JPS6161025B2 - - Google Patents

Info

Publication number
JPS6161025B2
JPS6161025B2 JP53149960A JP14996078A JPS6161025B2 JP S6161025 B2 JPS6161025 B2 JP S6161025B2 JP 53149960 A JP53149960 A JP 53149960A JP 14996078 A JP14996078 A JP 14996078A JP S6161025 B2 JPS6161025 B2 JP S6161025B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
surface tension
temperature regenerator
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149960A
Other languages
Japanese (ja)
Other versions
JPS5577676A (en
Inventor
Masashi Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14996078A priority Critical patent/JPS5577676A/en
Publication of JPS5577676A publication Critical patent/JPS5577676A/en
Publication of JPS6161025B2 publication Critical patent/JPS6161025B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 この発明は多重効用吸収式冷凍機に関する。[Detailed description of the invention] This invention relates to a multiple effect absorption refrigerator.

多重効用吸収式冷凍機で最も一般に利用されて
いる二重効用吸収式冷凍機を例にとつて従来の冷
凍サイクルの概略を第1図により説明する。冷媒
である水は、低圧に保たれた蒸発器1のシエル内
にあつて、管1a内を流れる冷水2から熱を奪つ
て蒸発し、冷凍の目的を達する。蒸発した冷媒ガ
スは、吸収器3に向つて流れる。吸収器3のシエ
ル内には、管3a内を流れる冷却水4によつて一
定温度に保たれた臭化リチユウムの水溶液があ
り、蒸発した冷媒ガスはこの水溶液中に吸収さ
れ、稀溶液となる。この稀溶液は溶液循環ポンプ
5により、熱交換器6に送られる。ここを出た稀
溶液は二分され、そのうち一方は低温再生器7に
送られ、他方は高温再生器8に至る。高温再生器
8中には、都市ガス、灯油焚きのボイラあるい
は、高温蒸気などの熱源があつて、送り込まれた
稀溶液から冷媒蒸気を蒸発させ濃溶液と冷媒蒸気
とに分離する。冷媒蒸気は、低温再生器7の管7
a内に供給され、シエル内に送られてきた稀溶液
を加熱して濃溶液と冷媒蒸気とに分離する。この
ようにして高温再生器8および低温再生器7で溶
液から分離された冷媒蒸気は、共に凝縮器9に至
り、冷却水4により冷却されて液冷媒に戻り、管
10を経て蒸発器1に戻り冷媒サイクルを一巡す
る。また高温再生器8で冷媒を蒸発したあとの濃
溶液は、熱交換器6にて、低温再生器7からの濃
溶液と合流して吸収器3に戻つて、再び蒸発器1
からの冷媒蒸気を吸収して稀溶液となり溶液サイ
クルを一巡する。二重効用吸収式冷凍機のサイク
ルにおいては、高温再生器において発生する高温
蒸気を低温再生器の加熱源に利用しているので熱
効率が高い点に特徴がある。また、吸収式冷凍機
は吸収器3の管3aの伝熱性能を向上させる目的
で、オクチルアルコールなどの表面張力緩和剤が
添加されているが、この表面張力緩和剤は、臭化
リチユウム水溶液と混合して、溶液循環ポンプ5
で、一部高温再生器8や低温再生器7に送り込ま
れ、冷媒と一緒に蒸発して冷媒と伴に蒸発器1に
至る。蒸発器1に至つた表面張力緩和剤は、蒸発
器1に蓄積するため、吸収器3内の表面張力緩和
剤が減少し、吸収器3の管の伝熱性能維持が困難
になる。したがつて、冷媒系に混入した表面張力
緩和剤を吸収器3に回収する方策として、冷媒
が、凝縮器9から蒸発器1に至る配管10の途中
に、表面張力緩和剤を冷媒から分離する分離装置
11を配置し、分離した表面張力緩和剤を管12
を経て吸収器3に戻す方法が採用されている。こ
の分離装置11の分離効率は比較的高いにもかか
わらず実際には比較的短かい時間で蒸発器に表面
張力緩和剤が蓄積した。この原因を検討したとこ
ろ、表面張力緩和剤を含んだ冷媒液が、低温再生
器7から凝縮器9に流入した時、冷媒自身のもつ
ている熱で自己蒸発(フラツシング)し、激しく
冷媒中の表面張力緩和剤を混合し、表面張力緩和
剤を微細粒子にするため、分離装置11内での分
離効率に限界を与えていることが判明した。
An outline of a conventional refrigeration cycle will be explained with reference to FIG. 1, taking as an example a dual-effect absorption refrigerator, which is the most commonly used multiple-effect absorption refrigerator. Water, which is a refrigerant, is in the shell of the evaporator 1 kept at a low pressure, and evaporates by taking heat from the cold water 2 flowing in the pipe 1a, thereby achieving the purpose of refrigeration. The evaporated refrigerant gas flows toward the absorber 3. Inside the shell of the absorber 3, there is an aqueous solution of lithium bromide that is kept at a constant temperature by the cooling water 4 flowing through the pipe 3a, and the evaporated refrigerant gas is absorbed into this aqueous solution and becomes a dilute solution. . This diluted solution is sent to a heat exchanger 6 by a solution circulation pump 5. The dilute solution exiting here is divided into two parts, one of which is sent to a low temperature regenerator 7 and the other to a high temperature regenerator 8. The high-temperature regenerator 8 includes a heat source such as a city gas, kerosene-fired boiler, or high-temperature steam, and evaporates the refrigerant vapor from the fed dilute solution to separate it into a concentrated solution and refrigerant vapor. The refrigerant vapor is passed through the pipe 7 of the low temperature regenerator 7.
