JPS6161383B2 - - Google Patents

Info

Publication number
JPS6161383B2
JPS6161383B2 JP54101504A JP10150479A JPS6161383B2 JP S6161383 B2 JPS6161383 B2 JP S6161383B2 JP 54101504 A JP54101504 A JP 54101504A JP 10150479 A JP10150479 A JP 10150479A JP S6161383 B2 JPS6161383 B2 JP S6161383B2
Authority
JP
Japan
Prior art keywords
photoreceptor
photosensitive layer
layer
photosensitive
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54101504A
Other languages
Japanese (ja)
Other versions
JPS5625743A (en
Inventor
Koshiro Mori
Shinichiro Ishihara
Tsuneo Tanaka
Seiichi Nagata
Shoichi Fukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10150479A priority Critical patent/JPS5625743A/en
Publication of JPS5625743A publication Critical patent/JPS5625743A/en
Publication of JPS6161383B2 publication Critical patent/JPS6161383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は、電子写真用感光体に関するもので、
可視領域に亙つて感度を有し、低照度にも感応す
る極めて高感度であり、残留電位の小さい、かつ
カラー用にも適する高速用の無公害電子写真用感
光体を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor,
The purpose of the present invention is to provide a high-speed, pollution-free electrophotographic photoreceptor that has sensitivity over the visible region, is sensitive to low illuminance, has a low residual potential, and is also suitable for color photography. do.

従来電子写真用感光体としては、無定形セレン
を10数ミクロン以上設けたものや、無定形セレン
を0.3ミクロン程度設けた上に有機電導性物質を
数ミクロン以上設けたもの(以下セレン系感光体
という)が実用化されている。
Conventional photoreceptors for electrophotography include those with amorphous selenium of 10-odd microns or more, and those with amorphous selenium of about 0.3 microns and organic conductive material of several microns or more (hereinafter referred to as selenium-based photoreceptors). ) has been put into practical use.

前記セレン系感光体は、可視領域の長波長側に
充分な感度を持つていないだけでなく、感光層の
セレンが有害な物質であるという欠点があつた。
The selenium-based photoreceptor not only does not have sufficient sensitivity on the long wavelength side of the visible region, but also has the disadvantage that selenium in the photosensitive layer is a harmful substance.

本発明は、感光体の感光層に可視領域に亙つて
充分な感度を有する無公害な非晶質珪素を使用す
ることによつて、前記セレン系感光体の欠点を解
消したものである。
The present invention solves the drawbacks of the selenium-based photoreceptor by using non-polluting amorphous silicon having sufficient sensitivity over the visible range in the photosensitive layer of the photoreceptor.

以下、本発明を図面を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

実施例 1 第1図は本発明の感光体の一実施例の構造断面
図である。この感光体は、アルミニウム等の導電
性基板1の上にシランガスをグロー放電法により
分解するか、または珪素をスパツタ法により蒸着
するかして、不純物ドープしない非晶質珪素から
なる感光層2を膜厚にしてほぼ1ミクロン設け、
次に感光層2の上に非晶質炭化珪素からなる遷移
層を設け、さらに遷移層3の上にポリビニルカル
バゾール層4を膜厚にして数ミクロン以上設けて
なるものである。こうして得られる構造をもつ感
光体は、以下に述べるような機構によつて電子写
真用感光体としての働きをする。
Example 1 FIG. 1 is a structural sectional view of an example of the photoreceptor of the present invention. This photoreceptor has a photosensitive layer 2 made of amorphous silicon that is not doped with impurities, by decomposing silane gas by a glow discharge method or depositing silicon by a sputtering method on a conductive substrate 1 made of aluminum or the like. The film thickness is approximately 1 micron,
Next, a transition layer made of amorphous silicon carbide is provided on the photosensitive layer 2, and a polyvinyl carbazole layer 4 with a thickness of several microns or more is further provided on the transition layer 3. The photoreceptor having the structure thus obtained functions as an electrophotographic photoreceptor by the mechanism described below.

