JPS6161106B2 - - Google Patents

Info

Publication number
JPS6161106B2
JPS6161106B2 JP16232978A JP16232978A JPS6161106B2 JP S6161106 B2 JPS6161106 B2 JP S6161106B2 JP 16232978 A JP16232978 A JP 16232978A JP 16232978 A JP16232978 A JP 16232978A JP S6161106 B2 JPS6161106 B2 JP S6161106B2
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
photoconductive layer
support
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16232978A
Other languages
Japanese (ja)
Other versions
JPS5587155A (en
Inventor
Hideyo Kondo
Keiichi Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16232978A priority Critical patent/JPS5587155A/en
Publication of JPS5587155A publication Critical patent/JPS5587155A/en
Publication of JPS6161106B2 publication Critical patent/JPS6161106B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an electrophotographic photoreceptor.

〔従来の技術〕[Conventional technology]

電子写真感光体は所定の特性を得るため、ある
いは適用される電子写真プロセスの種類に応じて
種々の構成をとるものである。そして、電子写真
感光体の代表的なものとして、支持体上に光導電
層が形成されている感光体および表面に絶縁層を
備えた感光体があり、広く用いられている。支持
体と光導電層から構成される感光体は、最も一般
的な電子写真プロセスによる、即ち、帯電、画像
露光および現像、更に必要に応じて転写による画
像形成に用いられる。また、絶縁層を備えた感光
体について、この絶縁層は、光導電層の保護、感
光体の機械的強度の改善、暗減衰特性の改善、ま
たは、特定の電子写真プロセスに適用されるため
(更には無公害化の為)等の目的のために設けら
れるものである。このような絶縁層を有する感光
体または、絶縁層を有する感光体を用いる電子写
真プロセスの代表的な例は、例えば、米国特許第
2860048号公報、特公昭41−16429号公報、特公昭
38−15446号公報、特公昭46−3713号公報、特公
昭42−23910号公報、特公昭43−24748号公報、特
公昭42−19747号公報、特公昭36−4121号公報、
などに記載されている。
Electrophotographic photoreceptors have various configurations in order to obtain predetermined characteristics or depending on the type of electrophotographic process to which they are applied. As representative electrophotographic photoreceptors, there are photoreceptors having a photoconductive layer formed on a support and photoreceptors having an insulating layer on the surface, which are widely used. The photoreceptor, consisting of a support and a photoconductive layer, is used for image formation by the most common electrophotographic processes, ie, charging, image exposure and development, and optionally transfer. Additionally, for photoreceptors with an insulating layer, this insulating layer may be used to protect the photoconductive layer, improve the mechanical strength of the photoreceptor, improve dark decay properties, or be applied to certain electrophotographic processes ( Furthermore, it is provided for the purpose of eliminating pollution. A typical example of a photoreceptor having such an insulating layer or an electrophotographic process using a photoreceptor having an insulating layer is, for example, U.S. Pat.
Publication No. 2860048, Publication No. 41-16429, Publication No. 16429, Publication No. 16429, Special Publication No.
38-15446, 1971-3713, 1972-23910, 1974-24748, 19747, 1974, 1974-4121,
etc. are listed.

電子写真感光体は、当然のことであるが、適用
される電子写真プロセスに応じた所定の感度、電
気特性、更には光学特性を備えていることが要求
されるが、更により高感度で且つより耐久性に優
れていることが望まれるものである。
As a matter of course, electrophotographic photoreceptors are required to have predetermined sensitivity, electrical properties, and even optical properties depending on the electrophotographic process to which they are applied, but they are also required to have higher sensitivity and It is desired that the material be more durable.

〔目的及び構成〕[Purpose and structure]

而して本発明は、高感度で耐久性に優れた光導
電層を有する電子写真感光体を提供することを主
たる目的とする。
The main object of the present invention is to provide an electrophotographic photoreceptor having a photoconductive layer with high sensitivity and excellent durability.

本発明の所期の目的は支持体および光導電層を
有する電子写真感光体において、前記光導電層が
二層から成り、前記支持体側よりCdS又はZnOを
樹脂結着剤中に分散させて形成した第一の光導電
層とアモルフアスシリコンからなる第二の光導電
層とをこの順で積層したことを特徴とする電子写
真感光体によつて達成される。
An intended object of the present invention is to provide an electrophotographic photoreceptor having a support and a photoconductive layer, in which the photoconductive layer is composed of two layers, and is formed by dispersing CdS or ZnO in a resin binder from the support side. This is achieved by an electrophotographic photoreceptor characterized in that a first photoconductive layer made of amorphous silicon and a second photoconductive layer made of amorphous silicon are laminated in this order.

