JPS61607A - Improved method for alternate fluid arrangement and apparatus therefor - Google Patents

Improved method for alternate fluid arrangement and apparatus therefor

Info

Publication number
JPS61607A
JPS61607A JP59116699A JP11669984A JPS61607A JP S61607 A JPS61607 A JP S61607A JP 59116699 A JP59116699 A JP 59116699A JP 11669984 A JP11669984 A JP 11669984A JP S61607 A JPS61607 A JP S61607A
Authority
JP
Japan
Prior art keywords
fluid
flattened
fluids
passages
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59116699A
Other languages
Japanese (ja)
Other versions
JPH0133212B2 (en
Inventor
Kazuyoshi Okamoto
岡本 三宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59116699A priority Critical patent/JPS61607A/en
Publication of JPS61607A publication Critical patent/JPS61607A/en
Publication of JPH0133212B2 publication Critical patent/JPH0133212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To reduce the pipe wall effect of alternate fluid arrangement elements and arrange alternately and uniformly fluids, by joining two fluids to place one thereof on the other, flattening the joined fluids, flattening the resultant fluid stream, and halving the stream. CONSTITUTION:Two fluids are respectively joined to place one (B) thereof on the other (A). The resultant fluid stream is flattened to increase the joining interface, and the flattened stream is then halved. The resultant two new fluids (A') and (B') are joined to place one (B') below the other (A') abd flattened to increase the joining interface, and the flattened stream is then halved. The fluids on a pipe wall part are led to the center of the whole stream, and uniform alternate arrangement is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体を交互に配列するに適した改良された流体
交互配列素子すなわち静止型流体混合器の新しい構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a new construction of an improved fluid alternating element or static fluid mixer suitable for alternating fluids.

この流体交互配列素子は静1ト型流体混合器の1種と分
類する向きもあるが、むしろ流体を「交互に配列する」
構造体つまり素子である。そ、の新しい構造素子に関す
るものである。
Some people classify this fluid alternating arrangement element as a type of static one-piece fluid mixer, but it rather "arranges fluids in an alternating manner."
It is a structure or an element. It concerns a new structural element.

〔従来の技術〕[Conventional technology]

従来の交互配列素子またはそれを応用した技術は、例え
ば、次のごとく多数ある。
There are many conventional alternating array elements and techniques using them, such as the following.

(1)  オランダ特許隣  185539(2)  
米国特許USP  3195865(3)  米国特許
LJSP  3206170(4)  米国特許USP
  3583678(5)  米国特許USP  32
86992(6)  米国特許()SP  26010
18(7)  米国特許USP  4307054(8
)  米国特許USP  3608148(9)  米
国特許USP  3577308(IQ>  日本特公
昭38−1123301)  日本特公昭44−829
0 (財) 日本特公昭46−34557 側 日本特公昭48−10741 (ロ) 日本特公昭52−17264 (へ) 日本特公昭53−36182 (至) 日本特開昭48−94945 (ロ) 日本特開昭48−94052 (至) 日本特開昭55−145522なかでも日本特
開昭55−145522には多くの優れた特徴を持つ構
造体〔流体混合器〕を提供している。
(1) Next to Dutch patent 185539 (2)
US Patent USP 3195865(3) US Patent LJSP 3206170(4) US Patent USP
3583678 (5) United States Patent USP 32
86992(6) US Patent () SP 26010
18(7) United States Patent USP 4307054(8
) U.S. Patent USP 3608148 (9) U.S. Patent USP 3577308 (IQ> Japanese Patent Publication No. 38-1123301) Japanese Patent Publication No. 1977-829
0 (Foundation) Japan Special Publication Publication 1977-34557 side Japan Special Publication Publication 1974-10741 (b) Japanese Special Publication Publication 1972-17264 (to) Japanese Special Publication Publication 1977-36182 (to) Japanese Patent Publication Publication 1977-94945 (b) Japanese Special Publication Publication Japanese Unexamined Patent Publication No. 145522/1982 (To) Japanese Unexamined Patent Publication No. 145522/1982 (Japanese Unexamined Patent Publication No. 55-145522) provides a structure (fluid mixer) with many excellent features.

然し乍ら、同公報には一つの混合形式の流体交q配列素
子つまり流体混合器しか明らかにしておらず、例えば、
流体の交互配列が管路の管壁の影響を受けて再々乱れた
り、偏流したり、また管壁部はn留FR間が長いため、
加熱した溶融紡糸に用いるが如くポリマーの分解の程度
が中央部を流れる程度と大きく違ったりζ後述のように
3流体紡糸や3流体吐出(2成分または3成分以−Fに
よる)にかかる重要な流体交互配列を目的とした場合に
は希望の分割が十分起こらない場合があるとか、またA
、8層成分の粘度差が大きい場合の分割が乱れたりする
など大変不都合な事態を惹起する。
However, this publication discloses only one mixing type of fluid exchange q-array element, that is, a fluid mixer; for example,
The alternating arrangement of the fluid is affected by the pipe wall of the pipe line, causing it to become disordered and drifting, and the pipe wall has a long n-stop FR interval.
As used in heated melt spinning, the degree of decomposition of the polymer is greatly different from the degree of polymer flow in the center, and as will be described later, there are important problems associated with three-fluid spinning and three-fluid discharge (with two or more components). When aiming for an alternating arrangement of fluids, the desired division may not occur sufficiently, or A.
, this causes a very inconvenient situation such as disruption of division when the viscosity difference between the eight layer components is large.

本発明者は、すでに流体交互配列素子を用いて高分子相
互配列体IIi紺を容易につくる発明をなし特許出願し
たが、それには、例えば[少なくともA、B高分子2流
体を層状に繰り返し配列させて第1送配列を行ない、次
いでこの第1送配列流体を別のC高分子流体(その成分
が第1送配列流を構成する成分のいずれかと同じ場合も
含む)と合流させて更に第2次の多数の交互層状配列を
さゼるに際し、第1次の交互配列で形成させた層上流の
層の方向とC流の層の方向とが交叉しく交叉角θ、好ま
しくは90度またはその前後)層状相互接合界面が0層
によって多数に切断されるように合流させつつ交互配列
させ、次いで紡糸口金またはフィルム口金から吐出する
ことを特徴とする高分子相U配列体の製造方法」や同装
置が多数開示され、同時にそれらの重要性、有効性が示
されている。特に超極細繊維を作るに適した高分子相互
配列体を製造するに好適なものである。
The present inventor has already invented and applied for a patent for easily producing the polymer mutual array IIi dark blue using an alternating fluid array element, but for example, [at least two polymer fluids A and B are repeatedly arranged in a layered manner The first feeding sequence fluid is then merged with another C polymer fluid (including cases where the components are the same as any of the components constituting the first feeding sequence flow), and the first feeding sequence fluid is then merged with another C polymer fluid (including cases where the components are the same as any of the components constituting the first feeding sequence flow). When forming a large number of secondary alternating layered arrangements, the direction of the layers upstream of the layers formed in the first alternating arrangement and the direction of the C-flow layers intersect at an intersection angle θ, preferably 90 degrees or (Before and after) A method for producing a polymer phase U array, which is characterized by merging and alternatingly arranging the layered mutual bonding interface so that it is cut into a large number of layers by zero layers, and then discharging from a spinneret or film nozzle. A large number of such devices have been disclosed, and at the same time their importance and effectiveness have been demonstrated. In particular, it is suitable for producing a polymer mutual array suitable for producing ultrafine fibers.