The dilute solution supplied into the shell is heated and separated into a concentrated solution and refrigerant vapor. The refrigerant vapor separated from the solution in the high-temperature regenerator 8 and the low-temperature regenerator 7 together reach the condenser 9, where it is cooled by the cooling water 4 and returns to liquid refrigerant. Completes the return refrigerant cycle. Further, the concentrated solution after the refrigerant has been evaporated in the high temperature regenerator 8 joins with the concentrated solution from the low temperature regenerator 7 in the heat exchanger 6, returns to the absorber 3, and returns to the evaporator 1.
It absorbs the refrigerant vapor from the liquid, becomes a dilute solution, and goes through the solution cycle. The dual-effect absorption chiller cycle is characterized by high thermal efficiency because the high-temperature steam generated in the high-temperature regenerator is used as a heating source for the low-temperature regenerator. In addition, in absorption refrigerators, a surface tension reliever such as octyl alcohol is added for the purpose of improving the heat transfer performance of the tube 3a of the absorber 3. Mix, solution circulation pump 5
A part of the refrigerant is sent to the high-temperature regenerator 8 and the low-temperature regenerator 7, evaporates together with the refrigerant, and reaches the evaporator 1 together with the refrigerant. Since the surface tension reliever that has reached the evaporator 1 accumulates in the evaporator 1, the surface tension reliever in the absorber 3 decreases, making it difficult to maintain the heat transfer performance of the tubes of the absorber 3. Therefore, as a measure to recover the surface tension reliever mixed into the refrigerant system into the absorber 3, the surface tension reliever is separated from the refrigerant in the middle of the pipe 10 where the refrigerant runs from the condenser 9 to the evaporator 1. A separation device 11 is arranged, and the separated surface tension relaxant is transferred to a tube 12.
A method is adopted in which the water is returned to the absorber 3 through the Despite the relatively high separation efficiency of this separation device 11, the surface tension relaxant actually accumulated in the evaporator in a relatively short period of time. When we investigated the cause of this, we found that when the refrigerant liquid containing the surface tension reliever flows into the condenser 9 from the low-temperature regenerator 7, it self-evaporates (flushing) due to the heat of the refrigerant itself, and the refrigerant is violently evaporated. It has been found that the separation efficiency within the separation device 11 is limited because the surface tension reliever is mixed and the surface tension reliever is made into fine particles.

この発明は、上記の究明結果に基づき発明した
もので、再生器から凝縮器に流入する冷媒液を流
入時フラツシングしないようにしたものである。
This invention was invented based on the above research results, and is designed to prevent the refrigerant liquid flowing from the regenerator into the condenser from flushing at the time of inflow.