本発明による感光体は、従来汎用されている
CdS、ZnOなどの他の光導電材料を用いた感光体
に較べて機械的強度、耐熱性、耐湿性、耐コロナ
イオン性、等に優れたものである。
The photoreceptor according to the present invention has conventionally been widely used.
It has superior mechanical strength, heat resistance, moisture resistance, corona ion resistance, etc. compared to photoreceptors using other photoconductive materials such as CdS and ZnO.

本発明による感光体の最も基本的な構成は第1
図に示される。第1図において、1は支持体、2
はアモルフアスシリコン(以下「A−Si」と称す
る)以外の無機光導電材料、即ち、CdS又はZnO
を樹脂結着剤中に分散に形成した第一の光導電層
および3はA−Si層である。
The most basic structure of the photoreceptor according to the present invention is the first
As shown in the figure. In FIG. 1, 1 is a support, 2
is an inorganic photoconductive material other than amorphous silicon (hereinafter referred to as "A-Si"), i.e., CdS or ZnO.
The first photoconductive layer and 3 are A-Si layers formed by dispersing them in a resin binder.

感光体の製造に用いる支持体としては例えば、
ステンレス、Al、Cr、Mo、Au、Ir、Nb、Ta、
V、Ti、Pt、Pd等の金属又はこれ等の合金等の
導電性支持体、或いは、合成樹脂のフイルム又は
シート、又はガラス、セラミツク等の電気絶縁性
支持体であり、支持体上に光導電層が堆積される
前に、必要に応じて一連の清浄処理が施される。
なお電気絶縁性支持体の場合には、必要に応じ
て、その表面を導電処理される。
Examples of the support used for manufacturing the photoreceptor include:
Stainless steel, Al, Cr, Mo, Au, Ir, Nb, Ta,
It is an electrically conductive support made of metals such as V, Ti, Pt, and Pd, or alloys of these, or a film or sheet of synthetic resin, or an electrically insulating support such as glass or ceramic. A series of cleaning treatments are optionally performed before the conductive layer is deposited.
In the case of an electrically insulating support, its surface is subjected to conductive treatment, if necessary.

例えば、ガラスであれば、In2O3、SnO2等でそ
の表面が導電処理され、或いはポリイミドフイル
ム等の合成樹脂フイルムであれば、Al、Ag、
Pd、Zn、Ni、Au、Cr、Mo、Ir、Nb、Ta、V、
Ti、Pt等の金属を以つて真空蒸着、電子ビーム
蒸着、スパツタリング等で処理し、又は前記金属
でラミネート処理して、その表面が導電処理され
る。支持体の形状としては、円筒状、ベルト状、
板状等、任意の形状とし得、所望によつて、その
形状は決定されるが、連続高速複写の場合には、
無端ベルト状又は円筒状とするのが望ましい。支
持体の厚さは適宜決められるが、可撓性が要求さ
れる場合には、支持体としての機能が充分発揮さ
れる範囲内であれば、可能な限り薄くされる。而
乍ら、この様な場合、支持体の製造上及び取扱い
上、機械的強度等の点から、通常は、10μ以上と
される。
For example, in the case of glass, its surface is conductively treated with In 2 O 3 or SnO 2 , or in the case of a synthetic resin film such as polyimide film, it is treated with Al, Ag,
Pd, Zn, Ni, Au, Cr, Mo, Ir, Nb, Ta, V,
The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, so that the surface thereof is conductive. The shape of the support body is cylindrical, belt-shaped,
It can be of any shape, such as a plate shape, and the shape is determined as desired, but in the case of continuous high-speed copying,
It is desirable to have an endless belt shape or a cylindrical shape. The thickness of the support is determined as appropriate, but if flexibility is required, it is made as thin as possible within a range that allows the support to function satisfactorily. However, in such a case, the thickness is usually set to 10μ or more in view of manufacturing and handling of the support, mechanical strength, etc.

第一の光導電層の暗抵抗は通常1013〜1016Ω・
cm、特には1014〜1016Ω・cmに設定するのが良好
である。また、第一の無機光導電層の厚さは、5
μ〜70μ、特には15μ〜60μに設定するのが好適
である。
The dark resistance of the first photoconductive layer is usually 10 13 to 10 16 Ω・
cm, particularly preferably set to 10 14 to 10 16 Ω·cm. Moreover, the thickness of the first inorganic photoconductive layer is 5
It is preferable to set it to 15μ to 60μ, particularly 15μ to 60μ.