かかる場合、上述のような諸欠点が惹起する場合が多い
In such cases, various drawbacks as described above often occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、(1)流体交互配列素子の管壁の影響
を少なくするように、流体の交互配列をより均一に交互
配列させる方法と装置を提供することである。(2)ま
た流体交互配列素子の管壁の影響を少なくするための、
新しい流体交互配列素子を提供することである。(3)
ひいては、より均一な分割或いはより乱れの少ない分割
により、所望の高分子相互配列体をより確実に近い方法
で得やすいようにすることである。(4)ポリマ−2成
分あるいは、3成分の粘度の差による乱れを少なくする
ように流体の交互配列をさせる方法と装置を提供するこ
とである。(5)また、実質的には使用時配列効果を増
大するように二[大して用いるのだが、原哩的に番よ従
来の流体交互配列素子に引ぎ続きこれと組み合わせるこ
とにより、より合理的に高分子相互配列体を得る装置、
特に3成分または3流体紡糸の装置の組み合わすに適し
た流体交互配列素子を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to (1) provide a method and apparatus for more uniformly interleaving fluid alternations so as to reduce the effects of tube walls of fluid alternation elements; (2) In order to reduce the influence of the tube wall of the fluid alternating array element,
An object of the present invention is to provide a new fluidic interleaving element. (3)
Furthermore, by more uniform division or division with less disorder, it is possible to easily obtain a desired polymer mutual arrangement in a more reliable manner. (4) To provide a method and apparatus for alternately arranging fluids so as to reduce disturbances caused by differences in viscosity between two or three polymer components. (5) In addition, in order to substantially increase the array effect during use, two [Although it is used a lot, it is more reasonable to combine it with the conventional fluid alternating array element. an apparatus for obtaining polymer mutual arrays,
It is an object of the present invention to provide a fluid alternating array element which is particularly suitable for combinations of three-component or three-fluid spinning devices.

他の目的は後述の説明でより明らかになるであろう。Other purposes will become clearer from the description below.

これらの開目的に対して特開昭55−145522や特
公昭38−11233、特公昭39−473などでは最
早これ以外のより合理的な流体の配列方法がないと考え
られていたし、また全く開示がなかった。また、それな
りの目的を持たずして、他の構造を考える必要すらなか
った。本発明の目的はかかる意味における新たな流体交
互配列素子と新たな流体交互配列方法を提供することで
ある。
For these purposes, it was thought that there was no other more rational method of arranging fluids than this, and Japanese Patent Publications No. 55-145522, No. 38-11233, No. 39-473, etc. did not disclose any other method of arranging fluids. There was no. Also, there was no need to consider other structures without a specific purpose. The object of the present invention is to provide a new fluid alternating element and a new fluid alternating method in this sense.

〔問題点と解決覆るだめの手段〕[Problems and solutions]

本発明の骨子は次の通りである。 The gist of the present invention is as follows.

(1)  静止型流体交互配列素子によって、2種の流
体(A、B)を交互配列させる方法において、全体とし
ての流体の流れの方向にそって流れの見方を固定して見
た時、先ず2つの流体を一方(8)が他(A>の上にな
るように(合流方法上乗せ型という)それぞれ合流さゼ
、次いで合流させた状態で合流界面が増すように偏平化
させ、次いで偏平化された流れの偏平化の長さが短くな
るように2分し、かくして出来た新たな2種の流体(A
’ 、B’ )を一方(B′)が他(A′)の下になる
ように(合流方法下乗せ型という)前回とは逆の合流の
させかたでそれぞれ再び合流させ、次いで合流させた状
態で合流界面が増すように偏平化させ、次いで偏平化さ
れた流れの偏平化の長さが短くなるように2分する流体
交互配列方法をとることを特徴とする改良された流体交
互配列方法。
(1) In a method of alternately arranging two types of fluids (A, B) using a stationary fluid alternating arrangement element, when the flow is fixed along the direction of the overall fluid flow, first, The two fluids are merged so that one (8) is above the other (A> (referred to as the merging method added type), then flattened so that the merging interface increases in the merged state, and then flattened. The resulting flow is divided into two so that the flattened length becomes shorter, and two new types of fluids (A
', B') are merged again in the opposite way to the previous merge so that one (B') is below the other (A'), and then merged again. An improved fluid alternating arrangement characterized by employing a fluid alternating arrangement method in which the flow is flattened so that the merging interface increases, and then the flattened flow is divided into two so that the length of the flattened flow is shortened. Method.

(2)  静止型流体交互配列素子によって、2種の流
休(A、13)を交互配列させる方法において、全体と
しての流体の流れの方向にそって流れの見方を固定して
見た時、先ず2つの流体をそれぞれ偏平化させ、それぞ
れ偏平化された流体を一方(B)が仙(A)の上になる
ように(合流方法上乗せ型という)それぞれ合流させ、
次いでかくして出来た合流偏平化流体を偏平化の長さが
短くなるように2分し、かくして出来た新たな2種の流
体くΔ’ 、B’)を再びそれぞれ偏平化させ、次いで
一方(B′)が他(A′)の下になるように(合流方法
下乗せ型という)前回とは逆の合流のさせかたでそれぞ
れ再び合流させ、かくして合流させた偏平化流体の長さ
が短くなるように2分する流体交互配列素子をとること
を特徴とする改良された流体交互配列方法。
(2) In a method of alternately arranging two types of flow holes (A, 13) using a stationary fluid alternating arrangement element, when the flow is fixed in the direction of the overall fluid flow, First, each of the two fluids is flattened, and the flattened fluids are merged so that one (B) is on top of the other (A) (referred to as a merging method of added type).
Next, the resulting combined flattened fluid is divided into two such that the length of flattening becomes shorter, and the two new fluids thus created (Δ', B') are flattened again, and then one of them (B ′) is below the other (A′) (this is called the lower merging method), and the length of the flattened fluid is short. An improved fluid alternating arrangement method characterized by taking a fluid alternating arrangement element which is divided into two parts.

