JPS6161566A - Device for forming image - Google Patents

Device for forming image

Info

Publication number
JPS6161566A
JPS6161566A JP59182691A JP18269184A JPS6161566A JP S6161566 A JPS6161566 A JP S6161566A JP 59182691 A JP59182691 A JP 59182691A JP 18269184 A JP18269184 A JP 18269184A JP S6161566 A JPS6161566 A JP S6161566A
Authority
JP
Japan
Prior art keywords
dither
dot
output
image
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59182691A
Other languages
Japanese (ja)
Other versions
JPH0550909B2 (en
Inventor
Yuji Nishigaki
西垣 有二
Hidejiro Kadowaki
門脇 秀次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59182691A priority Critical patent/JPS6161566A/en
Publication of JPS6161566A publication Critical patent/JPS6161566A/en
Publication of JPH0550909B2 publication Critical patent/JPH0550909B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To obtain a stable device for forming images with uniform gradient by combining with a beam multi-values output with the modulation of the pulse width and a dither means and thickening a dot to the main scanning direction of a beam without thickening the dot to the opposite direction. CONSTITUTION:Image input data is inputted to a dither converting part 1 for the dither conversion so that plural gradient signals can be outputted by each one element of an image outputs. The output of the converting part 1 is inputted to a pulse width modulating circuit 2 and synchronized with a clock signal (a). When a dot is thickened with 1/2 and 1 dot widths corresponding to the dither matrixes of 1/2 and 1dot gradient conversions 1a, 1b respectively and to the main scanning direction, an image signal pulse-moduled and formed with (1+1/2) dot width. The dot is formed so as to be thickened hardly to the main scanning and the opposite direction. The output of the circuit 2 drives a laser 3, and a binary modulating beam is image-formed on a photosensitive drum 9 through a lens 4, revolutional polyhedron 5, lens 6. An reflected light from a mirror 7 is detected by an optical detector 8 to form a synchronous signal of the main scanning.

Description

【発明の詳細な説明】 [技術分野] 本発明は像形成装置に関し、特にディザ変換法とパルス
幅変調による多値出力を組合せた階調記録方式の像形成
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an image forming apparatus, and more particularly to an image forming apparatus using a gradation recording method that combines a dither conversion method and multi-value output using pulse width modulation.

[従来技術] デジタルプリンタの階調記録は1,0の2値出力のディ
ザ法によるものが多い、しかしこの方式は階調性を良く
しようとすると解像度が悪くなる関係にある0例えば、
白を含めて17階調とするには4X4のディザマトリク
スが必要であり、65階調とするには8×8のディザマ
トリクスが必要である。このように階調数を多くとれば
ディザ変換領域は広がり、解像度が悪くなる関係にある
。このためディザ法と1画素ビーム多値出力とを組合せ
て解像度を落とさずに階調性を良くする方法が考えられ
ている。この方法によると、例えば4X4のディザマト
リクスの場合、ビーム2値出力では17階調までしかと
れないが、そのままの解像度でビーム3値出力にすると
33階調まで、ビーム4値出力にすると49階調まで、
ビーム5値出力にすると65階調までとれるようになる
[Prior Art] Digital printers often record gradations using a dithering method that outputs binary values of 1 and 0. However, this method has the effect that when trying to improve gradation, the resolution deteriorates.
A 4×4 dither matrix is required to provide 17 gradations including white, and an 8×8 dither matrix is required to provide 65 gradations. In this way, if the number of gradations is increased, the dither conversion area becomes wider and the resolution deteriorates. For this reason, a method is being considered that combines the dither method and single-pixel beam multivalue output to improve gradation without reducing resolution. According to this method, for example, in the case of a 4x4 dither matrix, only up to 17 gradations can be obtained with binary beam output, but if the beam is output with 3 levels at the same resolution, it will be up to 33 gradations, and with 4 levels of beam output, it will be up to 49 gradations. up to the key,
If you set the beam to 5-level output, you will be able to get up to 65 gradations.