第一の光導電層の形成に使用される樹脂結着剤
としては、後述する絶縁層形成用の樹脂が挙げら
れ、必要に応じて適当な溶剤を使用して層形成さ
れる。
Examples of the resin binder used to form the first photoconductive layer include resins for forming an insulating layer, which will be described later, and the layer is formed using an appropriate solvent as necessary.

A−Si層は通常、グロー放電法、スパツターリ
ング法、イオンプレーテイング法、真空蒸着法等
の堆積法によつて支持体上に形成される。グロー
放電法、スパツタリング法およびイオンプレーテ
イング法は放電現象を利用する堆積法であり、堆
積室内においてガラスプラズマ雰囲気を所定時間
維持して必要な厚さのA−Si層を形成する方法で
あり、特に有効である。A−Si層の形成用物質と
しては、シリコン単体の外、堆積中に分解してシ
リコンを生ずるケイ素化合物が用いられる。この
ようなシリコン化合物として代表的なのは、
SiH4、Si2H6などのシリコン水素化合物である。
A−Si層の形成については、A−Si層の暗抵抗及
び光電利得の制御のために、必要に応じて水素
(H)、酸素、窒素およびまたは炭素などを加える
ことも有効である。
The A-Si layer is usually formed on a support by a deposition method such as a glow discharge method, a sputtering method, an ion plating method, or a vacuum evaporation method. The glow discharge method, sputtering method, and ion plating method are deposition methods that utilize a discharge phenomenon, and are methods in which a glass plasma atmosphere is maintained in a deposition chamber for a predetermined period of time to form an A-Si layer of the required thickness. Particularly effective. As the material for forming the A-Si layer, in addition to silicon itself, silicon compounds that decompose to produce silicon during deposition are used. Typical examples of such silicon compounds are:
Silicon hydrogen compounds such as SiH 4 and Si 2 H 6 .
Regarding the formation of the A-Si layer, it is also effective to add hydrogen (H), oxygen, nitrogen, and/or carbon as necessary to control the dark resistance and photoelectric gain of the A-Si layer.

A−Si層へのHの含有の代表的な方法は、層を
形成する際、堆積装置系内にSiH4、Si2H6等の化
合物及び又はH2の形で導入し、気体放電によつ
て、それらの化合物又はH2を分解して、A−Si
層中に、層を成長に併せて含有させる。A−Si層
形成材料としてSiH4、Si2H6などのシリコン水素
化合物を用いる場合には、この化合物中のシリコ
ンがA−Si層の形成主成分として利用できるの
で、通常シリコン単体又は他のシリコン化合物を
併用しなくてよいが、必要に応じて、これらのシ
リコン単体又は他のシリコン化合物を併用しても
よい。
A typical method for incorporating H into the Si layer is to introduce H into the deposition system in the form of compounds such as SiH 4 and Si 2 H 6 and/or H 2 when forming the layer, and to introduce H into the deposition system in the form of a gas discharge. Therefore, those compounds or H 2 can be decomposed to form A-Si
The layers are included in the layer as they grow. When using a silicon hydride compound such as SiH 4 or Si 2 H 6 as a material for forming the A-Si layer, silicon in this compound can be used as the main component for forming the A-Si layer, so silicon alone or other materials are usually used. Although it is not necessary to use a silicon compound in combination, these silicons alone or other silicon compounds may be used in combination, if necessary.

A−Si層中に含有されるHの量は通常の場合10
〜40atomic(原子)%、好適には15〜30atomic
%とされるのが望ましい。A−Si層中へのHの含
有は、例えば、グロー放電法では、A−Siを形成
する出発物質がSiH4、Si2H6等の水素化合物を使
用するので、適切な所望条件下でSiH4、Si2H6
の水素化合物が分解してA−Si層が形成される際
Hは自動的に層中に含有されるが、さらにHの層
中への含有を一層効率良く行なうには、A−Si層
を形成する際に、グロー放電を行なう装置系内に
H2ガスを導入してやれば良い。
The amount of H contained in the A-Si layer is usually 10
~40 atomic%, preferably 15-30 atomic
It is preferable to set it as %. For example, in the glow discharge method, hydrogen compounds such as SiH 4 and Si 2 H 6 are used as starting materials to form A-Si, so H can be incorporated into the A-Si layer under appropriate desired conditions. When hydrogen compounds such as SiH 4 and Si 2 H 6 are decomposed to form an A-Si layer, H is automatically contained in the layer, but H can be contained in the layer more efficiently. When forming the A-Si layer, there is a
All you have to do is introduce H2 gas.

