JPS6165487A - Manufacture of thermoelectric conversion element - Google Patents

Manufacture of thermoelectric conversion element

Info

Publication number
JPS6165487A
JPS6165487A JP59186416A JP18641684A JPS6165487A JP S6165487 A JPS6165487 A JP S6165487A JP 59186416 A JP59186416 A JP 59186416A JP 18641684 A JP18641684 A JP 18641684A JP S6165487 A JPS6165487 A JP S6165487A
Authority
JP
Japan
Prior art keywords
glass tube
powder
type semiconductor
thermoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59186416A
Other languages
Japanese (ja)
Other versions
JPH0652809B2 (en
Inventor
Yasunori Tanji
丹治 雍典
Katsuhiko Yamaguchi
勝彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59186416A priority Critical patent/JPH0652809B2/en
Publication of JPS6165487A publication Critical patent/JPS6165487A/en
Publication of JPH0652809B2 publication Critical patent/JPH0652809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Abstract

PURPOSE:To simplify the manufacturing process by a method wherein an N type semiconductor powder and a P type semiconductor powder which are encapsulated in a glass tube are molded by sintering under high temperature and high pressure. CONSTITUTION:A glass tube 2 having a suitable softening temperature is formed in Y shape, and its both ends are closed. Next, N type and P type semiconductor powders 3 and 4 are put in both branches of the glass tube 2 through bottoms, respectively, and encapsulated in vacuum under exhaust. Then, when it is heated at a temperature above the softening temperature of the glass tube, the encapsulating tube becomes softened, and the glass adheres to the element powders on account of the atmosphere. Finally, pressurizing isotropically in this state with a gas such as argon for several hours makes the relative density of the element powder exceed 99.9% and enables the powder to be molded by sintering while the shape of the glass tube is maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、N型およびP型半導体対からなシ。[Detailed description of the invention] [Industrial application field] The present invention comprises a pair of N-type and P-type semiconductors.

ゼーベック効果を原理とする熱電気変換素子に関し1特
に該熱電気変換素子の製造方法に関する。
The present invention relates to a thermoelectric conversion element based on the Seebeck effect, and particularly to a method for manufacturing the thermoelectric conversion element.

〔従来の技術〕[Conventional technology]

ゼーベ、り効果を原理とする熱電気変換素子の開発は古
くからなされている。最近、そのモジー−ル化の技術が
開発され、宇宙開発1海洋開発。
Thermoelectric conversion elements based on the Seebe effect have been developed for a long time. Recently, the technology of making it into a module has been developed, and space development 1 ocean development.

廃熱発電、僻地用電源、温度用センサーなど多くの分野
で活発に利用され始めてきている。
It has begun to be actively used in many fields such as waste heat power generation, power sources for remote areas, and temperature sensors.

従来の熱電気変換素子の製造方法によると1例えばけい
素化合物のN型半導体(FeCo)Si2とP型半導体
(FeMn )S i 2からなる熱電気変換素子は、
まず通常Co粉末を含むFeSi2粉本とr Mn粉末
を含むF e S i 2粉体とを、U字型に冷間プレ
スで成型し。
According to the conventional manufacturing method of a thermoelectric conversion element 1, for example, a thermoelectric conversion element made of silicon compound N-type semiconductor (FeCo)Si2 and P-type semiconductor (FeMn)Si2 is:
First, two FeSi powders containing normal Co powder and two FeSi powders containing rMn powder were cold pressed into a U-shape.

焼結する。この様にしてつくられた(FeCo)Si2
と(FeMn )S i 2の焼結体の結晶構造は殆ん
ど金属的性質を有するα相である。次に、これを900
℃以下で数10〜200時間加熱し半導体的・性質を有
するβ相に変態させ、これに電極端子をつけて熱電気変
換素子としている。
Sinter. (FeCo)Si2 made in this way
The crystal structure of the sintered body of (FeMn)S i 2 is an α phase having almost metallic properties. Next, add this to 900
The material is heated for several tens to 200 hours at temperatures below .degree. C. to transform it into a beta phase with semiconducting properties, and electrode terminals are attached to this to form a thermoelectric conversion element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の様な方法でつくられた熱電気変換素子の相対密度
は99多以上にあげることは難しい。そのため1両半導
体の接合面の機械的強度が弱く。
It is difficult to increase the relative density of thermoelectric conversion elements manufactured by the above method to 99% or higher. Therefore, the mechanical strength of the bonding surface between the two semiconductors is weak.