すなわち、光源5から光6が感光体に照射され
ると、感光層2はポリビニルカルバゾール層4と
遷移層3とを通過してくる光を吸収して、感光層
2内部に電子・正孔対なるキヤリヤーを発生させ
る。なおポリビニルカルバゾール層4表面には予
め負電荷7が均一に帯電されている。前記感光層
2内部に発生した電子は導電性基板に、正孔は遷
移層3を介してポリビニルカルバゾール層4にそ
れぞれ転送される。ポリビニルカルバゾール層に
転送された正孔は表面に帯電している負電荷7を
中和する。一方感光体に光が照射されない場合
は、感光層は電子・正孔対なるキヤリヤーを発生
しないので、ポリビニルカルバゾール層表面に帯
電した負電荷7は中和されずに帯電した電荷量が
表面にほぼ一定に保持される。このような機構は
感光体表面に結像した光学像をポリビニルカルバ
ゾール層表面に帯電した電荷量に変換する働きを
する。即ち光学像を静電荷による静電像に変換す
る。前記静電像を形成する静電荷による静電引力
は印刷用トナーをポリビニルカルバゾール表面に
吸着させる。そして吸着したトナーは普通紙に転
写される。以上説明した機構によつて本発明の感
光体は電子写真用の感光体として機能させること
ができる。
That is, when the photoreceptor is irradiated with light 6 from the light source 5, the photosensitive layer 2 absorbs the light passing through the polyvinyl carbazole layer 4 and the transition layer 3, and creates electron/hole pairs inside the photosensitive layer 2. generate a carrier. Note that the surface of the polyvinyl carbazole layer 4 is uniformly charged with negative charges 7 in advance. Electrons generated within the photosensitive layer 2 are transferred to the conductive substrate, and holes are transferred to the polyvinyl carbazole layer 4 via the transition layer 3. The holes transferred to the polyvinyl carbazole layer neutralize the negative charges 7 on the surface. On the other hand, when the photoreceptor is not irradiated with light, the photoreceptor layer does not generate carriers consisting of electron and hole pairs, so the negative charges 7 on the surface of the polyvinyl carbazole layer are not neutralized, and almost all of the charges are transferred to the surface. held constant. Such a mechanism functions to convert the optical image formed on the surface of the photoreceptor into the amount of charge charged on the surface of the polyvinyl carbazole layer. That is, the optical image is converted into an electrostatic image by electrostatic charges. The electrostatic attraction caused by the electrostatic charges forming the electrostatic image causes the printing toner to be attracted to the polyvinyl carbazole surface. The adsorbed toner is then transferred to plain paper. The mechanism described above allows the photoreceptor of the present invention to function as a photoreceptor for electrophotography.

従来、非晶質珪素の電気光学的特性の代表値
は、電子移動度μeが0.1cm2/V・秒、正孔移動度
μhが0.03cm2/V・秒、電子の寿命が10-7秒、正
孔の寿命が10-7秒以下、可視領域における吸収係
数が104〜105cm-1、光学的な禁止帯巾が1.6〜
1.8eVであるといわれている。前記の特性は、非
晶質珪素の厚さが高々1ミクロン程度で十分光を
吸収でき、かつ移動度と寿命を考慮すると、感光
層に実際に印加されている電場で十分にキヤリヤ
ーが感光層内部を通過できることを意味するもの
である。
Conventionally, typical values of the electro-optical properties of amorphous silicon include electron mobility μ e of 0.1 cm 2 /V・sec, hole mobility μ h of 0.03 cm 2 /V・sec, and electron lifetime of 10 -7 seconds, hole lifetime less than 10 -7 seconds, absorption coefficient in visible region 10 4 to 10 5 cm -1 , optical band gap 1.6 to
It is said to be 1.8eV. The above characteristics are such that amorphous silicon can absorb enough light with a thickness of about 1 micron at most, and considering mobility and lifetime, the electric field actually applied to the photosensitive layer can sufficiently absorb the carrier. This means that the inside can be passed through.

感光層2とポリビニルカルバゾール層4との界
面に遷移層3を設けることは、感光層内部に発生
した正孔を感光層からポリビニルカルバゾールへ
転送するのを容易にする。この理由は第2図およ
び第3図に示されている感光体のエネルギ準位を
表す模式図によつて説明できる。
Providing the transition layer 3 at the interface between the photosensitive layer 2 and the polyvinylcarbazole layer 4 facilitates the transfer of holes generated inside the photosensitive layer from the photosensitive layer to the polyvinylcarbazole layer. The reason for this can be explained by the schematic diagrams showing the energy levels of the photoreceptor shown in FIGS. 2 and 3.