スパツターリング法による場合にはAr等の不
活性ガス又はこのガスをベースとした混合ガス雰
囲気中で、シリコンをターゲツトとしてスパツタ
ーリングを行なう際に、H2ガスを導入してやる
か又はSiH4、Si2H6等のシリコン水素化合物ガ
ス、或いは、不順物のドーピングも兼ねて
B2H6、PH3等のガスを導入してやれば良い。
In the case of the sputtering method, H 2 gas is introduced when performing sputtering with silicon as a target in an atmosphere of an inert gas such as Ar or a mixed gas based on this gas, or SiH 4 , Also serves as doping with silicon hydride gas such as Si 2 H 6 or impurities.
It is sufficient to introduce a gas such as B 2 H 6 or PH 3 .

A−Si層に酸素、窒素および炭素を含有させる
場合についても、水素を含有させる場合と同様な
手法で行なうことができる。A−Si層に酸素、窒
素および炭素を含有させるに用いられるものとし
ては、これらの単体およびこれらの元素の化合物
である。このような酸素化合物としては、
SiO2、Si3N4、CO、CO2など、窒素化合物として
はNO、NO2、NH3など、炭素化合物としては、
炭素数1〜4の飽和炭化水素、炭素数2〜4のエ
チレン系炭化水素、炭素数2〜3のアセチレン系
炭化水素等が挙げられる。例えば、飽和炭化水素
としてはメタン(CH4)、エタン(C2H6)、プロ
パン(C3H8)、n−ブタン(n−C4H10)、エチレ
ン系炭化水素としては、エチレン(C2H4)、プロ
ピレン(C3H6)、ブテン−1(C4H8)、ブテン−
2(C4H8)、イソブチレン(C4H8)、アセチレン
系炭化水素としては、アセチレン(C2H2)、メチ
ルアセチレン(C3H4)が挙げられる。A−Si層の
形成には、例えば酸素、窒素、酸化物、窒化物、
炭化物等の化合物のガスをA−Siを形成する原料
ガスと共に内部を減圧にし得る堆積室内に導入し
て該堆積室内でグロー放電を生起させて光導電層
を形成すれば良い。又、例えば光導電層をスパツ
ターリング法で形成する場合には、例えば、(Si
+C)、(Si+SiO2)、(Si+Si3N4)なる成分で混合
成形したスパツター用のターゲツトを使用する
か、SiウエハーとC、SiO2又はSi3N4ウエハーの
二枚のターゲツトを使用して、スパツターリング
を行うか、又は酸素ガスや窒素ガス又は炭素、酸
素、又は窒素を含んだ化合物のガスを、例えば
Arガス等のスパツター用のガスと共に堆積室内
に導入して、Siのターゲツトを使用してスパツタ
ーリングを行つてA−Siを形成すれば良い。酸
素、窒素又は炭素のA−Si層への含有量は、適宜
設定されるものであるが、通常の場合0.1〜
30atomic%、好適には0.1〜20atomic%、最適に
は、0.2〜15atomic%とされるのが望ましい。
When oxygen, nitrogen, and carbon are contained in the A-Si layer, the same method as when hydrogen is contained can be used. Oxygen, nitrogen, and carbon can be contained in the A-Si layer using these elements alone or in compounds of these elements. As such oxygen compounds,
Nitrogen compounds such as SiO 2 , Si 3 N 4 , CO, and CO 2 ; carbon compounds such as NO, NO 2 , and NH 3 ;
Examples include saturated hydrocarbons having 1 to 4 carbon atoms, ethylene hydrocarbons having 2 to 4 carbon atoms, and acetylene hydrocarbons having 2 to 3 carbon atoms. For example, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), and n-butane (n-C 4 H 10 ), and ethylene hydrocarbons include ethylene ( C 2 H 4 ), propylene (C 3 H 6 ), butene-1 (C 4 H 8 ), butene-1
Examples of the acetylene hydrocarbons include acetylene (C 2 H 2 ) and methylacetylene ( C 3 H 4 ) . For forming the A-Si layer, for example, oxygen, nitrogen, oxide, nitride,
A photoconductive layer may be formed by introducing a gas of a compound such as a carbide together with a raw material gas for forming A-Si into a deposition chamber whose interior can be reduced in pressure, and causing glow discharge within the deposition chamber. In addition, for example, when forming a photoconductive layer by a sputtering method, for example, (Si
+C), (Si+SiO 2 ), (Si+Si 3 N 4 ), or use two targets: a Si wafer and a C, SiO 2 or Si 3 N 4 wafer. sputtering or using oxygen gas, nitrogen gas, or gases of carbon, oxygen, or nitrogen-containing compounds, e.g.
A-Si may be formed by introducing it into the deposition chamber together with a sputtering gas such as Ar gas and performing sputtering using a Si target. The content of oxygen, nitrogen, or carbon in the A-Si layer is set appropriately, but is usually 0.1 to
It is desirable that the content be 30 atomic %, preferably 0.1 to 20 atomic %, most preferably 0.2 to 15 atomic %.

