JPS6162227A - Digital tank circuit - Google Patents

Digital tank circuit

Info

Publication number
JPS6162227A
JPS6162227A JP18479184A JP18479184A JPS6162227A JP S6162227 A JPS6162227 A JP S6162227A JP 18479184 A JP18479184 A JP 18479184A JP 18479184 A JP18479184 A JP 18479184A JP S6162227 A JPS6162227 A JP S6162227A
Authority
JP
Japan
Prior art keywords
adder
output
input
bit
delay means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18479184A
Other languages
Japanese (ja)
Other versions
JPH0314364B2 (en
Inventor
Satoru Kuriki
栗木 哲
Kenji Nakayama
謙二 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18479184A priority Critical patent/JPS6162227A/en
Priority to DE8585111106T priority patent/DE3584864D1/en
Priority to EP85111106A priority patent/EP0174593B1/en
Priority to US06/772,537 priority patent/US4755961A/en
Publication of JPS6162227A publication Critical patent/JPS6162227A/en
Publication of JPH0314364B2 publication Critical patent/JPH0314364B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To reduce effectively a quantized error component included in an output by an accessory circuit and to simplify the constitution by replacing four complicated multipliers with each simple bit shift circuit and bit inverting circuit with respect to a digital tank circuit extracting a single frequency component from an inputted analog signal. CONSTITUTION:A high-frequency analog signal (a) is converted into a 0-1 signal by a comparator 31, sampled by a sampler 32 and inputted to a digital filter 33. A sampling frequency fs is selected to four times the center frequency f0 of a tank circuit and two zero points are provided in a transfer function at frequencies 0 and fs/2(2f0). The operation of -1+2<-n> of the denominator of the transfer function in the digital filter 32 is executed by a circuit provided in parallel with a bit inverting circuit 34 and an n-bit right shift 35, the operation of -1 of the numerator is executed by a bit inversion 36 and the operation of 2<-n-1> is executed by an n-bit shift right 37 and a 1-bit shift right 38 respectively. Delay devices 39, 40 have a sampling period 1/fs as the delay amount.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は入力したアナログ信号から単一周波数成分を抽
出するディジタルタンク回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a digital tank circuit that extracts a single frequency component from an input analog signal.

〔従来技術の概要およびその欠点〕[Overview of conventional technology and its drawbacks]

従来ディジタルタンク回路は、アナログ信号をサンプリ
ングされた2進符号に変える手段と、加算器1乗算器、
および遅延器を含むディノクルフィルタとから構成され
ている。しかしながらディソタルフィルタに用いられる
乗算器は構成が複雑でらる上4個を必要とするため、装
置価格が高くなる欠点を有していた。またディノタルフ
ィルタの利得特性を上げようとして中心周波数でのピー
クを鋭くしようとすればする程1乗算器によシ発生する
量子化誤差の影響が無視できなくなるという欠点かぎっ
た。
Conventional digital tank circuits include a means for converting an analog signal into a sampled binary code, an adder 1 multiplier,
and a dinocle filter including a delay device. However, the multipliers used in the disortal filter have a complicated structure and require four multipliers, which has the disadvantage of increasing the cost of the device. Another disadvantage is that the more you try to sharpen the peak at the center frequency in order to improve the gain characteristics of the dinotal filter, the more the influence of the quantization error generated by the 1 multiplier cannot be ignored.

〔発明の目的〕[Purpose of the invention]

したがって本発明の1つの目的は2乗算器を用いなくて
済むディジタルタンク回路を得ようとするものである。
Therefore, one object of the present invention is to provide a digital tank circuit that does not require the use of squaring multipliers.

また本発明の他の目的は、量子化誤差の少ない  :′
+1ディジタルタンク回路を得ようとするものでちる。
Another object of the present invention is to reduce quantization errors:'
+1 If you are trying to get a digital tank circuit, it will fail.

〔発明の構成〕[Structure of the invention]

本発明は上記の目的な達成するために、・す゛ツノ′。 The present invention has been made to achieve the above objects.

リング周波数を適当に選んで乗算器を使わなくて済むよ
うに改良したものであり、又前記の改良した部分に量子
化誤差相殺回路を付加したものである。
This is an improvement that eliminates the need for a multiplier by appropriately selecting the ring frequency, and a quantization error canceling circuit is added to the improved part.