第2図aは感光層とポリビニルカルバゾールと
が接触したと仮定した場合に起こるエネルギー準
位図であつて、外部電界が印加されていない時点
の図である。第2図bは第2図aにおいてポリビ
ニルカルバゾールの表面にコロナ放電等の手段に
よつて負電荷を帯電させた場合に起こるエネルギ
ー準位図である。第2図bは正孔が感光層からポ
リビニルカルバゾールへ転送される時に、界面に
おいて正孔に対して電位障壁をつくることを表し
ている。この障壁は正孔が感光層からポリビニル
カルバゾールへ転送されるのを妨げる働きをし、
結果的に感光体の感度を低下させる。
FIG. 2a is an energy level diagram that occurs when it is assumed that the photosensitive layer and polyvinylcarbazole are in contact, and is a diagram at the time when no external electric field is applied. FIG. 2b is an energy level diagram that occurs when the surface of polyvinyl carbazole in FIG. 2a is negatively charged by means such as corona discharge. FIG. 2b shows that when holes are transferred from the photosensitive layer to polyvinylcarbazole, a potential barrier is created for the holes at the interface. This barrier serves to prevent holes from being transferred from the photosensitive layer to the polyvinylcarbazole,
As a result, the sensitivity of the photoreceptor is reduced.

一方第3図aは感光層とポリビニルカルバゾー
ルの界面に遷移層を設けた時に生じると仮定した
場合のエネルギー準位図であつて、外部電界が印
加されていない時点の図である。第3図bは第2
図aにおいてポリビニルカルバゾールの表面にコ
ロナ放電等の手段によつて負電荷を帯電させた場
合に起こるエネルギー準位図である。前記遷移層
は比抵抗の値が1014Ω・cm以上の高抵抗であるの
で、外部電界が感光体に印加された時には、遷移
層は実質的に高電界にさらされ空乏層のような働
きをする。この結果、正孔が感光層からポリビニ
ルカルバゾールへ転送される時に正孔に対する電
位障壁は実質的に消滅する。よつて正孔は容易に
転送されるようになり、感光体の感度が改善され
る。さらに感光層に遷移層がない構造の感光体に
比較して残留電位が著しく改善される。
On the other hand, FIG. 3a is an energy level diagram assumed to occur when a transition layer is provided at the interface between the photosensitive layer and polyvinyl carbazole, and is a diagram at the time when no external electric field is applied. Figure 3b is the second
This is an energy level diagram that occurs when the surface of polyvinyl carbazole in Figure a is negatively charged by means such as corona discharge. Since the transition layer has a high resistivity value of 10 14 Ω·cm or more, when an external electric field is applied to the photoreceptor, the transition layer is substantially exposed to the high electric field and acts like a depletion layer. do. As a result, the potential barrier to holes substantially disappears when holes are transferred from the photosensitive layer to polyvinylcarbazole. Thus, holes can be easily transferred and the sensitivity of the photoreceptor is improved. Furthermore, the residual potential is significantly improved compared to a photoreceptor having a structure in which the photosensitive layer does not have a transition layer.

前記遷移層に使用した非晶質炭化珪素は、炭素
の組成比を変化させることにより、第4図に示す
ように非晶質炭化珪素の禁止帯巾を適当に変える
ことができる。このことは禁止帯巾の異なる2種
の物質(感光層と有機電導性物質)を積層にする
時に、両者の界面に接合が整合性よく行われるよ
うに適当な禁止帯巾を持つ遷移層を設けて、キヤ
リヤーの転送が容易に行われるようにすることが
できることを意味している。なお、第4図の矢印
部分は測定誤差範囲を表す。
By changing the carbon composition ratio of the amorphous silicon carbide used in the transition layer, the forbidden band width of the amorphous silicon carbide can be appropriately changed as shown in FIG. This means that when two materials with different forbidden widths (a photosensitive layer and an organic conductive material) are laminated, a transition layer with an appropriate forbidden width must be provided at the interface of the two to ensure good bonding. This means that the carrier can be easily transferred. Note that the arrow portion in FIG. 4 represents the measurement error range.

