JPS6164758A - Production of thermosensitive, electrically conductive material - Google Patents

Production of thermosensitive, electrically conductive material

Info

Publication number
JPS6164758A
JPS6164758A JP18535484A JP18535484A JPS6164758A JP S6164758 A JPS6164758 A JP S6164758A JP 18535484 A JP18535484 A JP 18535484A JP 18535484 A JP18535484 A JP 18535484A JP S6164758 A JPS6164758 A JP S6164758A
Authority
JP
Japan
Prior art keywords
treatment
particles
electrically conductive
temperature
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18535484A
Other languages
Japanese (ja)
Other versions
JPH0453903B2 (en
Inventor
Takashi Nakagawa
隆 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18535484A priority Critical patent/JPS6164758A/en
Publication of JPS6164758A publication Critical patent/JPS6164758A/en
Publication of JPH0453903B2 publication Critical patent/JPH0453903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the titled material which has low electrical resistance at room temp. and exhibits a high resistance increase ratio when elevated to a specified temp., by subjecting tine carbonaceous particles obtd. from heavy oil to a treatment for making them non-fusible and a carbonization treatment and blending them with a crystalline high-molecular polymer. CONSTITUTION:A soln. of heavy oil having a b.p. of 250 deg.C or above, asphalt or pitch in a good solvent therefore is introduced into a poor solvent therefor the finely divided by stirring to prepare fine carbonaceous particles. The particles are subjected to a treatment for making them non-fusible at 350-450 deg.C and then to a carbonization treatment at 1,000 deg.C or above, thus preparing electrically conductive particles. 30-60pts.wt. electrically conductive particles is blended with 70-40pts.wt. crystalline high-molecular polymer (e.g. high-density polyethylene or polypropylene) and the mixture is kneaded to obtain the desired thermosensitive electrically conductive material. The material is suitable for use as a thermosensitive resistive element.

Description

【発明の詳細な説明】 本発明は感熱抵抗性導電性材料の製造法に関し、詳しく
は常温でσ電気抵抗が小さく、がっ特定温度領域に昇温
時の抵抗増大倍率が大きい感熱抵抗性導電性材料の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-sensitive resistive conductive material, and more specifically to a heat-sensitive resistive conductive material that has a small σ electrical resistance at room temperature and a large resistance increase rate when the temperature is increased in a specific temperature range. Concerning the manufacturing method of synthetic materials.

従来から正温度係数特性(PTC)を存する材料、特に
電気抵抗値が特定の温度領域に達すると急激に正の温度
係数の増大する特性を有する材料は種々のものが知られ
ている(特公昭36−16338号、同50−3370
7号、同56−10352号など)。
Various materials have been known that have a positive temperature coefficient characteristic (PTC), especially materials that have a characteristic in which the positive temperature coefficient increases rapidly when the electrical resistance value reaches a specific temperature range (Tokuko Showa). No. 36-16338, No. 50-3370
No. 7, No. 56-10352, etc.).

しかしながら、これら従来がら知られているものは、常
温での比Jlt抗が高かったり、あるいは常温での比抵
抗は低くても特定の温度NMiに昇温時の抵抗増大倍率
が充分でないなど一長一短を有しており、これまでに常
温での電気抵抗が小さく、かつ特定温度領域に昇温時の
抵抗増大倍率が大きい材料は得られていない。
However, these conventionally known products have advantages and disadvantages, such as a high specific Jlt resistance at room temperature, or an insufficient increase in resistance at a specific temperature NMi even if the specific resistance is low at room temperature. Until now, no material has been obtained that has a low electrical resistance at room temperature and a large resistance increase factor when the temperature is increased in a specific temperature range.

そこで本発明者はこのような従来技術における問題点を
解消すべく種々検討を重ねた。その結果、導電性粒子と
して車質浦、アスファルトあるいはピッチを1敗細化し
て得られる炭素質微粒子を不融化し、炭化したものを、
結晶性高分子重合体と混練することにより上記従来の問
題点を解消しうろことを見出し、この知見に基いて本発
明を完成するに到った。
Therefore, the inventors of the present invention have conducted various studies in order to solve the problems in the prior art. As a result, as conductive particles, carbonaceous fine particles obtained by reducing the size of asphalt or pitch were made infusible and carbonized.
It was discovered that the above-mentioned conventional problems could be solved by kneading with a crystalline high molecular weight polymer, and based on this knowledge, the present invention was completed.