(3)管路内において1つの通路をもつ形状変形部と、
2つの通路Δ、Bをもつ移動部とを連結したユニットを
少なくとも1個備えた構造の流体交互配列素子であって
、形状変形部は1つの通路の断面が平行四辺形を保ちつ
つ該通路の管路の伸びる方向に直交する断面積を実質的
に変化させることなく形状を連続的に変化させた構造を
有しており、移動部は前記形状変形部と隣接した位置で
は、形状が同じで管路の伸びる方向と直交する断面積の
和が前記変形部の隣接するlWi而積面ほぼ等しい2つ
の通路を持ち、かつ前記管路の中心線を介して2つの通
路の中心は互いに点対称の位置をとりつつ干渉すること
なく屈曲し、前記2つの通路は移動部の両端において互
いに重なり合っている流体交互配列素子において、2つ
の通路の入り口を、上記管路の伸びる方向に直角な2つ
の相直交するX軸(X−0−X’ )、!=Y軸(Y−
0−Y’ )l、:より区切られた面の4つの象限のう
ち、1つの通路の入り口(A)を第■象限(Y−0−X
’面)に、もう1つの通路の入り口(B)を第■象限(
X−0−Y’面)をそれぞれ通るように配した時、流体
の流れ管が一つの流体交互配列素子の2つの出口(A′
)、〈B′)が第1象限と第■象限にくるように管路構
成をとることを特徴とする流体交互配列素子。
(3) a shape-deforming portion having one passage within the conduit;
A fluid alternating array element having a structure including at least one unit connecting a moving part having two passages Δ and B, the shape deforming part maintaining the cross section of one passage as a parallelogram while changing the shape of the passage. It has a structure in which the shape is continuously changed without substantially changing the cross-sectional area perpendicular to the extending direction of the pipe, and the moving part has the same shape at a position adjacent to the shape-changing part. There are two passages whose sum of cross-sectional areas orthogonal to the extending direction of the conduit is approximately equal to the area of adjacent lWi areas of the deformed portion, and the centers of the two passages are point-symmetrical to each other through the center line of the conduit. In the fluid alternating array element, the two passages overlap each other at both ends of the moving section, and the entrances of the two passages are arranged in two directions perpendicular to the direction in which the pipes extend. Orthogonal X-axes (X-0-X'),! =Y axis (Y-
0-Y')l,: Of the four quadrants of the surface divided by
' side), and the entrance of another passage (B) to the second quadrant (
When the fluid flow tubes are arranged to pass through the two outlets (A') of one fluid alternating array element,
), <B') are arranged in the first quadrant and the second quadrant.

(4)  管路内において1つの通路をもつ形状変形部
と、2つの通路A、Bをもつ移動部とを連結したユニッ
トを少な(とも1個備えた構造の流体交互配列素子であ
って、形状変形部は1つの通路の断面が平行四辺形を保
ちつつ該通路の管路の伸びる方向に直交する断面積を実
質的に変化させることなく形状を連続的に変化させた構
造を有しており、移動部は前記形状変形部と隣接した位
置では、形状が同じで管路の伸びる方向と直交する断面
積の和が前記変形部の隣接する断面積にほぼ等しい2つ
の通路を持ち、かつ前記管路の中心線を介して2つの通
路の中心は互いに点対称の位置をとりつつ干渉すること
なく屈曲し、前記2つの通路は移動部の両端において互
いに重なり合っている流体交互配列素子において、2つ
の通路の入り口を、上記管路の伸びる方向に直角な2つ
の相直交するX軸(X−0−X’ )とY軸(Y−0−
Y’ )により区切られた面の4つの象限のうち、1つ
の通路の入り口(A)を第■象限(Y−0−X’面)に
、もう1つの通路の入り口(B)を第1象限(X−0−
Y’面)をそれぞれ通るように配した時、流体の流れ管
が一つの流体交互配列素子の2つの出口(A′)、(B
′)が第■象限と第■象限にくるように管路構成をとる
ことを特徴とする流体交互配列素子。
(4) A fluid alternating array element having a structure in which a shape-deforming part having one passage and a moving part having two passages A and B are connected in a conduit, with a small number of units (each having one unit), The shape-changing portion has a structure in which the cross section of one passage maintains a parallelogram, and the shape of the passage is continuously changed without substantially changing the cross-sectional area perpendicular to the direction in which the pipe line extends. The moving part has two passages having the same shape and having a sum of cross-sectional areas orthogonal to the extending direction of the pipe substantially equal to the adjacent cross-sectional area of the deforming part at a position adjacent to the shape deforming part, and In the fluid alternating array element, the centers of the two passages are bent without interfering while taking positions point symmetrical to each other through the center line of the conduit, and the two passages overlap each other at both ends of the moving part, The entrances of the two passages are aligned with two mutually orthogonal X-axes (X-0-X') and Y-axes (Y-0-
Of the four quadrants of the surface divided by Quadrant (X-0-
When the fluid flow tubes are arranged to pass through the two outlets (A') and (B
A fluid alternating array element characterized in that the conduit structure is such that the lines ′) are located in the first and second quadrants.

本発明の素子は立体的構成を持つので、その素子をどの
ような方向から眺めるかを規定しないと、装置としての
内容が理解し難い。そのため、特開昭55−14552
2に開示された図面と敢えて比較しつつ、説明する。
Since the device of the present invention has a three-dimensional configuration, it is difficult to understand the contents of the device unless it is specified from which direction the device is viewed. Therefore, JP-A-55-14552
This will be explained while daringly comparing it with the drawings disclosed in No. 2.

流体交互配列素子は本来流路の孔即ち管路が規定される
、もので、素子そのものの、外形は普通問わない。全体
として、4角柱状であろうと、円柱状であろうと、円板
状であろうと、多角板状であろうと、またそれらに1組
の孔が設けられていようと、多数の組の孔が設けられて
いようと、その他の形状の柱状であろうと差支えない。
The alternating fluid arrangement element is essentially a device in which holes or conduits for flow paths are defined, and the external shape of the element itself is generally not critical. As a whole, whether it is a square prism, a cylinder, a disk, or a polygon, and whether it has one set of holes, there are many sets of holes. It does not matter whether it is a columnar shape or a columnar shape of another shape.

特開昭55−145522の表示法では、外形を除き構
成の主体となる流路が外から見られるように表示しであ
る。(後述の第2図〜第12図もそれに該当)それに準
じて示りど次の通りである。
In the display method of JP-A-55-145522, the flow path, which is the main component of the structure, is displayed so as to be seen from the outside, excluding the external shape. (FIGS. 2 to 12, which will be described later, also correspond to this) The following is shown in accordance with this.

先ず、第1図は公知の流体交互配列素子を上方から眺め
、A流体およびB流体の入り口を規定せんとしたもので
ある。相直交する2つのmX−X’ 、Y−Y’ を先
ず規定する。交点を通例に従い0点と規定する。それを
流体の2つの入り口の中央に配して、2つの流入部を規
定し、Y−0−X部分を第1象限、x −o −Y′ 
を第■象限、Y’−〇−X’を第■象限、X’ −0−
Yを第■象限と通例の如く規定する。全体としての流体
の流れに沿ってこの関係は延長されるものとして、管路
の配置を規定する。即ち、管路を流れ全体の中心から流
れに沿って見たことになる。つまりx1Y両軸とも面で
あってただそれらを面と平行な真上から見たと考えると
よい。第1図では流体Aはx’−o−yの第■象限の孔
から流れ込む。流体BはX−0−Y’の第■象限から流
入する。出口部も正しく上方から見れば、同じ位置にく
ることになる。(そのため流体交互配列素子が何個も積
み重ねて使用できるのである。、)入り口から出口に至
って、流体が合流し層状化され、再分配されるのである
。この時の様子を第2図に示した。第2図は従来の(特
開昭55−145522の)流体の配列形式を示した。
First, FIG. 1 shows a known fluid alternating array element viewed from above, with the inlets of fluid A and fluid B not defined. First, two mutually orthogonal mX-X' and Y-Y' are defined. The intersection point is defined as 0 point as usual. It is placed in the middle of the two inlets of the fluid to define the two inlets, and the Y-0-X section is the first quadrant, x -o -Y'
is the ■quadrant, Y'-〇-X' is the ■quadrant, X'-0-
Y is defined as the 2nd quadrant as usual. This relationship defines the arrangement of the conduits as extending along the overall fluid flow. In other words, the pipe line is viewed from the center of the entire flow along the flow. In other words, both the x1 and y axes are surfaces, and it is best to think of them as viewed from directly above, parallel to the surfaces. In FIG. 1, fluid A flows from the hole in the quadrant x'-o-y. Fluid B flows in from the second quadrant of X-0-Y'. If you look at the exit properly from above, it will be in the same position. (This is why multiple fluidic alternating elements can be used in stacks.) From the inlet to the outlet, the fluids merge, become stratified, and are redistributed. The situation at this time is shown in Figure 2. FIG. 2 shows a conventional fluid arrangement format (Japanese Patent Application Laid-Open No. 55-145522).