以下この発明の一実施例を第2図および第3図
により説明する。これらの図において従来と同一
または相当するものには同一符号を付し、それら
の説明は省略する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In these figures, the same reference numerals are given to the same or equivalent parts as in the conventional art, and the explanation thereof will be omitted.

第2図はこの発明の一実施例を示すもので、低
温再生器7の加熱源として使われた冷媒液を凝縮
器9に導く配管13の途中に冷却器14を設け、
この冷却器14に冷水2(一般に、蒸発器1への
入口側で約12℃)の一部を循環させ、凝縮器9に
流入しようとする冷媒液を凝縮器9の飽和温度以
下に冷却するものである。
FIG. 2 shows an embodiment of the present invention, in which a cooler 14 is provided in the middle of a pipe 13 that leads the refrigerant liquid used as a heating source for the low-temperature regenerator 7 to the condenser 9.
A part of the cold water 2 (generally about 12° C. on the inlet side to the evaporator 1) is circulated through the cooler 14 to cool the refrigerant liquid about to flow into the condenser 9 to below the saturation temperature of the condenser 9. It is something.

第2図において冷却源として冷水の代りに吸収
器3から出た冷却水(一般には約36℃)または吸
収器3に流入する以前の冷却水(一般には約32
℃)を使用することもできる。第3図は他の実施
例を示すもので、凝縮器9の冷却水管9aの一部
(たとえば1本)14aを管径の太いものに変
え、配管13を、冷媒水管14a内を経由したの
ち凝縮器9に開口するようにし、凝縮器9に流入
する冷媒液を飽和温度以下に冷却するものであ
る。
In FIG. 2, instead of cold water as a cooling source, the cooling water exiting the absorber 3 (generally at about 36°C) or the cooling water before entering the absorber 3 (generally at about 32°C) is used as the cooling source.
°C) can also be used. FIG. 3 shows another embodiment, in which a part (for example, one) 14a of the cooling water pipe 9a of the condenser 9 is changed to one with a larger diameter, and the pipe 13 is passed through the refrigerant water pipe 14a. It opens into the condenser 9 and cools the refrigerant liquid flowing into the condenser 9 to below the saturation temperature.

この実施例の場合、凝縮器9の冷却水管の一部
を太い口径に変えることおよび大口径の配管内を
冷媒液の通る配管13を経由させることだけでよ
く簡単な構造で済む。
In the case of this embodiment, a simple structure can be achieved by simply changing a part of the cooling water pipe of the condenser 9 to a larger diameter pipe and passing the refrigerant liquid through the pipe 13 through the large diameter pipe.

また冷却源として冷却水を用いた場合、冷媒液
が冷却水に放出した熱量は、凝縮器9内で放出す
べき熱量が凝縮器9の外部で冷却水に放出しただ
けのことにすぎず、冷凍サイクルの熱収支は従来
のものと何ら変りない。
Furthermore, when cooling water is used as a cooling source, the amount of heat released by the refrigerant liquid to the cooling water is simply the amount of heat that should be released within the condenser 9 and released to the cooling water outside the condenser 9. The heat balance of the refrigeration cycle is no different from the conventional one.

このように、低温再生器から凝縮器に流入する
冷媒液を凝縮器に流入する以前に凝縮器の飽和温
度以下に冷却することにより、冷媒液が凝縮器に
流入した際の自己蒸発が完全に無くなりこれによ
つて表面張力緩和剤の微細粒子化がなくなる。
In this way, by cooling the refrigerant liquid flowing into the condenser from the low-temperature regenerator to below the saturation temperature of the condenser before it flows into the condenser, self-evaporation of the refrigerant liquid when it flows into the condenser is completely prevented. This eliminates the formation of fine particles of the surface tension relaxant.

以上のように、この発明によれば、冷媒液が凝
縮器に流入する際の自己蒸発をなくし、これによ
つて表面張力緩和剤の微細粒子化を防止して分離
効率を極限近くまで向上させることができる。
As described above, according to the present invention, self-evaporation when the refrigerant liquid flows into the condenser is eliminated, thereby preventing the surface tension reliever from becoming fine particles and improving the separation efficiency to the maximum level. be able to.