一方、ディザパターンには大別して分ITk型とドツト
集中型がある。ビーム2値出力では分散型(例えばベイ
ヤー型)よりドツト集中型(例えば渦巻型)の方が階調
性が良いことが知られている。しかしパルス幅変調ビー
ム多値出力を採用した場合に渦巻型ディザパターンを用
いると次のような問題が発生する0例として4×4のデ
ィザマトリクスとパルス幅0.1/2.1ドツトのビー
ム3値出力を考えることにする。第2図は一例の渦巻型
ディザパターンをビーム主走査、副走査との関係におい
て示す図である0図において、ビームは左から右へ主走
査され、該主走査1回毎に上から下へ副走査される。ま
た第3図にはパルス幅変調されたビーム3値出力信号を
示す0図において、aは画素形成に同期しているクロッ
ク信号、bは独立の1/2 ドツト幅に変調された画像
信号、Cは独立の1ドツト幅に変調された画像信号、d
は、例えば第2図のディザパターンの1から2に向けて
主走査方向にドツトが太っていくときの(1+1/2)
  ドツト幅に変調された画像信号、eは同じく3から
4に向けて主走査方向と逆方向にドツトが太っていく°
ときの(1/2+1)  ドツト幅に変調された画像信
号である。この説明は、常に主走査に沿って1画素の左
側から172 ドツト幅ずつ太ってゆく規約に従ってい
る。
On the other hand, dither patterns can be broadly classified into minute ITk type and dot concentration type. It is known that a dot concentrated type (for example, spiral type) has better gradation than a dispersed type (for example, Bayer type) for beam binary output. However, if a spiral dither pattern is used when a pulse width modulated beam multilevel output is adopted, the following problems will occur.As an example, a 4x4 dither matrix and a beam with a pulse width of 0.1/2.1 dots are used. Let's consider ternary output. Figure 2 is a diagram showing an example of a spiral dither pattern in relation to beam main scanning and sub-scanning. Sub-scanned. Further, in FIG. 3, a pulse width modulated beam ternary output signal is shown, in which a is a clock signal synchronized with pixel formation, b is an independent image signal modulated to 1/2 dot width, C is an image signal modulated into an independent one-dot width, d
For example, when the dots become thicker in the main scanning direction from 1 to 2 in the dither pattern in Figure 2, (1+1/2)
The image signal e modulated to the dot width also shows that the dot becomes thicker from 3 to 4 in the opposite direction to the main scanning direction.
This is an image signal modulated to a dot width of (1/2+1). This explanation follows the convention that the width of one pixel always increases by 172 dots from the left side along the main scan.