すなわち本発明は、結晶性高分子重合体に、沸点250
℃以上の重質油、アスファルトあるいはピッチを微細化
処理して得られる炭素質微粒子を不融化および炭化処理
した導電性粒子を配合し、混練することを特徴とする感
熱抵抗性導電性材料の製造法を提供するものである。
That is, the present invention provides a crystalline polymer with a boiling point of 250
Production of a heat-sensitive conductive material characterized by blending and kneading conductive particles obtained by infusible and carbonized carbonaceous fine particles obtained by refining heavy oil, asphalt, or pitch at a temperature of ℃ or above. It provides law.

本発明に用いる結晶性高分子重合体は様々なものを挙げ
ることができるが、通常は高密度ポリエチレン、低密度
ポリエチレン、ポリプロビレ乞エチレンープロピレンコ
ポリマーなどのポリオレフィン、オレフィン系共重合体
、各種のポリアミド、ポリエステルあるいはフッ素系重
合体さらにはこれらの変性物などである。
Various types of crystalline polymers can be used in the present invention, but usually polyolefins such as high-density polyethylene, low-density polyethylene, and polyethylene-propylene copolymers, olefin copolymers, and various polyamides are used. , polyesters, fluorine-based polymers, and modified products thereof.

次に本発明においては上記結晶性高分子重合体に下記の
如くして1!tられる導電性粒子を配合する。
Next, in the present invention, the above-mentioned crystalline polymer is treated with 1! as follows. Blend the conductive particles.

すなわち、原料として沸点250 ”c以上の重質油、
アスファルトあるいはピッチを用い、これを微細化処理
する。ここで微細化処理は溶剤によって行なってもよく
、あるいは単に固体状の上記原料を粉砕することによっ
て行なってもよいが、溶剤によって行なうことがより均
一で微細な粒子が得られるため好ましい。この溶剤によ
る微細化処理は、上記原料の良)容媒の溶液を貧溶媒中
に投入し、°攪拌することにより行なわれる。この操作
により析出する不溶分粒子を濾別することにより、平均
粒子径10〜1000mμ程度の炭素質微粒子を得るこ
とができる。なお、この溶剤による微細化処理に用いる
、上記原料の良溶媒としては種々のものがあり、例えば
ベンゼン、トルエン、キシレン、エチルヘンゼン、キノ
リン、ピリジンなどを挙げることができる。また、上記
原料の貧溶媒としては例えば、メタノール、エタノール
、エチルエーテル、アセトン、ヘキサン、ヘプタンなど
が挙げられる。
That is, heavy oil with a boiling point of 250"c or higher as a raw material,
Asphalt or pitch is used to make it fine. Here, the micronization treatment may be performed using a solvent or simply by pulverizing the solid raw material, but it is preferable to perform the refining treatment using a solvent because more uniform and fine particles can be obtained. This refinement treatment using a solvent is carried out by pouring a solution of the above-mentioned raw material in a good medium into a poor solvent and stirring the mixture. By filtering out insoluble particles precipitated by this operation, carbonaceous fine particles having an average particle diameter of about 10 to 1000 mμ can be obtained. There are various good solvents for the above-mentioned raw materials used in this solvent-based refinement treatment, such as benzene, toluene, xylene, ethylhensen, quinoline, and pyridine. Examples of poor solvents for the above raw materials include methanol, ethanol, ethyl ether, acetone, hexane, and heptane.

このようにして得られる炭素質微粒子を不融化および炭
化処理して導電性粒子を得る。ここで不融化処理はこの
炭素質微粒子を空気中で室温より徐々に加熱して350
〜450℃程度に昇温することにより行なわれる。なお
、昇温速度は通常、l〜5゛C/分程度である。この不
融化処理を行な、った後、炭化処理する。ここで炭化処
理は、不融化処理された炭素質微粒子を窒素ガス、アル
ゴンガスなとの不活性ガス中で1000℃以上、好まし
くは1500℃程度に昇温するごとにより行なわれる。
The carbonaceous fine particles obtained in this way are treated to be infusible and carbonized to obtain conductive particles. Here, the infusibility treatment is performed by gradually heating the carbonaceous particles in air from room temperature to 350℃.
This is done by raising the temperature to about 450°C. Note that the temperature increase rate is usually about 1 to 5°C/min. After performing this infusibility treatment, a carbonization treatment is performed. Here, the carbonization treatment is carried out by heating the infusible carbonaceous fine particles in an inert gas such as nitrogen gas or argon gas to 1000° C. or higher, preferably to about 1500° C.