熱発電特性を劣化させると云う欠点があった。It has the disadvantage of deteriorating thermoelectric power generation characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれらの欠点を除去するために、がうス管に封
入された両生導体粉末素材に、最新の高温高圧加工装置
(以下HIP装置と略称する)を用いて、高温高圧下で
焼結成型加工を行うことにより、熱電気変換素子の製造
工程の簡略化を計るとともに、その発電特性をあげるこ
とを目的としている。
In order to eliminate these drawbacks, the present invention uses the latest high-temperature, high-pressure processing equipment (hereinafter referred to as HIP equipment) to sinter the amphiphilic conductor powder material sealed in the gas tube under high temperature and high pressure. By performing mold processing, the aim is to simplify the manufacturing process of thermoelectric conversion elements and to improve their power generation characteristics.

本発明によれば、ガラス管の中に真空封入されたN型半
導体粉末およびP型半導体粉末を高温高圧下で焼結成型
する工程を含むことを特徴とする熱電気変換素子の製造
方法が得られる。
According to the present invention, there is provided a method for manufacturing a thermoelectric conversion element, which includes a step of sintering N-type semiconductor powder and P-type semiconductor powder vacuum-sealed in a glass tube under high temperature and high pressure. It will be done.

〔実施例〕〔Example〕

本発明の製造方法の詳細を以下に述べる。 The details of the manufacturing method of the present invention will be described below.

製造しようとする半導体対の粉末素材の焼結温度に合せ
て、適当な軟化温度を有するガラス管をY字型に加工し
、その両端を閉管する。そのガラス管の両枝の中にN型
およびP型半導体の粉末をそれぞれ下部より入れ排気し
、真空封入する。これをガラス管の軟化温度よシ高温で
加熱すると゛封入管パは軟化し、大気圧のだめにガラス
と素材粉末が密着し間隙がなくなる。この状態で数時間
非酸化性のアルゴン、窒素、ヘリウム等の気体でもって
1等方的に加圧すると素材粉末の相対密度ば999チ以
上になる。また、ガラス管の形状が保持されたまま焼結
成型される。
A glass tube having an appropriate softening temperature is processed into a Y-shape according to the sintering temperature of the powder material of the semiconductor pair to be manufactured, and both ends of the tube are closed. N-type and P-type semiconductor powders are placed into both branches of the glass tube from the bottom, evacuated, and sealed in a vacuum. When this is heated to a temperature higher than the softening temperature of the glass tube, the encapsulated tube becomes soft and the glass and material powder come into close contact with each other due to the atmospheric pressure, eliminating any gaps. If this state is isotropically pressurized with non-oxidizing gas such as argon, nitrogen, helium, etc. for several hours, the relative density of the raw material powder becomes 999 cm or more. Further, the glass tube is sintered and molded while maintaining its shape.

真空封入の際に電接板を装入し、焼結成型後。An electric contact plate is inserted during vacuum sealing, and after the sintering mold is formed.

電極端子とリード線とを2半田付け(又は銀ロー付け)
出来る様にすることも可能である。
2. Solder (or silver braze) the electrode terminal and lead wire.
It is also possible to make it possible.