第4図(a)〜(C)は主走査(X)及び副走査(Y)
方向にガウス分布で近似されるレーザビームスポットで
、感光体を主走査したときのエネルギー分布を示す図で
ある0図において、信号b′〜e′は夫々第3図の画像
信号b−eで感光体を露光した場合に対応している。さ
て、このようなエネルギー分布で露光された感光ドラム
がトナーにより顕像化される場合に、(1+1/2) 
 ドツト幅信号dによる露光と、(1/2+1)  ド
ツト集中型eによる露光とでは結果のプリント7a度が
異なる。しかもビームパワーが変動したり、現像プロセ
スに係る諸条件が変動したような場合には、連続した(
1+1/2)  ドツト幅信号dによる露光の方が不連
続の(1/2+1)  ドツト幅信号eによる露光より
も結果の濃度に影響を受けにくいことが解る。更に詳し
く述べると、第4図(b)及び(C)の信号d′とe′
では夫々顕像化レベルd1より上にある光エネルギーの
部分が顕像化されドツトを形成する。この場合に、例え
ばビームパワーを大きくすると光エネルギーがそれに比
例して大きくなり、顕像化レベルd1が相対的にd2ま
で下がってドツトが大きくなる関係が容易に理解される
。電子写真方式のプリンタでは、かかる状態がビームパ
ワーの変動のみならず、感光体電位、現像バイアス等の
諸条件の変動によっても現れるものである。しかし、何
れにしてもドツトの大きさの変動、つまり濃度の変動は
連続した(1+1/2)  ドツト幅信号dによる露光
の方が不連続の(1/2+1)  ドツト幅信号eによ
る露光よりも小さいことが解る。しかもレーザドライバ
によってはパルス駆動信号に対する発光の立上りが遅れ
るものがあり、(1/2+1)  ドツト幅信号eによ
る露光の場合は立上りが2回あるからその分立上りロス
が大きくなり、不安定性が増す、更に3値、4値、5値
・・・とビーム多値出力化を進めていくと、階調数は多
くとれる反面、画質の不安定性は増すのである。このよ
うに、従来のパルス幅変調ビーム多値出力と渦巻型ディ
ザパターンを併用すると、主走査方向にドツトが太ると
きと、その逆方向にドツトが太るときとで階調性が異り
、特に後者はビームエネルギの変動や電子写真プロセス
諸条件の変動による画質の影響を受けやすいという欠点
があった。
Figure 4 (a) to (C) are main scanning (X) and sub-scanning (Y)
In Figure 0, which is a diagram showing the energy distribution when the photoreceptor is main scanned with a laser beam spot approximated by a Gaussian distribution in the direction, signals b' to e' are the image signals b to e in Figure 3, respectively. This corresponds to the case where the photoreceptor is exposed. Now, when a photosensitive drum exposed with such an energy distribution is visualized with toner, (1+1/2)
The resulting print 7a degree is different between exposure using the dot width signal d and exposure using the (1/2+1) dot concentration type e. Moreover, if the beam power fluctuates or the various conditions related to the development process fluctuate, continuous (
It can be seen that exposure using the 1+1/2) dot width signal d is less affected by the resulting density than exposure using the discontinuous (1/2+1) dot width signal e. More specifically, the signals d' and e' in FIGS. 4(b) and (C)
In each case, the portion of the light energy above the visualization level d1 is visualized to form a dot. In this case, it is easy to understand that, for example, when the beam power is increased, the optical energy increases in proportion to it, the visualization level d1 relatively decreases to d2, and the dot becomes larger. In electrophotographic printers, such a state occurs not only due to variations in beam power but also due to variations in various conditions such as photoreceptor potential and developing bias. However, in any case, the variation in dot size, that is, the variation in density, is continuous (1+1/2). Exposure using the dot width signal d is better than exposure using the discontinuous (1/2+1) dot width signal e. I understand that it's small. Moreover, depending on the laser driver, there is a delay in the rise of light emission in response to the pulse drive signal, and in the case of exposure using the (1/2 + 1) dot width signal e, there are two rises, which increases the loss of the rise and increases instability. As the beam output is further increased to 3-value, 4-value, 5-value, etc., the number of gradations can be increased, but the instability of image quality increases. In this way, when a conventional pulse width modulated beam multilevel output and a spiral dither pattern are used together, the gradation is different when the dots get thicker in the main scanning direction and when the dots get thicker in the opposite direction. The latter has the disadvantage that image quality is easily affected by variations in beam energy and electrophotographic process conditions.

[目的コ 本発明は上述した従来技術の欠点に鑑みて成されたもの
であって、その目的とする所は、階調性の一様で安定な
像形成装置を提供することにある。
[Objective] The present invention has been made in view of the above-mentioned drawbacks of the prior art, and its object is to provide a stable image forming apparatus with uniform gradation.

[実施例] 以下1図面に基づいて本発明に係る一実施例を詳細に説
明する。
[Example] Hereinafter, an example according to the present invention will be described in detail based on one drawing.

第1図は本発明に係る一実施例のレーザビームプリンタ
の主要構成を示すブロック図である。図において、画像
入力データはディザ変換部1(こ入力され、画像出力1
画素につき複数階調信号を出力するようにディザ変換さ
れる。即ち、図中1aは1/2 ドツト階調変換するデ
ィザマトリクスであり、1bは1ドツト階調変換するデ
ィザマトリクスである0次にディザ変換部1の階調出力
はノクルス幅変調回路2に入力される。ここではクロッ
ク信号aに同期してディザ変換部lの階調出力←こ基づ
き、172 ドツト幅にパルス幅変調された画像信号、
1ドツト幅にパルス幅変調された画像信号、及び主走査
方向にドツトが太っていくときの(1+1/2)  ド
ツト幅にパルス幅変調された画像信号等が形成される。
FIG. 1 is a block diagram showing the main configuration of a laser beam printer according to an embodiment of the present invention. In the figure, image input data is input to a dither converter 1 (this is input to an image output 1).
Dither conversion is performed to output a multi-tone signal for each pixel. That is, in the figure, 1a is a dither matrix for 1/2 dot gradation conversion, and 1b is a dither matrix for 1 dot gradation conversion.The gradation output of the 0th order dither conversion section 1 is input to the Nockles width modulation circuit 2. be done. Here, the gradation output of the dither converter l is synchronized with the clock signal a.Based on this, the image signal is pulse width modulated to a width of 172 dots,
An image signal pulse-width-modulated to a one-dot width, and an image signal pulse-width-modulated to a (1+1/2) dot width when the dot becomes thicker in the main scanning direction are formed.