実施例 2 第5図は本発明の別の実施例の構造断面図であ
る。実施例1の感光体の構造と比較した場合の相
違は、実施例2の感光体の構造が導電性基板1と
感光層2の界面に、この両者のオーミツク接合を
より良好なものにするために導電性基板側におい
て高濃度に不純物ドープした層(以下オーミツク
層という)8を設けて、感光層内部に自然に内部
電界が印加される構造にした点である。
Embodiment 2 FIG. 5 is a structural sectional view of another embodiment of the present invention. The difference when compared with the structure of the photoreceptor in Example 1 is that the structure of the photoreceptor in Example 2 provides a better ohmic bond between the conductive substrate 1 and the photosensitive layer 2 at the interface between the two. A layer 8 doped with impurities at a high concentration (hereinafter referred to as an ohmic layer) is provided on the conductive substrate side to create a structure in which an internal electric field is naturally applied inside the photosensitive layer.

前記感光体において導電性基板にアルミニウム
を使用し、感光層の禁止帯が1.7eV、感光層とア
ルミニウムとの界面がn型になるようにリン、砒
素のような周期律表族元素を不純物として高濃
度にドープされ、前記構造のエネルギー準位図が
第6図のように表されると仮定すると、光によつ
て励起された電子・正孔が感光層の内部電界によ
り転送されやすくなり、その結果高感度の感光体
が得られる。
In the photoreceptor, aluminum is used for the conductive substrate, and periodic table group elements such as phosphorus and arsenic are added as impurities so that the forbidden band of the photosensitive layer is 1.7 eV and the interface between the photosensitive layer and aluminum is n-type. Assuming that it is highly doped and the energy level diagram of the structure is expressed as shown in Figure 6, electrons and holes excited by light will be easily transferred by the internal electric field of the photosensitive layer. As a result, a highly sensitive photoreceptor can be obtained.

また感光層とアルミニウムとの界面がホウ素ま
たはアルミニウム等周期律表族の元素によりp
型に高濃度不純物添加した場合は感光層内部に発
生した電子・正孔のうち電子は有機電導性物質側
に、正孔はアルミニウム側にそれぞれ転送されや
すくなり、結果的に高感度な感光体が得られる。
In addition, the interface between the photosensitive layer and aluminum is made of p
When a high concentration of impurities is added to the mold, out of the electrons and holes generated inside the photosensitive layer, electrons are more likely to be transferred to the organic conductive material side, and holes are more easily transferred to the aluminum side, resulting in a highly sensitive photoreceptor. is obtained.

次に、実施例1および2の感光体の特性評価
は、通常のカールソン法により行い、露光量と露
光時間の積に対する表面帯電々位の減衰値を測定
した。前記感光体の感光特性の測定結果と従来の
セレン系感光体の感光特性を第7図に示してい
る。第7図において曲線Aは実施例1において説
明した構造を有する感光体の感光特性、曲線Bは
実施例2において説明した構造を有する感光体の
感光特性、曲線Cは従来使用されているセレン系
感光体の感光特性である。
Next, the characteristics of the photoreceptors of Examples 1 and 2 were evaluated by the usual Carlson method, and the attenuation value of the surface charge potential with respect to the product of the exposure amount and the exposure time was measured. FIG. 7 shows the measurement results of the photosensitive characteristics of the photoreceptor and the photosensitive characteristics of a conventional selenium-based photoreceptor. In FIG. 7, curve A is the photosensitive characteristic of the photoconductor having the structure explained in Example 1, curve B is the photosensitive characteristic of the photoconductor having the structure explained in Example 2, and curve C is the photosensitive characteristic of the photoconductor having the structure explained in Example 2. These are the photosensitive characteristics of the photoreceptor.

第7図からも明らかなように、実施例1で説明
した発明によつて従来のセレン系感光体の感光特
性にほぼ匹敵する特性を有する感光体が得られ
た。そして実施例2で説明した発明によつて従来
のセレン系感光体の感光特性に比較して露光時の
帯電々位の減衰時間がほぼ10倍早く減衰する感光
体が得られた。
As is clear from FIG. 7, by the invention described in Example 1, a photoreceptor having photosensitive characteristics almost comparable to those of the conventional selenium-based photoreceptor was obtained. According to the invention described in Example 2, a photoreceptor was obtained in which the charge level attenuates approximately 10 times faster during exposure than the photosensitive characteristics of conventional selenium-based photoreceptors.