このようにして得られる4電性粒子を、前記の結晶性高
分子重合体に配合し、混練する。この結晶性高分子重合
体と導電性粒子の配合割合は、前者70〜40重量部に
対し、後者30〜60重量部、好ましくは前者60〜5
0重量部に対し、後者40〜50重量部である。ここで
導電性粒子の配合量が組成物全体の30重里%未満であ
ると、得られる感熱抵抗性導電性材料の常温における比
抵抗が大きくなる。一方、導電性粒子の配合量が組成物
全体の6o重量%を超えると特定温度領域に昇温時の抵
抗増大倍率が低下する。
The tetraelectric particles thus obtained are blended with the crystalline polymer and kneaded. The mixing ratio of the crystalline polymer and the conductive particles is 70 to 40 parts by weight of the former, 30 to 60 parts by weight of the latter, preferably 60 to 5 parts by weight of the former.
The latter is 40 to 50 parts by weight compared to 0 parts by weight. If the amount of the conductive particles is less than 30% of the total composition, the resulting heat-sensitive resistive conductive material will have a high specific resistance at room temperature. On the other hand, if the amount of the conductive particles exceeds 60% by weight of the entire composition, the resistance increase rate when the temperature is increased in a specific temperature range decreases.

なお、上記両者の混練温度は特に制限はないが、通常、
用いる結晶性高分子重合体の融点以−ヒの温度、好まし
くは該融点より50’c以上高い温度である。このよう
な温度で混練することにより、常温での比抵抗を小さく
することができる。
Note that there is no particular restriction on the kneading temperature for both of the above, but usually,
The temperature is higher than the melting point of the crystalline polymer used, preferably 50'C or more higher than the melting point. By kneading at such a temperature, the specific resistance at room temperature can be reduced.

また、混練時間としては上記混練温度、すなわち用いる
結晶性高分子重合体の融点以上の温度に達してからの混
練時間が5分間以上であれば十分である。なお、この混
練はバンバリーミキサ−。
Further, as for the kneading time, it is sufficient that the kneading time is 5 minutes or more after reaching the above-mentioned kneading temperature, that is, a temperature equal to or higher than the melting point of the crystalline polymer used. This kneading is done using a Banbury mixer.

ミキシングロールなとの混練機を用いて行なえばよい。This may be carried out using a kneader such as a mixing roll.

この混練後、混練物を架橋化処理することが好ましい。After this kneading, it is preferable to subject the kneaded product to a crosslinking treatment.

架橋化処理は様々な手段により行なうことができ、例え
ば有機パーオキサイドなどの架橋剤を加えて行なう方法
、オゾンを用いる方法、電子線等の活性エネルギー線を
照射する方法などを挙げることができる。ここで有機パ
ーオキサイドとしては、ベンゾイルパーオキサイド、t
−ブチルパーオキシヘンゾエート、ジクミルパーオキサ
イド、t−ブチルクミルパーオキサイド、t−ブチルパ
ーオキサイド、2.5−ジメチル−2,5−ジ(t−ブ
チルパーオキシ)ヘキシン−3などを例示することがで
きる。
The crosslinking treatment can be carried out by various means, such as a method of adding a crosslinking agent such as an organic peroxide, a method of using ozone, and a method of irradiating with active energy rays such as electron beams. Here, as the organic peroxide, benzoyl peroxide, t
-Butyl peroxyhenzoate, dicumyl peroxide, t-butylcumyl peroxide, t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, etc. be able to.

叙上の如き操作により得られる本発明の感熱抵抗性導電
性材料は常温での電気抵抗値が低い。
The heat-sensitive resistive conductive material of the present invention obtained by the above-described operation has a low electrical resistance value at room temperature.