しかしディザマトリクスの配列により、主走査と逆方向
にドツトが太っていくときの(1/2+1)  ドツト
幅にパルス幅変調されるような画像信号は形成されない
ようになっている。この点については後述する0次にパ
ルス幅変調回路2の画像出力信号は半導体レーザ3を2
(fi駆動する。該半導体レーザ3からの2値変調光ビ
ームはコリメートレンズ4を介して回転多面鏡5に入射
され、ここで主走査(矢印H)方向に偏向され、その偏
向光ビームは結像レンズ6により感光ドラム9上に結像
される。その際、主走査の先端部に配されたミラー7か
らの反射光は光検出器8で検出され、主走査の同期信号
を形成している。また同時に感光ドラム9は矢印V方向
に回転されるから、結果としてドラム9の面上には主走
査と副走査による潜像が形成される。
However, the arrangement of the dither matrix prevents the formation of an image signal that is pulse width modulated to the (1/2+1) dot width when the dots become thicker in the direction opposite to the main scanning direction. Regarding this point, the image output signal of the zero-order pulse width modulation circuit 2, which will be described later, is
(fi drive. The binary modulated light beam from the semiconductor laser 3 is incident on the rotating polygon mirror 5 via the collimating lens 4, where it is deflected in the main scanning direction (arrow H), and the deflected light beam is focused. An image is formed on the photosensitive drum 9 by the image lens 6. At this time, the reflected light from the mirror 7 arranged at the leading end of the main scanning is detected by the photodetector 8, and a synchronizing signal for the main scanning is formed. At the same time, since the photosensitive drum 9 is rotated in the direction of arrow V, a latent image is formed on the surface of the drum 9 by main scanning and sub-scanning.

第5図(a)〜(f)は主走査、副走査に沿う反復ディ
ザ変換により、出力画像に現れるべき濃度中心からビー
ム走査方向にはドツトを太らせるようにディザ変換し、
該ビーム走査方向の逆方向にはドツトを太らせないよう
にディザ変換する一実施例のデイザパ・ターンを示す図
である。同図(a)は3X3で1/2 ドツト階調にデ
ィザ変換するパターン、同図(b)は同じく3X3で1
ド゛ット階調にディザ変換するパターンである。この両
パターンでビーム3値(0、1/2  、1)出力のノ
くルス幅変調信号を形成している。さて、両、<ターン
(a)、(b)をみると、ドツトの太る方向l−1:常
に右方向(走査方向)と下方向(副走査方向)であるこ
とが解る。しかしデイザノくターンは主走査及び副走査
に沿って2次元的に繰返されるのであるから、ある出力
画素を中心にディザパターンをみれば同図(a)のパタ
ーンは夫々同図(C)〜(f)のパターンのようにみえ
る。従ってマトリクス内のドツトの太り方を追っただけ
ではビーム走査の逆方向にはドツトを太らせないように
している関係が容易に判断できない、同図(b)のディ
ザパターンについても同様である。すなわち、本実施例
ではディザパターンの繰返しも考慮して、実質的にビー
ム走査の逆方向にはドツトを太らせないようにしでいる
のである。
FIGS. 5(a) to 5(f) show that dots are dithered to become thicker in the beam scanning direction from the density center that should appear in the output image by repeated dithering along the main scanning and sub-scanning.
FIG. 6 is a diagram showing a dither pattern of an embodiment in which dither conversion is performed so as not to make dots thicker in the direction opposite to the beam scanning direction. The same figure (a) shows a pattern of dither conversion to 1/2 dot gradation in 3×3, and the same figure (b) shows the same pattern in 3×3 as 1/2 dot gradation.
This is a pattern for dither conversion to dot gradation. These two patterns form a Norculus width modulation signal with three beam values (0, 1/2, 1) output. Now, if we look at both <turns (a) and (b), we can see that the dot thickening direction l-1 is always to the right (scanning direction) and downward (sub-scanning direction). However, since dithering turns are repeated two-dimensionally along the main scanning and sub-scanning directions, if we look at the dither pattern centered around a certain output pixel, the patterns shown in (a) in the same figure will become different from those shown in (C) to (C) in the same figure, respectively. It looks like the pattern f). Therefore, the relationship that prevents the dots from becoming thicker in the opposite direction of beam scanning cannot be easily determined by simply observing how the dots in the matrix become thicker, and the same is true for the dither pattern shown in FIG. 3(b). That is, in this embodiment, the repetition of the dither pattern is also taken into consideration, so that the dots are not made substantially thicker in the opposite direction of beam scanning.