第2図で(a)の如く2つの流路A、Bは、次の段階で
(b)の如<Y−0−Y’力方向並べられて合流し、(
C)(d)の如く順次変形され、(d’)の如<x’−
o−x方向に伸ばされ、(d)の点線の如く分割され、
(e)の如く第■象限と第■象限に配置される。流れ方
向に位置こそ進んでいるが、上からみた限りではもとの
位置に戻ったように見える。しかしこの間に流体ABは
層状にそれぞれ重ねられている。従来の流体交互配列素
子は、このように元の位置に戻った流体を、多数の流体
交互配列素子を重ねて連結して用いることにより、次々
と流体を層状化して相互配列して用いるのである。
In Fig. 2, the two flow paths A and B as shown in (a) are arranged in the force direction <Y-0-Y' and merge in the next step as shown in (b).
C) It is transformed sequentially as in (d), and as in (d') <x'-
It is stretched in the ox direction and divided as shown by the dotted line in (d),
They are placed in the 1st and 2nd quadrants as shown in (e). It is moving in the direction of the flow, but when viewed from above it appears to have returned to its original position. However, during this time, the fluids AB are superimposed in layers. In conventional fluid alternating array elements, the fluid returned to its original position is used by stacking and connecting a large number of fluid alternating array elements, thereby layering the fluid one after another and arranging it mutually. .

然し乍ら、かかる従来の流体交互配列素子の連結の方法
では、高粘性流体の如く、管壁の影響を大きく受けやす
いものに対しては、前述の如く多くの好ましく無いこと
が惹起する。管壁部は流れ難く、滞留時間も自然と大と
なる。それらの様子の一例を第3図にて説明する。第3
図で(a)は第2図の(a)に相当する。第3図の(b
)は第2図の(d)に相当する。但し、図をより分り易
くするために第2図の(d)よりも流体の厚みがやや大
ぎく描いである。第3図の(C)は第2図の(e)に相
当する。もう1個流体交互配列素子を連結させると流体
は第3図(C)(d)(e)の如く変形されて、相互配
列が層状にさらに進むことが理解されよう。いまもし最
も管壁に近い所にある流体を第3図(a)の如<Dlで
示す。かくして流体01部分は(b)で02付近に、(
c)ではp3付近に、(、d)ではp4付近に、(e)
ではp5付近にくることになり、いつまで;b @ 壁
に位置することになっている。
However, in this conventional method of connecting fluid alternating array elements, many undesirable problems occur as described above for fluids such as high viscosity fluids which are easily affected by the pipe wall. It is difficult to flow through the pipe wall, and the residence time is naturally long. An example of these situations will be explained with reference to FIG. Third
In the figure, (a) corresponds to (a) in FIG. (b) in Figure 3
) corresponds to (d) in FIG. However, in order to make the diagram easier to understand, the thickness of the fluid is drawn slightly larger than in FIG. 2(d). (C) in FIG. 3 corresponds to (e) in FIG. It will be understood that when one more fluid interleaving element is connected, the fluid is deformed as shown in FIGS. 3C, 3D, and 3E, and the mutual arrangement further progresses in a layered manner. If the fluid is closest to the tube wall, it is indicated by <Dl as shown in FIG. 3(a). Thus, the fluid 01 part is near 02 in (b), (
c) near p3, (, d) near p4, (e)
Then, it will be near p5, and until when will it be located on the wall?

このことは、流体の重ね合わせ方に一定の規則性がある
ためであって、合流後流体を再分割する時の重ね含わU
の時の流体を移動させる管路が一定になっているためで
ある。偏平化された複合流を2分して重ねる時の様子を
示したのが第4図である。偏平化された流体を部分XY
に分けて示すと、X部分を基準にして見るとY部分がX
の下に重ねられる。その合流複合流は偏平化されて部分
X’ Y’になる。再びY′が移動されて(X’を基準
にして見ているから)X′の下に重ねられる。
This is because there is a certain regularity in the way the fluids are superimposed, and when the fluids are redivided after merging, the overlap U
This is because the pipe line through which the fluid is moved remains constant. Fig. 4 shows the situation when the flattened composite flow is divided into two and overlapped. The flattened fluid is divided into parts XY
When shown separately, when looking at the X part as a reference, the Y part is
It can be layered under the . The combined combined flow is flattened into portions X' and Y'. Y' is moved again (since we are viewing with X' as the reference) and is superimposed under X'.

再びその合流複合流は偏平化されて部分X /T Y 
/1になる。以下同様にして進んで行く。このように同
じことばかりの繰り返しの分割合流形式である。
The merged composite flow is again flattened into a portion X /T Y
/1. Proceed in the same manner below. In this way, it is a division-merging format where the same things are repeated over and over again.

そのため、前述のような欠点の出る場合があるのである
Therefore, the above-mentioned drawbacks may occur.

これを避ける方法及び装置を提供するのが、本発明の方
法、装置である。その原理を第5図に示す。これは第3
図と対比して見るべきである。
The method and apparatus of the present invention provide a method and apparatus for avoiding this. The principle is shown in FIG. This is the third
It should be viewed in comparison with the figure.

第5図の(a)は流体A、Bの流入部を夫々示している
。管壁にある流体の部分に1に注目すべきである。第5
図(b)も合流後の偏平化された流体をやや拡大して示
しているが、第3図の(b)の場合と同じである。k1
部分はに2部分に移動する。次いで本発明の場合は合流
後の分割流体を第■象限と第■象限に戻さず、第■象限
と第1象限に戻す新しい構造と方法を採るのである。即
ち第5図の(C)の如<k2部分は(c)のに3部分に
くる。従って次の流体交互配列素子は同じものを組み合
わすことは不可能である。本発明の方法及び装置はもう
1個の新しい流体交互配列素子を組み合わす。その方法
及び装置は次の機能をもっている。第5図(C)の如く
分割された流体を第5図(d)の如<k3部分かに4部
分近辺に流体が配置されるように流体を移動させ偏平化
させる。なお、(d)は少し人きく描いである。かくの
如く流体を配置した後、流体を2分割し、(e)の如く
合流流体を再配置するのである。この時に4部分はに5
の部分近辺に移動する。かくの如く流体の合流のさせ方
が違うのである。(第3図の05部分と第5図に5部分
とを比較するとよい。
FIG. 5(a) shows the inflow portions of fluids A and B, respectively. Note 1 the part of the fluid that is on the tube wall. Fifth
Although FIG. 3(b) also shows the flattened fluid after merging in a slightly enlarged manner, it is the same as the case of FIG. 3(b). k1
The part moves into two parts. Next, in the case of the present invention, a new structure and method is adopted in which the divided fluids after merging are not returned to the first and second quadrants, but are returned to the second and first quadrants. That is, as shown in FIG. 5(C), the <k2 portion becomes the 3rd portion in (c). Therefore, it is impossible to combine the same next fluid alternating array elements. The method and apparatus of the present invention incorporates another new fluidic interleaving element. The method and apparatus have the following functions. The fluid divided as shown in FIG. 5(C) is moved and flattened so that the fluid is disposed near the <k3 portion and the 4 portion as shown in FIG. 5(d). Note that (d) is a slightly more personable depiction. After arranging the fluid in this manner, the fluid is divided into two parts, and the combined fluid is rearranged as shown in (e). At this time, the 4 parts are 5
Move near the part. As shown above, the way the fluids merge is different. (It is good to compare section 05 in Fig. 3 with section 5 in Fig. 5.

