2 (en) 1987-04-08

Family

ID=16226438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18859784A Granted JPS6166707A (en) 1984-09-08 1984-09-08 Production of crosslinkable, thermally reversible high polymer compound

Country Status (1)

Country Link
JP (1) JPS6166707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278502A (en) * 1987-05-08 1988-11-16 Mitsui Toatsu Chem Inc Separation membrane
US5104954A (en) * 1987-10-05 1992-04-14 Ciba-Geigy Corporation Thermostropic biphilic hydrogels and hydroplastics
US6974660B2 (en) 2002-03-15 2005-12-13 Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278502A (en) * 1987-05-08 1988-11-16 Mitsui Toatsu Chem Inc Separation membrane
US5104954A (en) * 1987-10-05 1992-04-14 Ciba-Geigy Corporation Thermostropic biphilic hydrogels and hydroplastics
US6974660B2 (en) 2002-03-15 2005-12-13 Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution
US7011930B2 (en) 2002-03-15 2006-03-14 The Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution

Also Published As

Publication number Publication date
JPS6215565B2 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
Kröger et al. Light controlled solubility change of polymers: Copolymers of N, N‐dimethylacrylamide and 4‐phenylazophenyl acrylate
Dunn et al. The synthesis of block copolymers of styrene and methyl methacrylate
Liu et al. Thermophilic films and fibers from photo cross-linkable UCST-type polymers
Yamamoto et al. Synthesis and thermosensitive properties of Poly [(N‐vinylamide)‐co‐(vinyl acetate)] s and their hydrogels
Wulff et al. Chirality of polyvinyl compounds. 2. An asymmetric copolymerization
Veen et al. Photoregulation of polymer conformation by photochromic moieties–II. Cationic and neutral moieties on an anionic polymer
CagriAta et al. Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique
Tanaka et al. Synthesis and thermal, mechanical, and optical properties of A–B–A or A–B block copolymers containing poly (norbornene‐co‐1‐octene)
Böckman Preparation and properties of crystalline, low molecular weight poly (vinyl chloride)
JPS6166707A (en) Production of crosslinkable, thermally reversible high polymer compound
Allen et al. Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 4. Preparation, properties and structure of acrylonitrile and styrene based composites
Bratschkov et al. Synthesis and photochemical transformations of an anthracene containing methacrylic copolymer
US5483005A (en) Preparation of polymers with NLO-active side groups and the use thereof
Xiang et al. Preparation and characterization of alkali soluble polyacrylamide-g-polyaniline
Boudevska et al. The influence of molecular interaction on polymerization, 10. On the copolymerization of methacrylic acid with styrene
US2910460A (en) Homogeneous polyethylene
US2469295A (en) Synthetic resins and method for producing same
JPS61287931A (en) Production of thermoreversible high-molecular crosslinked molding
US3828015A (en) Method for preparing branched copolymers of ethylene with vinyl organosilicon monomers
JPS61197615A (en) Production of novel crosslinkable thermoreversible polymer compound
JPH1017622A (en) New copolymer and its production
Sato et al. Long-lived polymer radicals: 5. Synthesis of block copolymer by the reaction of living poly (N-phenylmethacrylamide) radical with vinyl monomers
JPH0219166A (en) Oxygen permeable molding
US3565871A (en) Copolymers of ethylene and n-vinylazetidinones and process for preparing them
US3609129A (en) Method of polymerizing acrylonitrile in the presence of an alkali metal alcoholate of an {60 -hydroxyalkylamine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term