次に第1図及び第2図を参照して本発明の一実施例を説
明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は、ガ゛ラス管2をY字型に加工し両枝に電極端
子1を封入した状態を示している。第2図は、第1図に
示された7字型ガラス管の下端よりN型およびP型半導
体粉末3および4を両枝に入れ、真空ポンプで排気した
後、密閉する。この状態で上述のHIP処理を施す。そ
の後700〜900℃の温度領域で数10〜200時間
熱処理を施し1焼結半導体対を作製しこれを熱電気変換
素子とする。
FIG. 1 shows a state in which a glass tube 2 is processed into a Y-shape and electrode terminals 1 are enclosed in both branches. In FIG. 2, N-type and P-type semiconductor powders 3 and 4 are introduced into both branches from the lower end of the 7-shaped glass tube shown in FIG. 1, evacuated with a vacuum pump, and then sealed. In this state, the above-mentioned HIP process is performed. Thereafter, heat treatment is performed in a temperature range of 700 to 900° C. for several tens to 200 hours to produce one sintered semiconductor pair, which is used as a thermoelectric conversion element.

〔具体例〕〔Concrete example〕

Mn粉末を含むF e S i 2粉末とCo粉末を含
むFeS+2粉末とをY字型・ぐイレックスガラス管(
軟化温度約800℃)の下端より、その両枝に入れ、そ
して真空封入する。この封入管をHIP装置の中で10
Of)C”!で加熱しその後アルゴンガスで2000気
圧、約3時間加圧する。これを更に820℃で20時間
熱処理するとガラス管の形状を保持したままのU字型の
焼結半導体対が得られる。封入端に、封着合金52%N
iFeを封着することによって電極としだ。
F e S i 2 powder containing Mn powder and FeS+2 powder containing Co powder were placed in a Y-shaped Gyrex glass tube (
It is placed into both branches from the lower end (with a softening temperature of about 800°C), and then vacuum sealed. Place this encapsulation tube in the HIP device for 10 minutes.
Of) C"! and then pressurized with argon gas at 2000 atm for about 3 hours. When this is further heat-treated at 820°C for 20 hours, a U-shaped sintered semiconductor pair that retains the shape of the glass tube is obtained. Sealing alloy 52% N at the end of the seal.
By sealing iFe, it becomes an electrode.

得られた熱電気変換素子に800℃の温度差を与え、そ
の熱起電力と最大出力とを測定した。その結果を第1表
に示す。比較のために従来の方法で製造された試料につ
いての結果をも第1表に併せ示す。ただし、熱電気変換
素子直径D = 1.6 mm 。
A temperature difference of 800° C. was applied to the obtained thermoelectric conversion element, and its thermoelectromotive force and maximum output were measured. The results are shown in Table 1. For comparison, Table 1 also shows the results for samples manufactured by the conventional method. However, the thermoelectric conversion element diameter D = 1.6 mm.

素子の長さし=25門である。The length of the element is 25 gates.

以下今日 第1表 本発明素子の熱発電特性と従来素子のそれとの
比較 〔発明の効果〕 以上説明したように本発明では1例えば、Y字型に加工
されたガラス管の両枝にN型およびP型半導体の粉末を
下端よりそれぞれ挿入し、真空封入する。この封入管を
高温高圧下で、 HIP処理を施すことによって、その
内部の半導体粉末はガラス管の形状が保持されたまま焼
、結成型される。この様にして製造された熱電気変換素
子の相対密度は999%以上となり接合面のもろさも補
強されろ。またその発電11寺性もあがる。
Below is Table 1: Comparison of the thermoelectric power generation characteristics of the device of the present invention and those of the conventional device [Effects of the invention] As explained above, in the present invention, 1. For example, the N-type and P-type semiconductor powder are inserted from the lower end and vacuum sealed. By subjecting this sealed tube to HIP treatment under high temperature and high pressure, the semiconductor powder inside the tube is sintered and molded while maintaining the shape of the glass tube. The relative density of the thermoelectric conversion element manufactured in this manner is 999% or more, and the brittleness of the joint surface is also reinforced. In addition, the power generation capacity will also increase.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の一実施例による熱
電気変換素子の製造方法を説明するための断面図である
。 1・・・電極端子、2・・・ガラス管、3・・・N型半
導体粉末、4・・・P型半導体粉末。 12(iU 第1図     第2図
FIGS. 1 and 2 are cross-sectional views for explaining a method of manufacturing a thermoelectric conversion element according to an embodiment of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Electrode terminal, 2... Glass tube, 3... N-type semiconductor powder, 4... P-type semiconductor powder. 12 (iU Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、ガラス管の中に真空封入されたN型半導体粉末およ
びP型半導体粉末を高温高圧下で焼結成型する工程を含
むことを特徴とする熱電気変換素子の製造方法。
1. A method for manufacturing a thermoelectric conversion element, which comprises the step of sintering N-type semiconductor powder and P-type semiconductor powder vacuum-sealed in a glass tube under high temperature and high pressure.
JP59186416A 1984-09-07 1984-09-07 Method for manufacturing thermoelectric conversion element Expired - Lifetime JPH0652809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186416A JPH0652809B2 (en) 1984-09-07 1984-09-07 Method for manufacturing thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186416A JPH0652809B2 (en) 1984-09-07 1984-09-07 Method for manufacturing thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS6165487A true JPS6165487A (en) 1986-04-04
JPH0652809B2 JPH0652809B2 (en) 1994-07-06