従つて、表面張力緩和剤が蒸発器に蓄積するこ
とによつて起こる弊害たとえば蒸発圧力の上昇、
吸収器内の表面張力緩和剤不足による伝熱性能低
下などを解消し、長時間安定した運転を維持でき
る。
Therefore, the accumulation of surface tension relaxants in the evaporator can cause harmful effects such as an increase in evaporation pressure,
This eliminates problems such as deterioration in heat transfer performance due to a lack of surface tension reliever in the absorber, allowing stable operation to be maintained for long periods of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多重効用吸収式冷凍機の系統
図、第2図は本発明の一実施例の系統図、第3図
は本発明の他の実施例の要部を示す説明図であ
る。 1……蒸発器、3……吸収器、6……熱交換
器、7……低温再生器、8……高温再生器、9…
…凝縮器、11……表面張力緩和剤分離器、13
……配管、14……冷却器。
FIG. 1 is a system diagram of a conventional multi-effect absorption refrigerator, FIG. 2 is a system diagram of one embodiment of the present invention, and FIG. 3 is an explanatory diagram showing the main parts of another embodiment of the present invention. . 1... Evaporator, 3... Absorber, 6... Heat exchanger, 7... Low temperature regenerator, 8... High temperature regenerator, 9...
... Condenser, 11 ... Surface tension reliever separator, 13
...Piping, 14...Cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の再生器、凝縮器、蒸発器、吸収器、
熱交換器およびポンプを作動的に連結したものに
おいて、再生器で加熱源として使われた冷媒を凝
縮器に導入する経路の途中に、冷媒を凝縮器の飽
和温度以下に予冷する冷却器を設けたことを特徴
とする多重効用吸収式冷凍機。
1 Multiple regenerators, condensers, evaporators, absorbers,
In a system in which a heat exchanger and a pump are operatively connected, a cooler is installed in the path where the refrigerant used as a heating source in the regenerator is introduced into the condenser to pre-cool the refrigerant to below the saturation temperature of the condenser. A multi-effect absorption chiller characterized by:
JP14996078A 1978-12-06 1978-12-06 Multiple absorption refrigerating machine Granted JPS5577676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14996078A JPS5577676A (en) 1978-12-06 1978-12-06 Multiple absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14996078A JPS5577676A (en) 1978-12-06 1978-12-06 Multiple absorption refrigerating machine

Publications (2)

Publication Number Publication Date
JPS5577676A JPS5577676A (en) 1980-06-11
JPS6161025B2 true JPS6161025B2 (en) 1986-12-23

Family

ID=15486356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14996078A Granted JPS5577676A (en) 1978-12-06 1978-12-06 Multiple absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPS5577676A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269044A (en) * 1975-12-05 1977-06-08 Ebara Corp Absorptive refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269044A (en) * 1975-12-05 1977-06-08 Ebara Corp Absorptive refrigerator

Also Published As

Publication number Publication date
JPS5577676A (en) 1980-06-11

Similar Documents

Publication Publication Date Title
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
US3491545A (en) Absorption refrigeration system
US3316736A (en) Absorption refrigeration systems
US3390544A (en) Absorption refrigeration systems having solution-cooled absorbers
KR20040092481A (en) Absorption chiller
US3693373A (en) Absorption refrigeration machine
JP2858908B2 (en) Absorption air conditioner
JPS6161025B2 (en)
US3304742A (en) Absorption refrigeration systems
US3695052A (en) Concentration control for multiple stage absorption refrigeration systems
JPS6122224B2 (en)
JPS6122225B2 (en)
JPS5832301B2 (en) absorption refrigerator
US3389570A (en) Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
JPH0198863A (en) Absorption refrigerator
KR940005665B1 (en) Refrigerator
JP2668063B2 (en) Absorbent composition for absorption air conditioner
SU1615493A1 (en) Absorption-diffusion refrigeration unit
JPH0522760Y2 (en)
JPS6125986B2 (en)
JPH0711367B2 (en) Absorption refrigeration cycle
JPS5852463Y2 (en) Water-lithium salt compact absorption refrigerator
JP2823295B2 (en) Absorption refrigerator
JPH0124521B2 (en)
JPS6040590B2 (en) Multiple effect absorption refrigerator