A−Si層を放電現象を利用する堆積法によつて
形成する場合には、所望のプラズマ雰囲気を形成
するに有効な放電現象を堆積室内に生起させる
に、放電電流密度を、通常は0.1〜10mA/cm2
適には1〜5mA/cm2としたAC又はDC電流とす
るのが良く、又充分なパワーを得る為には、通常
100〜500V、好適には300〜500Vの電圧に調整さ
れ、投入される電力としては、通常0.1〜50W、
好適には0.5〜10Wとされるのが良い。又、更に
は、ACの場合、その周波数は、通常0.2〜
30MHz、好適には5〜20MHzとされるのが望ま
しい。
When forming the A-Si layer by a deposition method that utilizes a discharge phenomenon, the discharge current density is usually set to 0.1 to 0.1 to generate a discharge phenomenon in the deposition chamber that is effective for forming the desired plasma atmosphere. The AC or DC current is preferably 10mA/ cm2 , preferably 1-5mA/ cm2 , and in order to obtain sufficient power, usually
The voltage is regulated to 100-500V, preferably 300-500V, and the input power is usually 0.1-50W,
The power is preferably 0.5 to 10W. Furthermore, in the case of AC, the frequency is usually 0.2~
It is desirable that the frequency be 30 MHz, preferably 5 to 20 MHz.

A−Si層は、製造時の不順物のドーピングによ
つて真性にし得、又その伝導型を制御することが
できる。A−Si層中にドーピングされる不順物と
しては、A−Si層をp型にするには、周期律表第
族Aの元素、例えば、B、Al、Ga、In、Tl、
等が好適なものとして挙げられ、n型にする場合
には、周期律表第族Aの元素、例えば、N、
P、As、Sb、Bi等が好適なものとして挙げられ
る。
The A-Si layer can be made intrinsic and its conductivity type can be controlled by doping with impurities during manufacture. In order to make the A-Si layer p-type, impurities to be doped into the A-Si layer include elements of group A of the periodic table, such as B, Al, Ga, In, Tl,
etc. are mentioned as suitable ones, and in case of n-type, elements of group A of the periodic table, such as N,
Suitable examples include P, As, Sb, Bi, and the like.

A−Si層中にドーピングされる不順物の量は、
所望される電気的、光学的特性に応じて適宜決定
されるが、周期律表第族Aの不順物の場合には
通常10-6〜10-3atomic%、好適には10-3
10-4atomic%、周期律表第族Aの不順物の場合
には、通常10-8〜10-5atomic%、好適には10-8
10-7atomic%とされるのが望ましい。
The amount of impurities doped into the A-Si layer is
It is determined as appropriate depending on the desired electrical and optical properties, but in the case of impurities in group A of the periodic table, it is usually 10 -6 to 10 -3 atomic%, preferably 10 -3 to
10 -4 atomic%, in the case of impurities in group A of the periodic table, usually 10 -8 to 10 -5 atomic%, preferably 10 -8 to
It is desirable to set it to 10 -7 atomic%.

これ等不順物のA−Si層中へのドーピング方法
は、A−Si層を形成する際に採用される製造方法
によつて各々異なるものである。
The method of doping these impurities into the A-Si layer differs depending on the manufacturing method employed when forming the A-Si layer.

A−Si系光導電層の層厚としては、所望される
電子写真特性及び使用条件、例えば、可撓性が要
求されるか否か等に応じて適宜決定されるもので
あるが、通常の場合0.1〜5μ、好適には0.5〜4
μ、とされるのが望ましい。
The layer thickness of the A-Si photoconductive layer is determined as appropriate depending on the desired electrophotographic properties and usage conditions, for example, whether flexibility is required, etc. 0.1 to 5μ, preferably 0.5 to 4
It is desirable that it be μ.