しかも、本発明の感熱抵抗性導電性材料は特定温度領域
に昇温時の抵抗増大倍率も大きく、感熱抵抗性導電性材
料としてきわめて有利な特性を示す。
Furthermore, the heat-sensitive resistive conductive material of the present invention has a large resistance increase ratio when the temperature is increased in a specific temperature range, and exhibits extremely advantageous characteristics as a heat-sensitive resistive conductive material.

したがって、本発明は感熱抵抗素子、自己温度制御発熱
体などに有効に利用することができる。
Therefore, the present invention can be effectively used in heat-sensitive resistance elements, self-temperature control heating elements, and the like.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 重質油としてナフサ熱分解残油10重量部をベンゼン1
5重量部に溶解した溶液をメタノール300重量部に加
えて攪拌し、析出した不溶分粒子を濾別した。得られた
炭素質粒子は、乾燥したのち管状炉に装入して100℃
より毎分1 ”cの昇温速度で400℃まで昇温しで不
融化した。次に、この粒子を窒素ガス雰囲気中で毎分5
℃の昇温速度で1000℃まで昇温しで炭化した。この
ようにして得られた導電性粒子60重量部と高密度ポリ
エチレン(出光石油化学fi1製、出光ポリエチレン4
40M)100重量部をバンバリーミキサ−に装入して
180℃において10分間混練したのち、架橋剤として
2.5−ジメチル−2,5−ジ(t−ブチルパーオキシ
)ヘキシン−3を用いて架橋した。
Example 1 10 parts by weight of naphtha pyrolysis residue as heavy oil was mixed with 1 part of benzene.
The solution dissolved in 5 parts by weight was added to 300 parts by weight of methanol and stirred, and the precipitated insoluble particles were filtered off. After drying, the obtained carbonaceous particles were charged into a tube furnace and heated at 100°C.
The temperature was increased to 400°C at a heating rate of 1"c per minute to make it infusible.Then, the particles were heated at a heating rate of 1"c per minute to make them infusible.
The temperature was raised to 1000°C at a temperature increase rate of 100°C and carbonized. 60 parts by weight of the conductive particles thus obtained and high-density polyethylene (manufactured by Idemitsu Petrochemical FI1, Idemitsu Polyethylene 4)
After charging 100 parts by weight of 40M) into a Banbury mixer and kneading at 180°C for 10 minutes, 2.5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 was used as a crosslinking agent. Crosslinked.

得られた組成物を熱プレス成形機によりシートに成形し
、シート両面に銅箔を圧着して、−辺1.51の正方形
の試験片を取出し、25℃における比抵抗を測定したと
ころ2.6Ω・CI!1であった。また、このものの1
30℃における抵抗増大倍率は、25℃における抵抗値
の10h′’倍であった。
The obtained composition was molded into a sheet using a hot press molding machine, copper foil was crimped on both sides of the sheet, a square test piece with -side 1.51 was taken out, and the specific resistance at 25°C was measured. 6Ω・CI! It was 1. Also, this one
The resistance increase factor at 30°C was 10 h'' times the resistance value at 25°C.

手続士甫正書(自発) 昭和60年9月6日Procedures Specialist Fu Seisho (self-motivated) September 6, 1985

Claims (4)