Family

ID=16188037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186416A Expired - Lifetime JPH0652809B2 (en) 1984-09-07 1984-09-07 Method for manufacturing thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0652809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
EP0455051A2 (en) * 1990-04-20 1991-11-06 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
DE102011084442A1 (en) * 2011-10-13 2013-05-08 Schott Ag Thermoelectric component for converting e.g. engine heat energy into current for electronic unit in car, has pair of n-conductors and p-conductors covered by glass tube that exhibits triangular, square or hexagonal cross-section geometry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
EP0455051A2 (en) * 1990-04-20 1991-11-06 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
USRE35441E (en) * 1990-04-20 1997-02-04 Matsushita Electrical Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
DE102011084442A1 (en) * 2011-10-13 2013-05-08 Schott Ag Thermoelectric component for converting e.g. engine heat energy into current for electronic unit in car, has pair of n-conductors and p-conductors covered by glass tube that exhibits triangular, square or hexagonal cross-section geometry
DE102011084442B4 (en) * 2011-10-13 2018-05-03 Schott Ag Thermoelectric component with glass coated n- and p-conductors

Also Published As

Publication number Publication date
JPH0652809B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JP3502724B2 (en) Thermoelectric material
KR20140045188A (en) Thermoelectric module, thermoelectric device comprising the same, and process for preparing the thermoelectric element
JPS6165487A (en) Manufacture of thermoelectric conversion element
KR101688529B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
US3432365A (en) Composite thermoelectric assembly having preformed intermediate layers of graded composition
CN116322261A (en) Screening method of lead telluride device electrode material
US4543442A (en) GaAs Schottky barrier photo-responsive device and method of fabrication
TW201218319A (en) Series-connected high electron mobility transistors and manufacturing method thereof
US3060252A (en) Encapsulated thermoelectric elements
JPH05152616A (en) Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module
US2830239A (en) Semiconductive alloys of gallium arsenide
US2929971A (en) Semi-conductive device and method of making
RU2740006C1 (en) Method of making metal-ceramic housings of to-220, to-247, to-254 type
US3821053A (en) Thermocouple and method of making same
JPH0878733A (en) Cusns group thermoeletric conversion semiconductor material and its manufacturing method
US3331995A (en) Housed semiconductor device with thermally matched elements
JPH1022530A (en) Thermoplastic conversion element
US5133795A (en) Method of making a silicon package for a power semiconductor device
US11716903B2 (en) Thermoelectric conversion element, thermoelectric conversion module, optical sensor, method of producing thermoelectric conversion material, and method of producing thermoelectric conversion element
US3047437A (en) Method of making a rectifier
US3295029A (en) Field effect semiconductor device with polar polymer covered oxide coating
JPS6347148B2 (en)
JPH11112037A (en) Thermionic element and method for forming electrode of the same
CN116347968A (en) Method for improving Te-based thermoelectric arm performance and thermal stability by using topological close-packed phase
SU545012A1 (en) A method of manufacturing a vacuum-tight electrical input