これらは、たまたまに1点で比較したが、他の部分につ
いても同様なことがいえる。) この様子を第4図と同様な方法で比較覆ると第6図の如
くなる。即ち、偏平化された流体XYの部分は2分され
、先ず第1のステップでXの上にYが移動されるように
した。かくして合流した流体を偏平化してX’ 、Y’
の如くし、それを2分してこんどはX′の下にY′が来
るように配置させる。かくしてできた合流複合流を偏平
化してX JL 、Y //の如くにして、今度はX″
の上にY Hがくるように配胃覆る。以下交互に行なう
こともできるし、時々交互に行なっても良い。少なくと
も本発明の目的を達成するために、一度はかかる方法あ
るいは装置構成を採る必要があるのである。
These comparisons happened to be based on one point, but the same can be said about other parts as well. ) If this situation is compared and reversed using the same method as in Fig. 4, the result will be as shown in Fig. 6. That is, the flattened fluid XY portion was divided into two parts, and first, in the first step, Y was moved above X. The fluid thus merged is flattened to form X', Y'
Divide it into two and place it so that Y' is below X'. The confluence composite flow thus created is flattened to look like X JL , Y //, and now X''
Cover the stomach so that YH is on top of it. The following steps can be performed alternately, or may be performed alternately from time to time. In order to achieve the object of the present invention, it is necessary to employ such a method or apparatus configuration at least once.

かくして、管壁のある流体は少なくともより全体の流れ
の中央へ導かれ、より均一な流体の交互配列がなされる
ことが理解出来たであろう。
It will be appreciated that the fluid at the tube wall is thus directed at least more centrally to the overall flow, resulting in a more uniform fluid interleaving.

本発明にかかる管路の入り口及び出口はこれまでのもの
とその構成を異にしている。その様子を第7図に示す。
The inlet and outlet of the conduit according to the invention differs in its construction from previous ones. The situation is shown in FIG.

第7図(a)は入り口を相直交する2つの線X軸Y軸に
対して入り口を第■象限と第■象限に設けた時、出口部
が(1))の如く、第■象限と第1象限にくる流体交互
配列素子である。
Figure 7(a) shows that when the entrances are provided in quadrants 1 and 2 with respect to the two orthogonal lines X and Y axes, the exits are located in quadrant 2 and 2, as shown in (1)). This is the fluidic alternating array element in the first quadrant.

四角の部分がそれぞれ入り口部及び出口部をしめしてい
ることは申Jまでもない。
It goes without saying that the square parts represent the entrance and exit, respectively.

もう1つ組み合わせる(かまたは独立に用いることもで
きる)流体交互配列素子がある。それは第8図に示すよ
うに、流入部を(a)の如く、第■象限と第1象限に設
け、出口部を第■象限と第■象限に設け゛るのである。
There are additional fluidic interleaving elements that can be combined (or used independently). As shown in FIG. 8, the inflow portions are provided in the first and second quadrants as shown in (a), and the outlet portions are provided in the first and second quadrants.

入り口と出口間では、流体の交互配列が行なわれるよう
にすることは申すまでもない。第7図のタイプの流体交
互配列素子と第8図のタイプの流体交互配列素子とは一
つのペアーとして、好都合で流体の交互配列に用いられ
る。なぜなら、ペアーとして用いると、入り口部と出口
部がぴたりと合うようにすることができるからである。
Needless to say, an alternating arrangement of fluids is provided between the inlet and the outlet. A fluid alternating element of the type of FIG. 7 and a fluid alternating element of the type of FIG. 8 are advantageously used as a pair for fluid alternation. This is because when used as a pair, the inlet and outlet portions can be made to fit snugly.

流体の交互配列効率は従来と何等変わることはないので
ある。
The efficiency of alternate arrangement of fluids remains unchanged from that of the conventional method.

本発明にがかる構成の管路構成の例を第9図に示す。入
り口部はX軸、Y軸に対し、第■象限と第1象限に設け
られており、各流体は管路によってY軸(面上にその流
体の中心部が配置されるように)上に並べて合流させ、
次に変形させて、X軸上に(X軸と長手方向とがなす面
上に)並べ、Y軸方向にカットして2分し、第■象限と
第1象限に出口部をもってくるのである。これは第7図
のタイプであることが分るであろう。
An example of a conduit configuration according to the present invention is shown in FIG. The inlets are provided in the 1st quadrant and the 1st quadrant with respect to the X and Y axes, and each fluid is placed on the Y axis (so that the center of the fluid is placed on the plane) by a pipe. Arrange and merge,
Next, deform it, line it up on the X-axis (on the plane formed by the X-axis and the longitudinal direction), cut it in the Y-axis direction, divide it into two parts, and bring the exit parts to the 1st and 1st quadrants. . It will be seen that this is of the type shown in FIG.

第10図は同様にX@Y軸に対し、入り口部が第■象限
と第■像限にあり、先ず各流体は管路によってY軸(面
上にその流体の中心部が配置されるように)lに並べて
合流させ、次に変形させて、X軸上に(X軸と長手方向
とがなす面上に)並べ、Y軸方向にカットして2分し、
第■象限と第■象限に出口部をもってくるのである。こ
れは第8図のタイプであることが分るであろう。
Similarly, in Fig. 10, with respect to the 2) Arrange them in the l direction and merge them, then transform them, arrange them on the X axis (on the plane formed by the X axis and the longitudinal direction), cut them in the Y axis direction and divide them into two,
This brings the exit parts to the 2nd and 2nd quadrants. It will be seen that this is of the type shown in FIG.

第11、図は一見第9図と似ているが、実際は非常に違
うm造を持っており、入り口部はX軸、Y軸に対し、第
■象限と第1象限に設けられており、各流体は管路によ
ってX軸(面上にその流体の中心部が配置されるように
)上に並べて合流させ、次に変形させU、Y軸上に(Y
軸と長手方向とがなす面上に)並べ、X軸方向にカット
して2分し、第■象限と第1象限に出口部をもってくる
のである。これは第7図のタイプであることが分るであ
ろう。またこれは第10図の構成が外形、及び名花が点
対称に出来ていれば、第11図と一致する。
At first glance, Figure 11 looks similar to Figure 9, but it actually has a very different structure, with the entrances located in the 2nd and 1st quadrants relative to the X and Y axes. Each fluid is lined up and merged on the X axis (so that the center of the fluid is placed on the plane) using a pipe, and then deformed and moved on the U and Y axes (Y
They are lined up (on the plane formed by the axis and the longitudinal direction), cut in the X-axis direction to divide them into two, and have exit portions in the 1st and 1st quadrants. It will be seen that this is of the type shown in FIG. Moreover, if the configuration of FIG. 10 has a point-symmetrical outline and famous flowers, it will match that of FIG. 11.