第8図はこの感光体の感光特性について、露光
量に対して、帯電々位の初期減衰量を単位時間当
たりの電位減衰量として表した図である。この図
から本発明の感光体は1Lux以下の低照度の露光
量に対しても充分な電位減衰速度を有することが
わかる。このことは感光層の量子効率がほぼ1に
近い値であることを意味している。しかも0.01〜
1Luxの照度範囲において相反則がよく成立して
いることをも示している。
FIG. 8 is a diagram showing the photosensitive characteristics of this photoreceptor, in which the initial attenuation of the charging potential is expressed as the amount of potential attenuation per unit time with respect to the amount of exposure. From this figure, it can be seen that the photoreceptor of the present invention has a sufficient potential decay rate even for low illuminance exposure of 1 Lux or less. This means that the quantum efficiency of the photosensitive layer is approximately close to 1. Moreover, from 0.01
It is also shown that the reciprocity law holds well in the illuminance range of 1 Lux.

次に、前記の感光体の感光層の可視光に対する
分光感度特性を第9図に示す。曲線A,B,Cは
第7図で説明した感光体の感光特性にそれぞれ対
応した感光層の特性曲線である。実施例1の感光
層の分光感度特性と実施例2の感光層の分光感度
特性は実質的に相違がなかつたので同一の曲線で
表した。第9図から明らかなように従来のセレン
系感光体の感光層は可視領域の長波長域に感度を
持つていないが、本発明の感光体の感光層は可視
領域全域に亙つて充分な感度を持つていることが
わかる。
Next, FIG. 9 shows the spectral sensitivity characteristics of the photosensitive layer of the photoreceptor to visible light. Curves A, B, and C are characteristic curves of the photosensitive layer corresponding to the photosensitive characteristics of the photoreceptor explained in FIG. 7, respectively. Since the spectral sensitivity characteristics of the photosensitive layer of Example 1 and the spectral sensitivity characteristics of the photosensitive layer of Example 2 were not substantially different, they were expressed by the same curve. As is clear from FIG. 9, the photosensitive layer of the conventional selenium-based photoreceptor does not have sensitivity in the long wavelength region of the visible region, but the photosensitive layer of the photoreceptor of the present invention has sufficient sensitivity over the entire visible region. You can see that it has

前述した如く、感光層と有機電導性物質とを積
層して感光体に使用する場合に、感光層の種類が
p型半導体の場合には有機導電性物質は正孔電導
性物質、例えばポリビニルカルバゾール等を積層
し、n型半導体の場合には有機電導性物質は電子
電導性物質、例えばトリニトロフルオレノン等を
積層して構成することが、感光層中の多数キヤリ
ヤーを有効に利用する効果的な方法であると考え
られていた。しかるに前記の製法で製作されると
ころの不純物ドープしない感光層は、製作された
時点で通常イントリンシツクな性質を示すもので
はなくて、n型の性質を示すものと考えられてい
る。また前記の如く電子移動度は正孔移動度に比
してほぼ1桁は大きい値を有すると考えられてい
る。このことは本発明の感光層と有機電導性物質
を積層する場合に感光層の多数キヤリヤーが電子
と考えられていることから、有機電導性物質には
電子電導性物質、例えばトリニトロフルオレノン
等を積層した方が効果的であると当然考えられ
る。しかしながら前記の如く感光層に正孔電導性
物質であるポリビニルカルバゾールを積層するこ
とにより、従来のセレン系感光体に比べてほぼ10
倍感度の良い感光体が得られた。このように本発
明の如くn型半導体の感光層に対して、正孔電導
性の有機電導性物質を積層するという感光体の構
造は従来の考えからは容易に類推できないことは
明らかである。
As mentioned above, when a photosensitive layer and an organic conductive material are laminated and used in a photoreceptor, if the type of the photosensitive layer is a p-type semiconductor, the organic conductive material is a hole conductive material, such as polyvinylcarbazole. In the case of an n-type semiconductor, the organic conductive material is an effective way to effectively utilize the majority carriers in the photosensitive layer. It was thought to be a method. However, the photosensitive layer which is not doped with impurities and which is manufactured by the above-mentioned manufacturing method is generally considered not to exhibit intrinsic properties at the time of manufacture, but to exhibit n-type properties. Further, as mentioned above, electron mobility is considered to have a value approximately one order of magnitude larger than hole mobility. This is because when the photosensitive layer of the present invention and an organic conductive material are laminated, the majority carrier of the photosensitive layer is considered to be electrons, so an electronically conductive substance such as trinitrofluorenone is added to the organic conductive material. It is naturally thought that lamination is more effective. However, as mentioned above, by laminating polyvinylcarbazole, which is a hole conductive material, in the photosensitive layer, the
A photoreceptor with double sensitivity was obtained. As described above, it is clear that the structure of the photoreceptor according to the present invention, in which a hole-conducting organic conductive material is laminated on an n-type semiconductor photosensitive layer, cannot be easily deduced from conventional thinking.