すなわち本発明によれば1本発明の第1の実施例の()
」7成を示す第1図を参照して、アナログ信号を周波数
18でサンプリングされた2進符号に変える手段と、遅
延時間が前記サンプリングの周波数の周期1/fsの2
つ分に相当する遅延手段を用いて前記2進符号から中心
周波数foのタイミングの抽出を行うディヅタルフィル
タとから成るタンク回路において、前記サンプリングの
周波数fを前記中心周、波数fの4倍に選び、且つ前記
ディノタルフィルタ(33)が、nを正の整数と1−で
、直列に同じ向きに配置され中間点が前記遅延手段(3
9゜40)の入力に接続されている第1および第2の加
算器(41,42)と、出力が前記第1の加算器(41
)の一方の入力に接続されている第3の加算器(43)
と、前記2進符号を受け出力を前記第1の加算器(=1
1)の他の入力に送るnビット右シフト(37)と。
That is, according to the present invention, (1) of the first embodiment of the present invention
Referring to FIG. 1, which shows a system for converting an analog signal into a binary code sampled at a frequency of 18, and a delay time of 1/fs of the period of said sampling frequency,
and a digital filter that extracts the timing of the center frequency fo from the binary code using delay means equivalent to 1.5 times, the sampling frequency f is set to 4 times the center frequency and the wave number f. and the dinotal filter (33) is arranged in series in the same direction, with n being a positive integer and 1-, and the midpoint is selected as the delay means (33).
first and second adders (41, 42) connected to the inputs of the first adder (41, 40);
) a third adder (43) connected to one input of the
, the binary code is received and the output is sent to the first adder (=1
1) with an n-bit right shift (37) sent to the other input.

前記遅延手段(39、40)の出力を共通に受け、出力
を前記第3の加算器(43)7)2つの入力にそれぞれ
送るビット反転(34)およびnビット右シフトC35
)の並列回路と、前記遅延手段(39、40)の出力を
受け出力を前記第2の加算器(42)に送る1ビット右
ノフ)(36)と、前記第2の加算器(42)の出力を
受け出力が前記中心周波数foのタイミングとなる1ビ
ット右シフト(38)とを有していることを特徴とする
デイヅタルタンク回路が得られる。
bit inversion (34) and n-bit right shift C35 which commonly receives the output of the delay means (39, 40) and sends the output to the two inputs of the third adder (43) 7);
), a 1-bit right nof (36) that receives the output of the delay means (39, 40) and sends the output to the second adder (42), and the second adder (42). A digital tank circuit is obtained which is characterized in that it receives the output of , and has a 1-bit right shift (38) whose output is at the timing of the center frequency fo.

また本発明によれば、第1図および第2の実施例の構成
を示す第2図を併せ参照して、前記の第1の発明による
デイノタルタンク回路を主体とし。
Further, according to the present invention, with reference to FIG. 1 and FIG. 2 showing the configuration of the second embodiment, the deinotal tank circuit according to the first invention is mainly used.

このタンク回路の遅延手段(39、40)の出力とnビ
ット右シフト(35ンの入力との間に1両者に接続され
た第4の加算器(44)と、この第4の加算器(・14
)の出力を入力とする下位nビット切出しく48)。
A fourth adder (44) is connected between the output of the delay means (39, 40) of this tank circuit and the input of the n-bit right shift (35);・14
) as input and extracts the lower n bits 48).

ビット反転(47)、および前記遅延手段(39、4Φ
と実質的に同じ遅延時間を持ち、出力を前記第・tの加
算器(4りの入力に送る付加遅延手段(L 5 +、 
il 6)を記載の順に配置した直列回路を付加したこ
とな特徴とするディジタルタンク回路が得られる。
bit inversion (47), and the delay means (39, 4Φ
additional delay means (L 5 +,
A digital tank circuit characterized by adding a series circuit in which il 6) is arranged in the order described is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のような構成により、4つの複雑な構成の
乗算器を簡単な構成のビットシフト回路及びビット反転
回路各1つで置き換えることができて装置構成が非常に
簡略化され、また付加回路により出力中に含まれる量子
化誤差成分が効果的に低減される。
With the above configuration, the present invention can replace four multipliers with a complex configuration with one each of a bit shift circuit and a bit inversion circuit with a simple configuration, greatly simplifying the device configuration. The circuit effectively reduces the quantization error component contained in the output.