第12図は一見第10図と似ているが、実際は非常に違
う構造を持っており、入り口部はX軸、Y軸に対し、第
■象限と第1象限に設けられており、各流体は管路によ
って先ずX軸(面上にその流体の中心部が配置されるよ
うに)上に並べて合流させ、次に変形させて、Y軸上に
(Y軸と長手方向とがなす面上に)並べ、X軸方向にカ
ットして2分し、第■象限と第1象限に出口部をもって
くるのである。これは第8図のタイプであることが分る
であろう。またこれは第9図の構成が外形、及び名花が
点対称に出来ていれば、第12図と一致する。
Although Fig. 12 looks similar to Fig. 10 at first glance, it actually has a very different structure; the inlets are provided in the 1st quadrant and the 1st quadrant with respect to the X and Y axes, and each fluid are first arranged and merged on the X axis (so that the center of the fluid is placed on the plane) using a conduit, then deformed, and placed on the Y axis (on the plane formed by the Y axis and the longitudinal direction). ), cut them in the X-axis direction to divide them into two parts, and bring the exit parts to the 1st and 1st quadrants. It will be seen that this is of the type shown in FIG. Moreover, if the configuration in FIG. 9 is made point symmetrical with respect to the outer shape and the famous flowers, then this will match that of FIG. 12.

ペアーは第9図と第10図が作れ、また第11図と第1
2図とがつくれる。しかし第9図と第12図、第11図
と第10図の組み合わせは流体の層上流を一度形成して
から元に戻すことになるので、外形を同じに作った場合
は、極めて組み合わせる時に[ラセミ構造1体の関係に
有るという。
Pairs can make Figures 9 and 10, and Figures 11 and 1.
Can make 2 diagrams. However, in the combinations of Figures 9 and 12, and Figures 11 and 10, the fluid layer upstream is formed once and then returned to its original state. They are said to have a racemic structure.

物事が逆になる「反宇宙」的In体ということ;bでき
る。これを避りるために、かかる管路を形成する板また
は柱状物にあわせ孔を設けたり、ノックビン孔を設けた
り、板または柱状物の外形を対称としないか、目印を設
けることが好ましい。
It is an "anti-universe" In-body where things are reversed; b. In order to avoid this, it is preferable to provide a matching hole or knock bottle hole in the plate or columnar object forming such a conduit, or to make the outer shape of the plate or columnar object symmetrical, or to provide a mark.

かかるラセミ構造の流体交互配列素子は本発明者にかが
63流体紡糸法による高分子相互配列体繊維の紡糸に両
者とも極めて好都合に組み合わせて用いることができる
。(これは後にも述べる)本発明の構成は管路の構成を
分り易くするために管路主体にその構成を説明したが、
素子そのものの外形は3角4角5角6角・・・・・・光
等板状、柱状等如何なるものでもよいことはこの原理を
理解した上は明らかであろう。−々具体的に図面で示す
までもない。しかも、かかる管路は、一つの板状、柱状
等如何を問わず、効率的に1個2個3個4個・・・・・
・Ni設けることができ、その配置は菊の花弁状配置で
あろうと、マトリックス的配置であろうと、千鳥配置で
あろうと、市松配置であろうと、多重同心円的配置であ
ろうと、あらゆるものがとれる。しかもそれらをうまく
交互のベアーとして多重に重ねあわせができるのである
。更にこれらは本発明者が既に発明し、その一部を前述
した3流体(3成分)方式の高分子相互配列体繊維の紡
糸や高分子相互配列体フィルムや吐出の口金ブロック内
部に好適にmmいることができることも、本発明の原理
を理解してしまった上は、いとも容易に分るであろう。
Such racemic fluid interleaved array elements can be used by the present inventors in very advantageous combination for spinning polymeric interleaved fibers by the Kaga 63 fluid spinning method. (This will be explained later) The configuration of the present invention was explained mainly for the conduit in order to make the conduit configuration easier to understand.
It will be clear from understanding this principle that the external shape of the element itself may be triangular, quadrangular, pentagonal, hexagonal, etc., plate-like, columnar, etc. - There is no need to specifically show them in drawings. In addition, such pipes can be efficiently divided into 1, 2, 3, 4, etc., regardless of whether they are in the form of a single plate, column, etc.
・Ni can be placed in any arrangement, including a chrysanthemum petal arrangement, a matrix arrangement, a staggered arrangement, a checkerboard arrangement, and a multi-concentric arrangement. . Moreover, they can be layered in multiple layers as alternating bears. Furthermore, these have already been invented by the present inventor, and some of them can be suitably used in the above-mentioned three-fluid (three-component) method for spinning polymer mutual array fibers, polymer mutual array films, and discharge nozzle blocks. Once the principles of the present invention are understood, it will be easy to understand that it is possible to do so.

本発明にかかる流体交互配列素子においては、余り急激
な流体の合流や再配置は好ましくなく、各流路即ち管路
が流れ全体の方向すなわち流体交互配列素子の組み合わ
されてゆく方向(流体交互配列素子の中心線と一般に一
致)どなず角度が45度以下であることが特に好ましい
In the fluid alternating array element according to the present invention, it is not preferable for the fluids to merge or rearrange too rapidly, and each flow path, that is, the pipe line, is directed in the direction of the entire flow, that is, in the direction in which the fluid alternating array elements are combined (fluid alternate array It is particularly preferred that the angle (generally coincident with the center line of the element) be less than 45 degrees.

また特公昭38−ffl 1233、特公昭39−43
7などに示されlζ流体の交互配列原理ににb本発明の
流体合流交互変更原理は確実に用いることが出来ること
は明白であろう。特に第5〜12図に開示した方法や装
置構造が優れており、好ましいことも理解出来るであろ
う。流体の合流や偏平化の順序はどちらが先でも良い。
In addition, Special Public Official Publication 1233, Special Public Official Publication No. 39-43
It will be obvious that the principle of alternating fluid merging according to the present invention can be reliably used in accordance with the principle of alternating arrangement of lζ fluids as shown in No. 7 and the like. In particular, it will be understood that the methods and device structures disclosed in FIGS. 5 to 12 are excellent and preferable. The order of merging and flattening the fluids may be in any order.