【特許請求の範囲】[Claims] (1)結晶性高分子重合体に、沸点250℃以上の重質
油、アスファルトあるいはピッチを微細化処理して得ら
れる炭素質微粒子を不融化および炭化処理した導電性粒
子を配合し、混練することを特徴とする感熱抵抗性導電
性材料の製造法。
(1) Conductive particles obtained by infusible and carbonized fine carbon particles obtained by refining heavy oil, asphalt, or pitch with a boiling point of 250°C or higher are mixed with a crystalline polymer and kneaded. A method for producing a heat-sensitive resistive conductive material, characterized by:
(2)結晶性高分子重合体70〜40重量部に対し、導
電性粒子30〜60重量部を配合する特許請求の範囲第
1項記載の製造法。
(2) The manufacturing method according to claim 1, wherein 30 to 60 parts by weight of conductive particles are blended with 70 to 40 parts by weight of the crystalline polymer.
(3)微細化処理が、沸点250℃以上の重質油、アス
ファルトあるいはピッチの良溶媒の溶液を貧溶媒中に投
入し攪拌することからなる特許請求の範囲第1項記載の
製造法。
(3) The manufacturing method according to claim 1, wherein the micronization treatment comprises adding a solution of a good solvent of heavy oil, asphalt, or pitch with a boiling point of 250° C. or higher to a poor solvent and stirring.
(4)不融化処理を350〜450℃の温度で行ない、
かつ炭化処理を1000℃以上の温度で行なう特許請求
の範囲第1項記載の製造法。
(4) performing infusibility treatment at a temperature of 350 to 450°C,
The manufacturing method according to claim 1, wherein the carbonization treatment is carried out at a temperature of 1000° C. or higher.
JP18535484A 1984-09-06 1984-09-06 Production of thermosensitive, electrically conductive material Granted JPS6164758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18535484A JPS6164758A (en) 1984-09-06 1984-09-06 Production of thermosensitive, electrically conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18535484A JPS6164758A (en) 1984-09-06 1984-09-06 Production of thermosensitive, electrically conductive material

Publications (2)

Publication Number Publication Date
JPS6164758A true JPS6164758A (en) 1986-04-03
JPH0453903B2 JPH0453903B2 (en) 1992-08-27

Family

ID=16169317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18535484A Granted JPS6164758A (en) 1984-09-06 1984-09-06 Production of thermosensitive, electrically conductive material

Country Status (1)

Country Link
JP (1) JPS6164758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371745A2 (en) * 1988-11-28 1990-06-06 Daito Communication Apparatus Co. Ltd. Preparation of positive temperature coefficient compositions and their use in protection devices
EP0484138A2 (en) * 1990-10-31 1992-05-06 Daito Communication Apparatus Co. Ltd. PTC composition
US6134428A (en) * 1995-11-06 2000-10-17 Seiko Epson Corporation Wrist mounted communicator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982735A (en) * 1972-12-13 1974-08-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982735A (en) * 1972-12-13 1974-08-09

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371745A2 (en) * 1988-11-28 1990-06-06 Daito Communication Apparatus Co. Ltd. Preparation of positive temperature coefficient compositions and their use in protection devices
EP0484138A2 (en) * 1990-10-31 1992-05-06 Daito Communication Apparatus Co. Ltd. PTC composition
US5280263A (en) * 1990-10-31 1994-01-18 Daito Communication Apparatus Co., Ltd. PTC device
US6134428A (en) * 1995-11-06 2000-10-17 Seiko Epson Corporation Wrist mounted communicator

Also Published As

Publication number Publication date
JPH0453903B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
US4534889A (en) PTC Compositions and devices comprising them
US4775778A (en) PTC compositions and devices comprising them
JP2810740B2 (en) PTC composition by grafting method
EP0038718A1 (en) Conductive polymer compositions containing fillers
CA1294398C (en) Process for producing self-restoring overcurrent protective device by grafting method
JPH03208628A (en) Production of molded body having positive temperature coefficient characteristic
GB1597007A (en) Conductive polymer compositions and devices
JPS60258902A (en) Method of producing polymer positive temperature coefficientresistor
JPS6164758A (en) Production of thermosensitive, electrically conductive material
US3689618A (en) Use of an unadvanced silicone resin binder in resistor manufacture
JP3525935B2 (en) Method for producing PTC composition
JP4729800B2 (en) Positive resistance temperature characteristic resistor
JP3262071B2 (en) Manufacturing method of carbon heating element
JPS6143633A (en) Production of heat-sensitive resistant electrically-conductive composition
JPS6165402A (en) Heat sensitive resistive conductive material and method of producing same
JPH0374002B2 (en)
JP2592105B2 (en) Manufacturing method of self-recovering overcurrent protection device by grafting method
JPH02234381A (en) Positive-resistance temperature coefficient heating body
JPS63184303A (en) Manufacture of ptc compound
JP2918306B2 (en) Conductive composite and method for producing the same
JPH05175008A (en) Manufacture of ptc resistor
JPS6142902A (en) Method of producing thermosensitive resistive conductive composition
JPH0552041B2 (en)
JPH03426B2 (en)
JPH0314064B2 (en)