〔従来技術の具体例〕[Specific example of conventional technology]

第3図は従来技術によるディヅタルタンク回路の4R成
を示した図である。信号aは抽出すべき中心周波数fの
成分を強く含むように予め変換を施した高周波アナログ
信号である。ここに前記の変換とは、バイポーラ信号の
ときは全波整流を掛け。
FIG. 3 is a diagram showing a 4R configuration of a digital tank circuit according to the prior art. The signal a is a high frequency analog signal that has been converted in advance so that it strongly contains the component of the center frequency f to be extracted. Here, the conversion mentioned above involves applying full-wave rectification in the case of a bipolar signal.

NRZ信号の場合は微分したあと全波整流を掛けること
を意味する。こうして得られた高周波アナログ信号は比
較器11に入力され、スライスされて0−1信号に変換
され、さらにサンプラ12によシ周波数fでサンプリン
グされ、ディノタルフィルタ13に入力される。なお前
記の代υに高周波アナログ信号をサンプラでサンプリン
グしてからA/Dコンバータで量子化する方法もある。
In the case of an NRZ signal, this means performing full-wave rectification after differentiation. The high frequency analog signal thus obtained is input to a comparator 11, sliced and converted into a 0-1 signal, further sampled at a frequency f by a sampler 12, and input to a dinotal filter 13. Note that there is also a method in which the high frequency analog signal is sampled using a sampler and then quantized using an A/D converter.

ただφコンバータは構造が複雑である。However, the φ converter has a complicated structure.

ディノタルフィルター3はal 、a2  、a3  
Dinotal filter 3 is al, a2, a3
.

a4をそれぞれ乗算係数とする乗算器14,15゜16
.17とlc+dだけそれぞれビットのシフトを行うビ
ットシフト18,19と、サンプリング周期1/fを遅
延時間とする遅延器21.22と、加算器22,23,
24.25とから成っている。この回路では4つの乗算
器14〜17の乗算係数を調整してタンク回路の中心周
波数fでデイノタルフィルター3の利得特性が鋭いピー
クを持つように設計される。従って従来の装置では。
Multipliers 14 and 15゜16 each using a4 as a multiplication coefficient
.. bit shifters 18 and 19 that shift bits by 17 and lc+d, delayers 21 and 22 whose delay time is the sampling period 1/f, adders 22 and 23,
It consists of 24.25. This circuit is designed so that the gain characteristics of the deinotal filter 3 have a sharp peak at the center frequency f of the tank circuit by adjusting the multiplication coefficients of the four multipliers 14 to 17. Therefore in conventional equipment.

先に述べたように、複雑な構成の乗算器を4つも必要と
し、又乗算器によシ発生する量子化誤差の影響が無視出
来なくなる。             t〔本え、。
As mentioned above, as many as four multipliers with complicated configurations are required, and the influence of quantization errors generated by the multipliers cannot be ignored. t [Honoe,.

実□fll )                ’1
第1図は本発明の一実施例の構成をあられした図である
。高周波アナログ信号aが比較器31で0−1信号に変
換され、サンプラ32でサングリ般に2次IIRフィル
タの伝達函数は、第7図のディノタルフィルタ13の構
成をもとにしてあられすと。
Real □ full ) '1
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. The high frequency analog signal a is converted into a 0-1 signal by the comparator 31, and the sampler 32 converts it into a 0-1 signal.In general, the transfer function of the second-order IIR filter is calculated based on the configuration of the dinotal filter 13 shown in FIG. .

であられされるが、この伝達函数においてサンプリング
周波数18をタンク回路の中心周波数fo04倍に選ん
です、=0とし1周波数0 、 fs/2C2fo)の
2点に零点を設けてa、=0.a2=−1とし。
In this transfer function, the sampling frequency 18 is selected to be 4 times the center frequency of the tank circuit, fo0, = 0, and zero points are provided at two points, 1 frequency 0, fs/2C2fo), and a, = 0. Let a2=-1.

さらにb2 ”−1+2−nの形にすると、このときの
伝達函数H(7,)は で与えられる。
Furthermore, if it is made into the form b2''-1+2-n, the transfer function H(7,) in this case is given by.