従って(1)静止型流体交互配列素子によって、2種の
流体(AlB)を交互配列させる方法において、全体と
しての流体の流れの方向にそって流れの見方を固定して
見た時、先ず2つの流体を一方(B)が他(A)の上に
なるように(合流方法上乗せ型という)それぞれ合流さ
せ、次いで合流させた状態で合流界面が増すように偏平
化させ、次いで偏平化された流れの偏平化の長さが短く
なるように2分し、かくして出来た新たな2種の流体(
A’ 、B’ )を一方(B′)が他(A′)の下にな
るように(合流方法下乗せ型という)前回とは逆の合流
のさせがたで、それぞれ再び合流させ、次いで合流させ
た状態で合流界面が増すように偏平化させ、次いで偏平
化8れた流れの偏平化の長さが短くなるように2分する
流体交互配列方法をとることを特徴とする改良された流
体交互配列方法も(2)静止型流体交互配列素子によっ
て、2種の流体(A、B)を交互配列させる方法におい
て、全体としての流体の流れの方向にそって流れの見方
を固定して見た時、先ず2つの流体をそれぞれ偏平化さ
せ、それぞれ偏平化された流体を一方(B)が他(△)
の上になるように(合流方法上乗u型という)それぞれ
合流させ、次いでかくして出来た合流偏平化流体を偏平
化の長さが短くなるように2分し、かくして出来た新た
な2種の流体(A′、B′ )を再びそれぞれ偏平化さ
せ、次いで一方(B′ )が他(A′)の下になるよう
に(合流方法下乗せ型という)前回とは逆の合流のさせ
かたでそれぞれ再び合流させ、かくして合流させた偏平
化流体の長さが短くなるように2分する流体交互配列方
法をとることを特徴とする改良された流体交互配列方法
もともに好ましく、適用できることは本発明の構成をI
IF解づれば、容易に分るであろう。本発明の方法や構
成は他の紡糸口金や吐出口金と組み合わせて用いること
ができる。
Therefore, in (1) a method of alternately arranging two types of fluid (AlB) using a stationary fluid alternating arrangement element, when the flow is fixed along the direction of the overall fluid flow, first two types of fluids are arranged alternately. The two fluids are merged so that one (B) is on top of the other (A) (referred to as the merging method added type), and then the merged state is flattened so that the merging interface increases, and then the flattened fluid is The flow is divided into two so that the flattened length becomes shorter, and two new types of fluids are created in this way (
A', B') are merged again so that one (B') is below the other (A') (referred to as the lower merging method) in the reverse merging manner than the previous time, and then An improved fluid arrangement method is adopted in which the flow is flattened so that the merging interface increases in the merged state, and then the flattened flow is divided into two so that the length of the flattened flow is shortened. The fluid alternating arrangement method is also (2) a method in which two types of fluids (A, B) are arranged alternately using a stationary fluid alternating arrangement element, in which the view of the flow is fixed along the direction of the overall fluid flow. When looking at it, first the two fluids are flattened, and one (B) and the other (△)
Then, the resulting merged flattened fluid is divided into two such that the length of the flattened fluid becomes shorter, and two new types are created in this way. The fluids (A', B') are flattened again, and then they are merged in the opposite way to the previous time, so that one (B') is below the other (A') (referred to as the "lower joining type"). An improved fluid alternating arrangement method characterized by adopting a fluid alternating arrangement method in which the flattened fluids are joined together again and divided into two so that the length of the combined flattened fluid is shortened is also preferred and applicable. The structure of the present invention is
If you understand IF, you will understand easily. The methods and configurations of the present invention can be used in combination with other spinnerets and spouts.

ラセミ関係にある素子では流体の合流時の界面が最初X
軸方向にできるのとY軸方向にできる基本的な違いがあ
る。従ってそれらの素子をもし組み合わせるとすれば、
理論的にはASBの流体交互配列が元に戻ってしまうこ
とになり、なんらの分割も配列も進まなかったことにな
る。すなわち、層状流体界面をX軸方向に配列させる構
造流体交互配列素子を多数組み合わせて流体を相互配列
させた後、第3成分と組み合わせるに際し、本発明構造
体のなかの相互にラセミ構造関係にあるものを用いると
、90度捻りことなしに、その層状流を略直角に寸断す
るように、第3成分を層状に介在させることができる新
しい流体交互配列素子を提供することに成功したのであ
る(第1図のものの組み合わせでは90度捻りに対し、
適当な捻り管が必要)。
In elements in a racemic relationship, the interface when fluids merge is initially
There is a fundamental difference between what can be done in the axial direction and what can be done in the Y-axis direction. Therefore, if you combine those elements,
Theoretically, the fluid alternating arrangement of the ASB would have returned to its original state, and no division or arrangement would have proceeded. That is, after arranging fluids mutually by combining a large number of structural fluid alternating arrangement elements that arrange laminar fluid interfaces in the They succeeded in providing a new fluid alternating array element that can interpose a third component in a layered manner so as to disrupt the laminar flow at approximately right angles without twisting it by 90 degrees. In the combination of the ones in Figure 1, for a 90 degree twist,
(requires a suitable twisted pipe).

この有用性は前記記載の3成分方式で高分子相互配列体
を流体交互配列素子を組み合わせて用いて作る場合、ラ
セミ構造関係にある本発明の素子もいかに有用であるか
が理解できる。
This usefulness shows how useful the element of the present invention, which has a racemic structural relationship, is also useful when the polymer mutual array is made using the above-described three-component system in combination with the fluidic alternating array element.

〔発明の効果〕〔Effect of the invention〕

(1)流体を交互配列するに際し、流体をより均一に分
割し配列する原理、方法および装置を提供することに成
功した。
(1) When arranging fluids alternately, we succeeded in providing a principle, method, and device for more uniformly dividing and arranging fluids.

(2)  新しい流体交互配列素子を提供することに成
功した。
(2) Succeeded in providing a new fluidic alternating array element.

(3)層状流体界面をX軸方向に配列させる構造流体交
互配列素子を多数組み合わせて流体を相互配列させた後
、第3成分と組み合わせるに際し、本発明構造体のなか
の相互にラセミ構造関係にあるものを用いると、90度
捻りことなしに、その層状流を略直角に寸断するように
、第3成分を層状に介在させることができる新しい流体
交互配列素子を提供することに成功した。
(3) Structure for arranging laminar fluid interfaces in the X-axis direction After arranging fluids mutually by combining a large number of fluid alternating arrangement elements, when combining with the third component, the structures of the present invention have a racemic structural relationship with each other. By using one, we have succeeded in providing a new fluid alternating array element in which a third component can be interposed in a layered manner so as to disrupt the laminar flow at a substantially right angle without twisting the layered flow by 90 degrees.

(4)  この流体交互配列素子は従来の流体交互配列
素子と組み合わゼたり、また単独で多数組み合わせ、流
体の交互配列や流体混合をするのに効果的に用いること
ができる。
(4) This fluid alternating array element can be combined with a conventional fluid alternating array element, or can be used alone in combination in large numbers for effective use in alternately arranging fluids or mixing fluids.