第6図(a)〜(C)は他の種類のディザ変換について
ドツトを打つ順序を示したものであり、ビーム走査の逆
方向にドツトを太らせることが禁1  止される例を示
した図である。同図(・)のパターンは2と3,1と4
の所でビーム走査の逆方向にドツトを太らせるから使用
できない、同図(b)のパターンは主走査の繰返し点で
ある1と3の所でビーム走査の逆方向にドツトを太らせ
るから使用できない、同図(C)のパターンは1と2の
所で上に太っているが1本実施例では副走査の関係にあ
たるから使用できる。
Figures 6(a) to (C) show the order of dots for other types of dither conversion, and show examples where it is prohibited to make dots thicker in the opposite direction of beam scanning. It is a diagram. The patterns in the same figure (・) are 2 and 3, 1 and 4
This pattern cannot be used because it thickens the dot in the opposite direction of the beam scan at points 1 and 3, which are the repetition points of the main scan. Although the pattern shown in FIG. 2C is thicker at the top at points 1 and 2, it can be used in this embodiment because it corresponds to the sub-scanning relationship.

第7図(a)、(b)は夫々ビーム3値出力の場合の1
/2  ドツトと1ドツトのディザ変換について、ドツ
トを打つ順序を示した図である。同図(a)と(b)と
ではドツトを打つ順序が異、なっていることに注目され
たい、これら172  ドツトと1ドツトとは必ずしも
同じ順序で打たれなくてもよいし、1/2  ドツトの
レベルを省いていきなり1ドツトを打ったり、複数個を
同時に打ってもよいのである。
Figures 7(a) and (b) show 1 in the case of three-level beam output, respectively.
2 is a diagram showing the order of dots for dither conversion between 2 dots and 1 dot. Note that the dots are placed in different orders in Figures (a) and (b); these 172 dots and 1 dots do not necessarily have to be placed in the same order, and 1/2 dots do not necessarily have to be placed in the same order. You can omit the dot level and hit one dot all at once, or you can hit multiple dots at the same time.

第8図(a)〜(d)は4×4のディザ変換についてド
ツトを打つ順序を示した図である。このうち同図(a)
〜(C)は同一のパターンについて視点を変えたもので
あるが、同様にしてマトリクス内のドツトの太り方を追
っただけではビーム走査の逆方向にはドツトを太らせな
いようにしている関係が容易に判断できないことが解る
FIGS. 8(a) to 8(d) are diagrams showing the order of dots for 4×4 dither conversion. Of these, the same figure (a)
~ (C) shows the same pattern from a different perspective, but in the same way, just by following the thickening of the dots in the matrix, the dots do not get thicker in the opposite direction of beam scanning. It turns out that it is not easy to judge.