本発明による感光体は、第1図に示される構成
を基本としてさらに他の技術的要件が付加されて
もよい。例えば、第1図および第2図に示される
構成において、支持体と第一の無機光導電層との
間に0.1〜5μ特には0.1〜2μ程度のA−Si層を
介在させてもよい。この場合には、支持体からの
電荷注入を良好にする。また、第2図に示すよう
に支持体1、第一の無機光導電層2およびA−Si
層からなる感光体にさらに絶縁層4を付与しても
よい。
The photoreceptor according to the present invention may have other technical requirements based on the configuration shown in FIG. 1. For example, in the configuration shown in FIGS. 1 and 2, an A-Si layer having a thickness of about 0.1 to 5 μm, particularly about 0.1 to 2 μm may be interposed between the support and the first inorganic photoconductive layer. In this case, charge injection from the support is improved. Further, as shown in FIG. 2, a support 1, a first inorganic photoconductive layer 2 and an A-Si
An insulating layer 4 may be further provided on the photoreceptor made of layers.

一般に、感光体の保護及び耐久性、暗減衰特性
の改善等を主目的として絶縁層を付設する場合に
は絶縁層は比較的薄く設定され、感光体を特定の
電子写真プロセスに用いる場合に設けられ絶縁層
は比較的厚く設定される。
In general, when an insulating layer is added for the main purpose of protecting the photoreceptor, improving its durability, dark decay characteristics, etc., the insulating layer is set relatively thin, and when the photoreceptor is used for a specific electrophotographic process, The insulating layer is set relatively thick.

通常、絶縁層の厚さは、0.1〜100μ、特には、
0.1〜50μに設定される。
Usually, the thickness of the insulation layer is 0.1~100μ, especially
Set to 0.1~50μ.

絶縁層の形成に用いられる樹脂としては、通常
の樹脂が適宜用いられるものである。例えば、ポ
リエチレン、ポリエステル、ポリプロピレン、ポ
リスチレン、ポリ塩化ビニール、ポリ酢酸ビニー
ル、アクリル樹脂、ポリカーボネート、シリコン
樹脂、弗素樹脂、エポキシ樹脂等などである。
As the resin used for forming the insulating layer, a normal resin can be used as appropriate. Examples include polyethylene, polyester, polypropylene, polystyrene, polyvinyl chloride, polyvinyl acetate, acrylic resin, polycarbonate, silicone resin, fluororesin, epoxy resin, and the like.

実施例 1 Alドラムの表面に浸漬法により塗膜形成し、
更に170℃で30分間加熱処理してCdS光導電層
(CdS:結着樹脂=100:20重量部、結着樹脂=熱
硬化性ウレタン樹脂−商品名:トアウレタン、東
亜ウレタン製)を30μ厚に形成した。次に、第3
図に示す装置を用いて、CdS光導電層上にA−Si
層を形成させた。即ち、CdS光導電層が形成され
たAlドラム5をグロー放電堆積室6内の所定位
置にある固定部材7の所定位置にヒーター8とは
約10cm程度離して堅固に固定した。
Example 1 A coating film was formed on the surface of an Al drum by a dipping method,
Further heat treatment was performed at 170°C for 30 minutes to make a CdS photoconductive layer (CdS: binder resin = 100:20 parts by weight, binder resin = thermosetting urethane resin - trade name: Toaurethane, manufactured by Toa Urethane) to a thickness of 30μ. Formed. Next, the third
Using the apparatus shown in the figure, A-Si was deposited on the CdS photoconductive layer.
A layer was formed. That is, the Al drum 5 on which the CdS photoconductive layer was formed was firmly fixed at a predetermined position of a fixing member 7 located at a predetermined position in the glow discharge deposition chamber 6 at a distance of about 10 cm from the heater 8 .