ディノタルフィルタ32の構成は上記の伝達函数をその
まま実現しているもので8分母の一1+2″′nの演算
は、ビット反転34とnビット右シフトはビット反転3
6で+ 2−n−’の演算はnビット右シフト37と1
ビット右シフト38でそれぞれ行っている。遅延器39
と40は第1図の遅延器20.21と全く同じであって
、いずれもサンプリング周期1/fsをその遅延量とし
ている。加算器41.42.43については特に説明す
る必要はないであろう。
The configuration of the dinotal filter 32 directly realizes the above transfer function, and the operation of 8 denominator 1 + 2'''n is performed by bit inversion 34 and n-bit right shift by bit inversion 3.
In 6, +2-n-' operation is n-bit right shift 37 and 1
Each bit is shifted to the right by 38 bits. delay device 39
and 40 are exactly the same as the delay devices 20 and 21 in FIG. 1, and both have a sampling period of 1/fs as their delay amount. Adders 41, 42, 43 do not require any special explanation.

以上の説明から分るように、第【図の本発明によるデソ
タルタンク回路では、複雑な構成の乗算器を用いること
なしに第4図の従来の回路と全く同じ動作を行うことが
できる。
As can be seen from the above description, the desotal tank circuit according to the present invention shown in FIG. 4 can perform exactly the same operation as the conventional circuit shown in FIG. 4 without using a complex multiplier.

第2図は本発明の第2の実施例の構成をあられした図で
ある。この回路が第1図の回路と異る点は、nビット右
シフト35の入力端に加g器4t1を挿入し、この加算
器を含めて遅延器45.46゜ビット反転器47.及び
下位nビット切出し48で構成した量子化誤差相殺悸倫
回路49を設けたことである。この付加回路において、
nビット右シフト35の動作の際に切りすてる量(量子
化誤の出力は2ne(t)であられされ、この量のビッ
トを反転した量−2ne(t)が2段の遅延回路44と
45を通って加算器44に加えられ、フィードバックさ
れる。このとき、e(t)を入力とみたときの伝達関数
Hcizlは。
FIG. 2 is a diagram showing the configuration of a second embodiment of the present invention. The difference between this circuit and the circuit shown in FIG. 1 is that an adder 4t1 is inserted at the input end of the n-bit right shifter 35, and including this adder, a delay unit 45.46° bit inverter 47. and a quantization error cancellation circuit 49 consisting of a lower n bit cutout 48. In this additional circuit,
The amount to be cut off during the operation of the n-bit right shift 35 (the output of quantization error is 2ne(t), and the amount obtained by inverting the bits of this amount - 2ne(t) is the amount to be cut off by the two-stage delay circuit 44. 45 and is fed back to the adder 44. At this time, the transfer function Hcizl when e(t) is considered as an input is:

で与えられ。given by.

II l(c II〜=IT挿、 1He(z)14は
たかだかΔ/2(Δ=2 、bは小数点以下のビット数
)なので、出力中の誤差成分の]辰幅はΔ/2程度とな
る。
II l(c II~=IT insertion, 1He(z)14 is at most Δ/2 (Δ=2, b is the number of bits below the decimal point), so the width of the error component in the output is about Δ/2. Become.

一方、付加回路を設けない場合、nビット右シフト35
の出力の誤差は最大2n倍に増幅され。
On the other hand, if no additional circuit is provided, n-bit right shift 35
The error in the output of is amplified by a maximum of 2n times.

出力中の誤差成分の振幅は2 nM′2程度となる。す
なわち、付加回路のない場合は出力の下位n+1ビット
が誤差を含むこととなるのに対し、付加回路をつけると
、下位1ビットのみに抑えられろ。
The amplitude of the error component in the output is approximately 2 nM'2. That is, if there is no additional circuit, the lower n+1 bits of the output will contain an error, but with the additional circuit, the error can be suppressed to only the lower 1 bit.