更に解像度を落とさず階調性を良くする方法として基本
マトリクス複数個で階調性を表現する方法がある0例え
ば、3X3の基本マトリクス4個を階調性表現の単位と
し、対角に2個ずつのドツトを打っていくようにすると
階調数は3×3のマトリクス1個の場合の2倍になる。
Furthermore, as a method to improve gradation without reducing resolution, there is a method of expressing gradation using multiple basic matrices.For example, use four 3x3 basic matrices as the unit of gradation expression, and use two on the diagonal. If the dots are placed one by one, the number of gradations will be twice as many as in the case of one 3×3 matrix.

第9図はこの方法に本発明を適用した例を、ドツトを打
つ順序で示す図である。解像度にかかわるドツト巣中の
単位は3×3の基本マトリクスであり、階調性表現の単
位は3×3の基本マトリクスを4個用いた。即ち6×6
のマトリクスである。この6×6のマトリクスに2個ず
つドツトを打っていくことにより、階調数は3×3のマ
トリクス1個の場合の2倍になる。この例では6×6の
マトリクスに2個ずつドツトを打っていったが、1個ず
つ打つようにすれば、階調数は3X3マトリクス1個の
場合の4倍になるが、ドツト数が少ないハイライト部分
でテクスチャーパターンが出やすくなる。−尚、本発明
はサーマルプリンタ、インクジェットプリンタ等として
も実現可能である。
FIG. 9 is a diagram showing an example in which the present invention is applied to this method in the order in which dots are placed. The unit in the dot nest related to resolution is a 3x3 basic matrix, and the unit for gradation expression is four 3x3 basic matrices. i.e. 6×6
This is the matrix of By placing two dots on this 6x6 matrix, the number of gradations becomes twice that of one 3x3 matrix. In this example, two dots were placed in a 6x6 matrix, but if dots were placed one at a time, the number of tones would be four times that of one 3x3 matrix, but the number of dots would be smaller. Texture patterns appear more easily in highlighted areas. -The present invention can also be realized as a thermal printer, an inkjet printer, etc.