次いで、メインバルブ9を全開して堆積室6内
の空気を排気し、約5×10-5torrの真空度にし
た。その後ヒーター8を点火してAlドラムを均
一に加熱して150℃に上昇させ、この温度に保つ
た。その後、バルブ10を全開し、引続いてボン
ベ11のバルブ12、ボンベ13のバルブ14を
全開した後、流量調節バルブ15及び16を徐々
に開いて、ボンベ11よりArガスを、ボンベ1
3よりSiH4ガスを堆積室6内に導入した。この
時、メインバルブ9を調節して堆積室6内の真空
度が約0.75torrに保持される様にした。
Next, the main valve 9 was fully opened to exhaust the air in the deposition chamber 6, resulting in a vacuum level of approximately 5×10 −5 torr. Thereafter, the heater 8 was ignited to uniformly heat the Al drum to 150°C, and this temperature was maintained. After that, the valve 10 is fully opened, and then the valve 12 of the cylinder 11 and the valve 14 of the cylinder 13 are fully opened, and then the flow rate adjustment valves 15 and 16 are gradually opened to supply Ar gas from the cylinder 11 to the cylinder 1.
3, SiH 4 gas was introduced into the deposition chamber 6. At this time, the main valve 9 was adjusted so that the degree of vacuum in the deposition chamber 6 was maintained at approximately 0.75 torr.

続いて、高周波電源17のスイツチをonにし
て、電極18,18′間に13.56MHzの高周波を
印加してグロー放電を起し、CdS光導電層上に2
μ厚のA−Si層を形成した。
Next, the high frequency power supply 17 is turned on and a 13.56 MHz high frequency is applied between the electrodes 18 and 18' to cause a glow discharge, and 2
A μ-thick A-Si layer was formed.

次に流量調節バルブ15,16を閉じて、高周
波電源17のスイツチをOFFしグロー放電を中
止した。
Next, the flow control valves 15 and 16 were closed, and the high frequency power source 17 was turned off to stop the glow discharge.

このようにして製造された感光体をAとし、ま
た参照として、A−Si層を形成しなかつた感光体
をBとし、両感光体に、負のコロナ帯電、画像露
光、乾式現像、転写、ブレードクリーニングから
なる電子写真プロセスを感光体の回転速度400
mm/secで繰返し施して感光体の諸特性を調べ
た。その結果、感光体Aについては、18万回の繰
返し実施に対しても感光体表面に機械的損傷は殆
んど発生しなかつたのに対して、感光体Bでは3
万回の繰返し実施において感光体表面に画質に影
響を与える機械的損傷が生じた。また、感光体A
適正画像を形成するための必要露光量は2lux・
secであるのに対して感光体Bでは5 lux・sec
であり、感光体Aの方が高感度であつた。また、
電子写真プロセスを、湿度90%RH(25℃)の高
湿下で実施した結果、形成される画像の静電コン
トラストは640Vから530Vに低下したに止まつた
のに対して、感光体Bでは650Vから350Vになり
大幅な低下が認められた。又、感光体Bの感度波
長ピークは550mμであつたのに対して、感光体
Aは620mμであり、感光波長領域も広いことが
認められた。
The photoreceptor manufactured in this manner is designated as A, and as a reference, the photoreceptor on which no A-Si layer was formed is designated as B. Both photoreceptors were subjected to negative corona charging, image exposure, dry development, transfer, The electrophotographic process consists of blade cleaning at a photoreceptor rotation speed of 400
Various properties of the photoreceptor were investigated by repeatedly applying it at a rate of mm/sec. As a result, for photoconductor A, almost no mechanical damage occurred on the surface of the photoconductor even after 180,000 repetitions, whereas for photoconductor B, there was almost no mechanical damage.
Mechanical damage that affected the image quality occurred on the surface of the photoreceptor after repeated testing 10,000 times. In addition, photoreceptor A
The required exposure amount to form a proper image is 2lux.
sec, whereas for photoreceptor B it is 5 lux・sec
Therefore, photoreceptor A had higher sensitivity. Also,
As a result of carrying out the electrophotographic process under high humidity conditions of 90% RH (25°C), the electrostatic contrast of the formed image only decreased from 640V to 530V, whereas for photoconductor B, the electrostatic contrast decreased from 650V to 530V. It became 350V and a significant drop was observed. Further, the sensitivity wavelength peak of photoreceptor B was 550 mμ, whereas that of photoreceptor A was 620 mμ, and it was recognized that the sensitivity wavelength range was also wide.