以上説明した如く、本発明の感光体は、従来の
セレン系感光体に比較して高感度であり、可視領
域全域に亙つて充分な感度を持つのでカラー用に
も適用でき、しかも無公害物質によつて構成でき
るという理由から、工業的に見ても極めて多くの
利点を持ものである。
As explained above, the photoreceptor of the present invention has higher sensitivity than conventional selenium-based photoreceptors, and has sufficient sensitivity over the entire visible range, so it can be applied to color applications, and moreover, it can be used with non-polluting substances. It has many advantages from an industrial perspective because it can be constructed using

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の感光体の構成を示
す縦断面図、第2図は遷移層がない場合のエネル
ギー準位図、第3図は遷移層がある場合のエネル
ギー準位図、第4図は非晶質炭化珪素の組成と禁
止帯巾との関係を示す図、第5図は他の実施例の
感光体の構成を示す縦断面図、第6図はオーミツ
ク接合を有する感光体のエネルギー準位図、第7
図は各種感光体の感光特性を示す図、第8図は露
光量に対する帯電々位減衰速度を示す図、第9図
は分光感度特性を示す図である。 1……基板、2……感光層、3……遷移層、4
……有機電導性物質の層、8……オーミツク。
FIG. 1 is a longitudinal cross-sectional view showing the structure of a photoreceptor according to an embodiment of the present invention, FIG. 2 is an energy level diagram without a transition layer, and FIG. 3 is an energy level diagram with a transition layer. , FIG. 4 is a diagram showing the relationship between the composition of amorphous silicon carbide and the forbidden width, FIG. 5 is a vertical cross-sectional view showing the structure of a photoreceptor of another example, and FIG. 6 is a diagram showing the structure of a photoconductor having an ohmic junction. Energy level diagram of photoreceptor, 7th
8 is a diagram showing the photosensitive characteristics of various photoreceptors, FIG. 8 is a diagram showing the charging potential decay rate with respect to the exposure amount, and FIG. 9 is a diagram showing the spectral sensitivity characteristics. 1...Substrate, 2...Photosensitive layer, 3...Transition layer, 4
...Layer of organic conductive material, 8...Ohmic.

Claims (1)

【特許請求の範囲】 1 導電性基板上に設けた非晶質珪素よりなる感
光層と、この感光層上に設けた非晶質炭化珪素よ
りなる遷移層と、前記遷移層の上に設けた有機電
導性物質とより構成したことを特徴とする電子写
真用感光体。 2 前記感光層の導電性基板と接する側がn型半
導体になるように高濃度に不純物ドープされ、前
記遷移層上に設けられる有機電導性物質が正孔電
導性である特許請求の範囲第1項記載の電子写真
用感光体。 3 前記感光層の導電性基板と接する側がp型半
導体になるように高濃度に不純物ドープされ、前
記遷移層上に設けられる有機電導性物質が電子電
導性である特許請求の範囲第1項記載の電子写真
用感光体。
[Scope of Claims] 1. A photosensitive layer made of amorphous silicon provided on a conductive substrate, a transition layer made of amorphous silicon carbide provided on this photosensitive layer, and a photosensitive layer made of amorphous silicon carbide provided on the transition layer. A photoreceptor for electrophotography characterized by comprising an organic conductive substance. 2. The side of the photosensitive layer in contact with the conductive substrate is doped with impurities at a high concentration so as to become an n-type semiconductor, and the organic conductive material provided on the transition layer is hole conductive. The electrophotographic photoreceptor described above. 3. The side of the photosensitive layer in contact with the conductive substrate is doped with impurities at a high concentration so as to become a p-type semiconductor, and the organic conductive material provided on the transition layer is electronically conductive. photoreceptor for electrophotography.
JP10150479A 1979-08-08 1979-08-08 Electrophotographic receptor Granted JPS5625743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10150479A JPS5625743A (en) 1979-08-08 1979-08-08 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10150479A JPS5625743A (en) 1979-08-08 1979-08-08 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5625743A JPS5625743A (en) 1981-03-12
JPS6161383B2 true JPS6161383B2 (en) 1986-12-25