[効果] 以上述べた如く本発明によれば、ディザ法とパルス幅変
調によるビーム多値出力とを組合せた階調記録方式を採
用する場合において、ディザパターンの繰返しをす5慮
し、実質的に出力画像に現れるべき濃度中心からドツト
を太らせ、かつ例えば実施例の如く、ビームの主走査方
向にのみドットを太らせることにより、出力画像の階調
性が一様化し、格段に改善される効果がある。また電子
写真方式を採用するような場合には、動作諸環境の変化
によるプロセス条件の変動に対しても、安定した階調性
を維持する効果がある。更にまた本発明をカラープリン
タとする場合には、各色の階調性が一様で安定している
ため、色相の変動が少ない高画質のフルカラープリント
が得られる。
[Effects] As described above, according to the present invention, when employing a gradation recording method that combines a dither method and beam multilevel output using pulse width modulation, the repetition of the dither pattern is taken into consideration, and the By making the dots thicker from the center of the density that should appear in the output image, and making the dots thicker only in the main scanning direction of the beam, as in the example, the gradation of the output image can be made uniform and significantly improved. It has the effect of Further, when an electrophotographic method is employed, it is effective to maintain stable gradation even in the face of fluctuations in process conditions due to changes in various operating environments. Furthermore, when the present invention is applied to a color printer, since the gradation of each color is uniform and stable, high-quality full-color prints with little variation in hue can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例のレーザビームプリンタ
の主要構成を示すブロック図、第2図は一例の渦巻型デ
ィザパターンをビーム主走査、副走査との関係において
示す図、第3図はパルス幅変調されたビーム3値出力信
号を示す図、 第4図(a)〜(C)は主走査(X)及び副走ビームス
ポットで感光体を主走査したときのエネルギー分布を示
す図、 第5図(a)〜(f)は主走査、副走査に沿う反復ディ
ザ変換により、出力画像に現れるべき濃度中心からビー
ム走査方向にはドツトを太らせるようにディザ変換し、
該ビーム走査方向の逆方向にはドツトを太らせないよう
にディザ変換する一実施例のディザパターンを示す図、 第6図(a)〜(C)は他の種類のディザ変換について
ドツトを打つ順序を示したものであり、ビーム走査の逆
方向に′ドツトを太らせることが禁止される例を示した
図、 第7図(a)、(b)は夫々ビーム3値出力の場合の1
/2 ドツトと1ドツトのディザ変換について、ドツト
を打つ順序を示した図、 fJ18図(’a) 〜(d)は4X4のディザ変換に
ついてドツトを打つ順序を示した図、 第9図は基本マトリクス複数個で階調性を表現する他の
実施例のディザ変換について、ドツトを打つ順序を示し
た図である。 ここで、1・・・ディザ変換部、2・・・パルス幅変調
回路、3・・・半導体レーザ、4・・・コリメートレン
ズ、5・・・回転多面鏡、6・・・結像レンズ、7・・
・ミラー、8・・・光検出器、9・・・感光ドラムであ
る。 特許出願人   キャノン株式会社 第2図 支え−k − 第3図 −を 第4図 □× □× 第5図 (C)       (d) (e)       (f) 第6図 (C) 第7図 (Q)       (b) 第8 (C) 第9図 (d)
FIG. 1 is a block diagram showing the main configuration of a laser beam printer according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a spiral dither pattern in relation to main scanning and sub-scanning of the beam, and FIG. 3 Figure 4 shows the pulse width modulated beam ternary output signal, and Figures 4 (a) to (C) are diagrams showing the energy distribution when the photoreceptor is main scanned with the main scanning (X) and sub scanning beam spots. , FIGS. 5(a) to (f) show that dots are dithered to become thicker in the beam scanning direction from the density center that should appear in the output image by repeated dithering along the main scanning and sub-scanning.
Figures 6(a) to 6(c) show a dither pattern of an embodiment in which dithering is performed so as not to thicken dots in the direction opposite to the beam scanning direction. Figures 7(a) and 7(b) show the order in which it is prohibited to thicken the dots in the opposite direction of beam scanning.
/2 Figure showing the order of dots for dot and 1-dot dither conversion, fJ18 Figures ('a) to (d) are diagrams showing the order of dots for 4X4 dither conversion, Figure 9 is the basic FIG. 7 is a diagram showing the order of dots in another embodiment of dither conversion in which gradation is expressed using a plurality of matrices. Here, 1... dither conversion unit, 2... pulse width modulation circuit, 3... semiconductor laser, 4... collimating lens, 5... rotating polygon mirror, 6... imaging lens, 7...
-Mirror, 8... photodetector, 9... photosensitive drum. Patent Applicant: Canon Co., Ltd. Figure 2 Support - k Figure 3 - Figure 4 □× □ Q) (b) Part 8 (C) Fig. 9 (d)

Claims (1)

【特許請求の範囲】[Claims] 入力画像信号をディザ変換するディザ変換手段と、該デ
ィザ変換手段出力に従つて出力1画素につきパルス幅変
調された多値画像信号を出力するパルス幅変調手段と、
該パルス幅変調手段出力の多値画像信号に従つて走査出
力を2値駆動する駆動手段を備える像形成装置において
、前記ディザ変換手段は反復ディザ変換により、出力画
像に現れるべき濃度中心から走査方向にはドットを太ら
せるようにディザ変換し、該走査方向の逆方向にはドッ
トを太らせないようにディザ変換することを特徴とする
像形成装置。
a dither converting means for dither converting an input image signal; a pulse width modulating means for outputting a multivalued image signal pulse width modulated for each output pixel according to the output of the dither converting means;
In an image forming apparatus including a driving means for driving a scanning output in two values according to a multivalued image signal output from the pulse width modulation means, the dither conversion means performs repetitive dither conversion to change the density in the scanning direction from the center of density to appear in the output image. An image forming apparatus characterized in that dither conversion is performed to make dots thicker in the first direction, and dither conversion is performed in a direction opposite to the scanning direction so as not to make dots thicker.
JP59182691A 1984-09-03 1984-09-03 Device for forming image Granted JPS6161566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182691A JPS6161566A (en) 1984-09-03 1984-09-03 Device for forming image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182691A JPS6161566A (en) 1984-09-03 1984-09-03 Device for forming image

Publications (2)

Publication Number Publication Date
JPS6161566A true JPS6161566A (en) 1986-03-29
JPH0550909B2 JPH0550909B2 (en) 1993-07-30