実施例 2 実施例1において、CdSの代りにZnOを用いて
感光体Aと同様に製造された感光体についても、
ZnO光導電層上に形成されたA−Si層による感光
体の耐久性、感度、耐湿性、並びに感度波長領域
についての顕著な改善が認められた。
Example 2 Regarding a photoreceptor manufactured in the same manner as photoreceptor A in Example 1 using ZnO instead of CdS,
It was observed that the A-Si layer formed on the ZnO photoconductive layer significantly improved the durability, sensitivity, moisture resistance, and sensitive wavelength range of the photoreceptor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は各々本発明による電子写
真感光体の模式的説明図である。第3図は本発明
による電子写真感光体の製造に用いる光導電層製
造用装置の模式的説明図である。 1……支持体、2……A−Si以外の無機光導電
層、3……A−Si層、4……絶縁層。
FIG. 1 and FIG. 2 are each a schematic illustration of an electrophotographic photoreceptor according to the present invention. FIG. 3 is a schematic illustration of a photoconductive layer manufacturing apparatus used for manufacturing an electrophotographic photoreceptor according to the present invention. DESCRIPTION OF SYMBOLS 1... Support body, 2... Inorganic photoconductive layer other than A-Si, 3... A-Si layer, 4... Insulating layer.

Claims (1)

【特許請求の範囲】 1 支持体および光導電層を有する電子写真感光
体において、前記光導電層が二層から成り、前記
支持体側よりCdS又はZnOを樹脂結着剤中に分散
させて形成した第一の光導電層とアモルフアスシ
リコンからなる第二の光導電層とがこの順で積層
されていることを特徴とする電子写真感光体。 2 前記第一の光導電層の厚さが5〜70μであ
り、前記第二の光導電層の厚さが0.1〜5μであ
る特許請求の範囲第1項記載の電子写真感光体。
[Claims] 1. In an electrophotographic photoreceptor having a support and a photoconductive layer, the photoconductive layer is composed of two layers, and is formed by dispersing CdS or ZnO in a resin binder from the support side. An electrophotographic photoreceptor characterized in that a first photoconductive layer and a second photoconductive layer made of amorphous silicon are laminated in this order. 2. The electrophotographic photoreceptor according to claim 1, wherein the first photoconductive layer has a thickness of 5 to 70 μm, and the second photoconductive layer has a thickness of 0.1 to 5 μm.
JP16232978A 1978-12-23 1978-12-23 Electrophotographic receptor Granted JPS5587155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16232978A JPS5587155A (en) 1978-12-23 1978-12-23 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16232978A JPS5587155A (en) 1978-12-23 1978-12-23 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5587155A JPS5587155A (en) 1980-07-01
JPS6161106B2 true JPS6161106B2 (en) 1986-12-24

Family

ID=15752463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16232978A Granted JPS5587155A (en) 1978-12-23 1978-12-23 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5587155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440805Y2 (en) * 1987-12-30 1992-09-25
US10967437B2 (en) 2011-12-27 2021-04-06 Franz Haimer Maschinenbau Kg Tool holder and clamping system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179859A (en) * 1981-04-30 1982-11-05 Hitachi Ltd Electrophotographic receptor and its manufacture
JPS58221848A (en) * 1982-06-17 1983-12-23 Sharp Corp Electrophotographic receptor
JPS60205457A (en) * 1984-03-29 1985-10-17 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPH0810332B2 (en) * 1988-02-10 1996-01-31 富士ゼロックス株式会社 Method for manufacturing electrophotographic photoreceptor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440805Y2 (en) * 1987-12-30 1992-09-25
US10967437B2 (en) 2011-12-27 2021-04-06 Franz Haimer Maschinenbau Kg Tool holder and clamping system

Also Published As

Publication number Publication date
JPS5587155A (en) 1980-07-01

Similar Documents

Publication Publication Date Title
JPS6035059B2 (en) Electrophotographic photoreceptor and its manufacturing method
GB2099600A (en) Photoconductive member
JPS6226459B2 (en)
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
JPS6161106B2 (en)
JPS6239735B2 (en)
JPS62115457A (en) Electrophotographic sensitive body
JPS6247303B2 (en)
US4698288A (en) Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon
JPH071395B2 (en) Electrophotographic photoreceptor
JPS6161102B2 (en)
JPS60130747A (en) Photoconductive member
US6197471B1 (en) Amorphous silicon photoreceptor and method for making same
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS6227388B2 (en)
JPS6216419B2 (en)
JPH0241023B2 (en)
JP2668406B2 (en) Electrophotographic image forming member
JPS5820426B2 (en) electrophotographic photoreceptor
JPS6243650A (en) Electrophotographic sensitive body
JPH0426466B2 (en)
JPH035746B2 (en)
JP2668408B2 (en) Electrophotographic image forming member
JPS61223752A (en) Electrophotographic sensitive body
JPS5880646A (en) Electrophotographic receptor