Family

ID=14302436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10150479A Granted JPS5625743A (en) 1979-08-08 1979-08-08 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5625743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158754A (en) * 1993-11-11 1995-06-20 Ckd Corp Composite valve

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2954552C2 (en) * 1978-03-03 1989-02-09 Canon K.K., Tokio/Tokyo, Jp
US5144367A (en) * 1980-06-25 1992-09-01 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US4971872A (en) * 1980-06-25 1990-11-20 Shunpei Yamazaki Electrostatic photocopying machine
US5143808A (en) * 1980-06-25 1992-09-01 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
JPS5711351A (en) * 1980-06-25 1982-01-21 Shunpei Yamazaki Electrostatic copying machine
US5103262A (en) * 1980-06-25 1992-04-07 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US5008171A (en) * 1980-06-25 1991-04-16 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US5545503A (en) * 1980-06-25 1996-08-13 Semiconductor Energy Laboratory Co., Ltd. Method of making printing member for electrostatic photocopying
US4889783A (en) * 1980-06-25 1989-12-26 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US4999270A (en) * 1980-06-25 1991-03-12 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US5070364A (en) * 1980-06-25 1991-12-03 Semiconductor Energy Laboratory Co., Ltd. Printing member for electrostatic photocopying
US4889782A (en) * 1980-06-25 1989-12-26 Semiconductor Energy Laboratory Co., Ltd. Electrostatic photocopying machine
US4522905A (en) * 1982-02-04 1985-06-11 Canon Kk Amorphous silicon photoconductive member with interface and rectifying layers
US4452874A (en) * 1982-02-08 1984-06-05 Canon Kabushiki Kaisha Photoconductive member with multiple amorphous Si layers
US4452875A (en) * 1982-02-15 1984-06-05 Canon Kabushiki Kaisha Amorphous photoconductive member with α-Si interlayers
JPH0616178B2 (en) * 1983-07-19 1994-03-02 株式会社東芝 Photoconductive member
US4544617A (en) * 1983-11-02 1985-10-01 Xerox Corporation Electrophotographic devices containing overcoated amorphous silicon compositions
US8193537B2 (en) 2006-06-19 2012-06-05 Ss Sc Ip, Llc Optically controlled silicon carbide and related wide-bandgap transistors and thyristors
US7821015B2 (en) 2006-06-19 2010-10-26 Semisouth Laboratories, Inc. Silicon carbide and related wide-bandgap transistors on semi insulating epitaxy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158754A (en) * 1993-11-11 1995-06-20 Ckd Corp Composite valve

Also Published As

Publication number Publication date
JPS5625743A (en) 1981-03-12

Similar Documents

Publication Publication Date Title
JPS6161383B2 (en)
JPS639219B2 (en)
JPH067270B2 (en) Electrophotographic photoconductor
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
US4677044A (en) Multi-layered electrophotographic photosensitive member having amorphous silicon
US4716089A (en) Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPS5984254A (en) Photosensitive body
JPS62148966A (en) Electrophotographic sensitive body
JPS6194054A (en) Photoconductive member
JPS61110152A (en) Photosensitive body
JPH0760271B2 (en) Photoconductive member
JPS60115941A (en) Electrophotographic sensitive material
JPH058420B2 (en)
JP2920668B2 (en) Electrophotographic photoreceptor
JPH0616178B2 (en) Photoconductive member
JPS61281249A (en) Photosensitive body
JPH0743543B2 (en) Photoconductive member
JPH0760272B2 (en) Photoconductive member
JPH052296A (en) Image forming device
JPS6373264A (en) Electrophotographic sensitive body
JPS5952248A (en) Electrophotographic receptor
JPH052297A (en) Image forming device
JPS61126560A (en) Photoconductive material
JPH04296881A (en) Image forming device
JPS62211662A (en) Photosensitive body