Family

ID=16122743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182691A Granted JPS6161566A (en) 1984-09-03 1984-09-03 Device for forming image

Country Status (1)

Country Link
JP (1) JPS6161566A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912568A (en) * 1987-02-27 1990-03-27 Dainippon Screen Mfg. Co., Ltd. Halftone dot image recording apparatus and method employing high density screen pattern signal for light beam modulation
US5105280A (en) * 1989-01-12 1992-04-14 Minolta Camera Kabushiki Kaisha Image forming device which can form an image by printing a plurality of pixel unit areas which are composed of multiple sub pixels
US5206686A (en) * 1990-03-20 1993-04-27 Minolta Camera Kabushiki Kaisha Apparatus for forming an image with use of electrophotographic process including gradation correction
US5274424A (en) * 1991-12-16 1993-12-28 Minolta Camera Kabushiki Kaisha Image forming apparatus controlled according to smallest non-zero toner density
US5343235A (en) * 1990-03-20 1994-08-30 Minolta Camera Kabushiki Kaisha Apparatus and method for forming an image including correction for laser beam size
US5585927A (en) * 1992-05-19 1996-12-17 Minolta Camera Kabushiki Kaisha Digital image forming apparatus having gradation characteristic setting means
US6008911A (en) * 1992-05-19 1999-12-28 Minolta Co., Ltd. Digital image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173973A (en) * 1982-04-06 1983-10-12 Canon Inc Picture processing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173973A (en) * 1982-04-06 1983-10-12 Canon Inc Picture processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912568A (en) * 1987-02-27 1990-03-27 Dainippon Screen Mfg. Co., Ltd. Halftone dot image recording apparatus and method employing high density screen pattern signal for light beam modulation
US5105280A (en) * 1989-01-12 1992-04-14 Minolta Camera Kabushiki Kaisha Image forming device which can form an image by printing a plurality of pixel unit areas which are composed of multiple sub pixels
US5206686A (en) * 1990-03-20 1993-04-27 Minolta Camera Kabushiki Kaisha Apparatus for forming an image with use of electrophotographic process including gradation correction
US5343235A (en) * 1990-03-20 1994-08-30 Minolta Camera Kabushiki Kaisha Apparatus and method for forming an image including correction for laser beam size
US5274424A (en) * 1991-12-16 1993-12-28 Minolta Camera Kabushiki Kaisha Image forming apparatus controlled according to smallest non-zero toner density
US5585927A (en) * 1992-05-19 1996-12-17 Minolta Camera Kabushiki Kaisha Digital image forming apparatus having gradation characteristic setting means
US6008911A (en) * 1992-05-19 1999-12-28 Minolta Co., Ltd. Digital image forming apparatus

Also Published As

Publication number Publication date
JPH0550909B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4903123A (en) Image processing apparatus using inclined line screens to reduce Moire
EP0204094B1 (en) Scanning recording type printing method and apparatus for realizing the same
EP0603167B1 (en) Image processing method and apparatus
JP4909232B2 (en) Information processing apparatus, image processing apparatus, and methods thereof
US4897734A (en) Image processing apparatus
US4980757A (en) Image processing apparatus for gradation processing of an image signal to output a pulse width modulated signal
US5901275A (en) Clustered dot and line multilevel halftoning for electrographic colour printing
US5019896A (en) Method for forming halftone data
JPS6161566A (en) Device for forming image
JP2004042325A (en) Printer and its image processor
US5270835A (en) Method for forming halftone screen and apparatus therefor
US5172248A (en) Method for forming halftone screen and apparatus therefor
JP2004195970A (en) Image formation device
US5627919A (en) Image forming method and apparatus
JPS61118069A (en) Picture processing device
EP0342640B1 (en) Method for forming halftone screen
JP3155292B2 (en) Image forming device
JPS62145966A (en) Method and apparatus for forming picture
JPH048697Y2 (en)
JPH10123772A (en) Image forming device
JPS63307954A (en) Image processor
JPH0642710B2 (en) Image processing device
JPS62284574A (en) Image recorder
JP2898982B2 (en) Color image forming apparatus, color image processing apparatus and method
JP2568055B2 (en) Pixel recording pulse signal generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term