以上の説明から分るように、こ、の付加回路を設けるこ
とにより量子化誤差の成分が大きく相殺される。従って
第3図のデジタルタンク回路は1乗算器を用いないこと
によって回路構成が筒型になることと相俟って、タンク
回路として極めて優れた特性を有していることになる。
As can be seen from the above explanation, by providing this additional circuit, the quantization error component is largely canceled out. Therefore, the digital tank circuit shown in FIG. 3 has extremely excellent characteristics as a tank circuit, in combination with the fact that the circuit configuration is cylindrical by not using a 1 multiplier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例の構成を示す図。 第2図は本発明の第2の実施例の構成を示す図。 第3図は従来のディジタルタンク回路構成を示す図であ
る。 記号の説明:14+15.16.17は乗023゜20
.21は遅延器、31は比較器、32はサンプラ、33
はデイノタルフィルタ、34はビット反転、35はnビ
ット右シフト、36はビット反 ’J、 ti転、37
はnビット右シフト、38は1ビット右シフト、39.
40は遅延回路(合わせて遅延手段)、’45.46は
遅延回路(合わせて付加遅延手段)、47はビット反転
、48は下位nビット切出し、49は量子化誤差相殺神
喘回路をそれぞれあられしている。 手続補正書(自発)     < 昭和60年12月3日
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a diagram showing the configuration of a second embodiment of the present invention. FIG. 3 is a diagram showing a conventional digital tank circuit configuration. Symbol explanation: 14+15.16.17 is the power 023°20
.. 21 is a delay device, 31 is a comparator, 32 is a sampler, 33
is a deinotal filter, 34 is bit inversion, 35 is n-bit right shift, 36 is bit inversion 'J, ti inversion, 37
is an n-bit right shift, 38 is a 1-bit right shift, 39.
40 is a delay circuit (combined as a delay means), '45.46 is a delay circuit (combined as an additional delay means), 47 is a bit inversion, 48 is a lower n bit cutout, and 49 is a quantization error canceling circuit. are doing. Procedural amendment (voluntary) < December 3, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)アナログ信号を周波数f_sでサンプリングされ
た2進符号に変える手段と、遅延時間が前記サンプリン
グの周波数の周期1/f_sの2つ分に相当する遅延手
段を用いて前記2進符号から中心周波数f_oのタイミ
ングの抽出を行うディジタルフィルタとから成るタンク
回路において、前記サンプリングの周波数f_sを前記
中心周波数f_oの4倍に選び、且つ前記ディジタルフ
ィルタが、nを正の整数として、直列に同じ向きに配置
され中間点が前記遅延手段の入力に接続されている第1
および第2の加算器と、出力が前記第1の加算器の一方
の入力に接続されている第3の加算器と、前記2進符号
を受け出力を前記第1の加算器の他の入力に送るnビッ
ト右シフトと、前記遅延手段の出力を共通に受け、出力
を前記第3の加算器の2つの入力にそれぞれ送るビット
反転およびnビット右シフトの並列回路と、前記遅延手
段の出力を受け出力を前記第2の加算器に送る1ビット
右シフトと、前記第2の加算器の出力を受け出力が前記
中心周波数f_oのタイミングとなる1ビット右シフト
とを有していることを特徴とするディジタルタンク回路
(1) Using means for converting an analog signal into a binary code sampled at a frequency f_s, and a delay means whose delay time corresponds to two cycles of the sampling frequency, 1/f_s, In a tank circuit consisting of a digital filter that extracts the timing of a frequency f_o, the sampling frequency f_s is selected to be four times the center frequency f_o, and the digital filters are connected in series in the same direction, where n is a positive integer. a first one located at and having an intermediate point connected to the input of said delay means;
and a second adder, a third adder having an output connected to one input of the first adder, and a third adder receiving the binary code and transmitting the output to the other input of the first adder. a bit inversion and n-bit right shift parallel circuit that commonly receives the output of the delay means and sends the outputs to two inputs of the third adder, respectively; and an output of the delay means. and a 1-bit right shift that receives the output of the second adder and sends the output to the second adder, and a 1-bit right shift that receives the output of the second adder and causes the output to be at the timing of the center frequency f_o. Features a digital tank circuit.
(2)アナログ信号を周波数f_sでサンプリングされ
た2進符号に変える手段と、遅延時間が前記サンプリン
グの周波数の周期1/f_sの2つ分に相当する遅延手
段を用いて前記2進符号から中心周波数f_oのタイミ
ングの抽出を行うディジタルフィルタとから成るタンク
回路において、前記サンプリングの周波数f_sを前記
中心周波数f_oの4倍に選び、且つ前記ディジタルフ
ィルタが、nを正の整数として、直列に同じ向きに配置
され中間点が前記遅延手段の入力に接続されている第1
および第2の加算器と、出力が前記第1の加算器の一方
の入力に接続されている第3の加算器と、前記2進符号
を受け出力を前記第1の加算器の他の入力に送るnビッ
ト右シフトと、前記遅延手段の出力を受け出力を前記第
3の加算器の一方の入力に送るビット反転および前記遅
延手段の出力を第4の加算器を介して受け出力を前記第
3の加算器の他方の入力に送るnビット右シフトの並列
回路と、前記第4の加算器の出力を入力とする下位nビ
ット切出し、ビット反転、および前記遅延手段と実質的
に同じ遅延時間を持ち、出力を前記第4の加算器の入力
に送る付加遅延手段を記載の順に配置した直列回路と、
前記遅延手段の出力を受け出力を前記第2の加算器に送
る1ビット右シフトと、前記第2の加算器の出力を受け
出力が前記中心周波数f_oのタイミングとなる1ビッ
ト右シフトとを有していることを特徴とするディジタル
タンク回路。
(2) converting the analog signal into a binary code sampled at a frequency f_s, and using a delay means whose delay time corresponds to two cycles of the sampling frequency, 1/f_s; In a tank circuit consisting of a digital filter that extracts the timing of a frequency f_o, the sampling frequency f_s is selected to be four times the center frequency f_o, and the digital filters are connected in series in the same direction, where n is a positive integer. a first one located at and having an intermediate point connected to the input of said delay means;
and a second adder, a third adder having an output connected to one input of the first adder, and a third adder receiving the binary code and transmitting the output to the other input of the first adder. n-bit right shifting, receiving the output of the delay means and sending the output to one input of the third adder, and receiving the output of the delay means through a fourth adder and sending the output to the third adder. A parallel circuit for right-shifting n bits to be sent to the other input of the third adder, cutting out the lower n bits using the output of the fourth adder as input, inverting the bits, and delaying substantially the same as the delay means. a series circuit having additional delay means arranged in the order listed and having an output time and sending an output to the input of the fourth adder;
A 1-bit right shift that receives the output of the delay means and sends the output to the second adder, and a 1-bit right shift that receives the output of the second adder and causes the output to be at the timing of the center frequency f_o. A digital tank circuit characterized by:
JP18479184A 1984-09-04 1984-09-04 Digital tank circuit Granted JPS6162227A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18479184A JPS6162227A (en) 1984-09-04 1984-09-04 Digital tank circuit
DE8585111106T DE3584864D1 (en) 1984-09-04 1985-09-03 DIGITAL VIBRATION CIRCUIT.
EP85111106A EP0174593B1 (en) 1984-09-04 1985-09-03 Digital tank circuit
US06/772,537 US4755961A (en) 1984-09-04 1985-09-04 Digital tank circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18479184A JPS6162227A (en) 1984-09-04 1984-09-04 Digital tank circuit

Publications (2)

Publication Number Publication Date
JPS6162227A true JPS6162227A (en) 1986-03-31
JPH0314364B2 JPH0314364B2 (en) 1991-02-26

Family

ID=16159353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18479184A Granted JPS6162227A (en) 1984-09-04 1984-09-04 Digital tank circuit

Country Status (1)

Country Link
JP (1) JPS6162227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228118A (en) * 1989-02-28 1990-09-11 Toshiba Corp Cyclic type digital filter
JPH03263910A (en) * 1990-03-14 1991-11-25 Fujitsu Ltd Iir filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228118A (en) * 1989-02-28 1990-09-11 Toshiba Corp Cyclic type digital filter
JPH03263910A (en) * 1990-03-14 1991-11-25 Fujitsu Ltd Iir filter

Also Published As

Publication number Publication date
JPH0314364B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
US8514979B2 (en) Integrated demodulator, filter and decimator (DFD) for a radio receiver
US4902979A (en) Homodyne down-converter with digital Hilbert transform filtering
JP4148992B2 (en) Quadrature signal converter
JPH08181573A (en) Cascade connection integrator
US5504455A (en) Efficient digital quadrature demodulator
CA1304786C (en) Digital radio frequency receiver
US6285306B1 (en) Circuits and methods for functional processing of delta modulated pulse density stream
US3803501A (en) Frequency discriminator using digital non-recursive filters
JPS6162227A (en) Digital tank circuit
US4755961A (en) Digital tank circuit
JP3977809B2 (en) Information transmission method
JPH0735847A (en) Reception circuit
JP2795053B2 (en) Demodulator
JP2002271431A (en) Low-pass filter
JPH06244678A (en) Digital filter circuit
JPH01136407A (en) Hilbert transformation device
JP3123941B2 (en) Baseband signal processing circuit for quadrature signal demodulation
RU2211530C2 (en) Data transmission process
US6324222B1 (en) Digital receiver with polyphase structure
JP2635361B2 (en) Modulator
JP2674029B2 (en) Digital filter device
CN112187215A (en) Cascaded half-band interpolation filter structure
CA2150389C (en) Efficient digital quadrature demodulator
RU2207737C1 (en) Procedure of information transmission and converter of sequence of digital readings
JPS63502789A (en) Analog/digital conversion: methods and devices thereof