(5)  これにより、新しいw&維やフィルム、プラ
スチック成型品が提供されたり、これらは結果として、
超極lII繊維や静電防止ilNや、制電性フィルムや
プラスデック、超薄膜フィルム、剥離型l1m、剥離型
フィルム、高分子相互配列体mu、高分子相互配列構造
をもつフィルムやプラスチック等が容易に提供出来るよ
うにした。
(5) As a result, new W&fibers, films, and plastic molded products will be provided, and as a result,
Ultra-polar II fiber, antistatic ILN, antistatic film, plus deck, ultra-thin film, peelable l1m, peelable film, polymer mutual array mu, films and plastics with polymer mutual array structure, etc. Made it easy to provide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、流体交互配列素子(斜視図)の入り口部を規
定して見るためのXY座標と流体交互配列素子の斜視断
面構造透視図の1例を示すものであり、またこの構造自
体は公知(従来)のものである。 第2図は、従来の流体交互配列素子の入り口部から出口
部に至る管路と流体の様子(流体の流れと変形状態の理
解を助ける管路)を示す図である。 同時に流体の交互配列原理を示している。 第3図は、従来の流体交互配列素子の組み合わせにおけ
る流体の移動とその場合における問題点を例示するため
の図、 第4図は、従来の流体交互配列素子の組み合わせにおけ
る流体の切断と合流方式を理解するための図、 第5図は、本発明にかかる流体交互配列素子の組み合わ
せによる流体の交互配列体原理と従来の問題点を解決す
る原理を示す図、 第6図は、本発明にかかる流体交互配列素子の組み合わ
せにおける流体の切断と合流方式を説明するための図、 第7図は、本発明にかかる流体交互配列素子の入り口部
と出口部の相互関係をXY座標を用いて説、明するため
の図、 第8図は、本発明にかかる他の流体交互配列素子の入り
口部と出口部の相互関係をXY座標を用いて説明するた
めの図、 第9図は本発明にかかる流体交互配列素子の構造の斜視
図(外形は省略)、 第10図は本発明にかかる他の流体交互配列素子の構造
の斜視図(外形は省略)、 第11図は本発明にかかる他の流体交互配列素子の構造
の斜視図(外形は省略)、 第12図は本発明にかかる他の流体交互配列素子の構造
の斜視図(外形は省略)である。 特許出願人  東 し 株 式 会 社第  1  図 第 2 図 第3図  第4図 8        。 G           () ◇            ◇ 第5図   第6図 Y 第7図 第 8 図 第9図 第10図
FIG. 1 shows an example of the XY coordinates for defining and viewing the entrance portion of the alternating fluid array element (perspective view) and a perspective view of the perspective cross-sectional structure of the alternating fluid array element, and this structure itself is This is a known (conventional) one. FIG. 2 is a diagram showing the state of the fluid and the conduit from the inlet to the outlet of a conventional fluid alternating array element (the conduit helps to understand the flow of fluid and the state of deformation). At the same time, it shows the principle of alternating arrangement of fluids. FIG. 3 is a diagram illustrating the movement of fluid in a conventional combination of alternating fluid array elements and the problems in that case. FIG. 4 is a diagram showing a method of cutting and merging fluid in a conventional combination of alternating fluid array elements. FIG. 5 is a diagram showing the principle of an alternating arrangement of fluids by a combination of alternating fluid arrangement elements according to the present invention and the principle of solving the conventional problems. FIG. FIG. 7 is a diagram for explaining the fluid cutting and merging method in the combination of such fluid alternating array elements, and FIG. , FIG. 8 is a diagram for explaining the mutual relationship between the inlet part and the outlet part of another fluid alternating arrangement element according to the present invention using XY coordinates, and FIG. FIG. 10 is a perspective view of the structure of another fluid alternating array element according to the present invention (external dimensions are omitted); FIG. 11 is a perspective view of the structure of another alternate fluid array element according to the present invention (external dimensions are omitted); FIG. 12 is a perspective view of the structure of another fluid alternating array element according to the present invention (outer dimensions are omitted). Patent Applicant Toshi Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 8. G () ◇ ◇ Fig. 5 Fig. 6 Y Fig. 7 Fig. 8 Fig. 9 Fig. 10

Claims (4)

【特許請求の範囲】[Claims] (1)静止型流体交互配列素子によって、2種の流体(
A、B)を交互配列させる方法において、全体としての
流体の流れの方向にそって流れの見方を固定して見た時
、先ず2つの流体を一方(B)が他(A)の上になるよ
うに(合流方法上乗せ型という)それぞれ合流させ、次
いで合流させた状態で合流界面が増すように偏平化させ
、次いで偏平化された流れの偏平化の長さが短くなるよ
うに2分し、かくして出来た新たな2種の流体(A′、
B′)を一方(B′)が他(A′)の下になるように(
合流方法下乗せ型という)前回とは逆の合流のさせかた
でそれぞれ再び合流させ、次いで合流させた状態で合流
界面が増すように偏平化させ、次いで偏平化された流れ
の偏平化の長さが短くなるように2分する流体交互配列
方法をとることを特徴とする改良された流体交互配列方
法。
(1) Two types of fluids (
In the method of alternately arranging A and B), when the flow is fixed along the direction of the overall fluid flow, first the two fluids are arranged so that one (B) is on top of the other (A). (referred to as an added type of merging method), then flatten the merged state so that the merging interface increases, and then divide the flattened flow into two so that the length of the flattened flow becomes shorter. , thus created two new types of fluids (A',
B') so that one (B') is below the other (A') (
The merging method is referred to as the "submerged type"). The merging method is reversed from the previous merging method to merge each other again, and then the merging state is flattened so that the merging interface increases, and then the length of the flattened flow is An improved fluid alternating arrangement method characterized in that a fluid alternating arrangement method is adopted in which the fluid arrangement method is divided into two so that the length is shortened.
(2)静止型流体交互配列素子によって、2種の流体(
A、B)を交互配列させる方法において、全体としての
流体の流れの方向にそって流れの見方を固定して見た時
、先ず2つの流体をそれぞれ偏平化させ、それぞれ偏平
化された流体を一方(B)が他(A)の上になるように
(合流方法上乗せ型という)それぞれ合流させ、次いで
かくして出来た合流偏平化流体を偏平化の長さが短くな
るように2分し、かくして出来た新たな2種の流体(A
′、B′)を再びそれぞれ偏平化させ、次いで一方(B
′)が他(A′)の下になるように(合流方法下乗せ型
という)前回とは逆の合流のさせかたでそれぞれ再び合
流させ、かくして合流させた偏平化流体の長さが短くな
るように2分する流体交互配列方法をとることを特徴と
する改良された流体交互配列方法。
(2) Two types of fluids (
In the method of alternately arranging the fluids A and B), when the flow is fixed along the direction of the fluid flow as a whole, first, the two fluids are each flattened, and each of the flattened fluids is They are merged so that one (B) is on top of the other (A) (referred to as an additional type of merging method), and then the resulting merged flattened fluid is divided into two so that the length of the flattened fluid is shortened, and thus Two new types of fluids (A
', B') are each flattened again, and then one (B') is flattened again.
′) is below the other (A′) (this is called the lower merging method), and the length of the flattened fluid is short. An improved fluid alternating arrangement method characterized by adopting a fluid alternating arrangement method in which the fluid is divided into two parts such that
(3)管路内において1つの通路をもつ形状変形部と、
2つの通路A、Bをもつ移動部とを連結したユニットを
少なくとも1個備えた構造の流体交互配列素子であつて
、形状変形部は1つの通路の断面が平行四辺形を保ちつ
つ該通路の管路の伸びる方向に直交する断面積を実質的
に変化させることなく形状を連続的に変化させた構造を
有しており、移動部は前記形状変形部と隣接した位置で
は、形状が同じで管路の伸びる方向と直交する断面積の
和が前記変形部の隣接する断面積にぼぼ等しい2つの通
路を持ち、かつ前記管路の中心線を介して2つの通路の
中心は互いに点対称の位置をとりつつ干渉することなく
屈曲し、前記2つの通路は移動部の両端において互いに
重なり合つている流体交互配列素子において、2つの通
路の入り口を、上記管路の伸びる方向に直角な2つの相
直交するX軸(X−O−X′)とY軸(Y−O−Y′)
により区切られた面の4つの象限のうち、1つの通路の
入り口(A)を第IV象限(Y−O−X′面)に、もう1
つの通路の入り口(B)を第II象限(X−O−Y′面)
をそれぞれ通るように配した時、流体の流れ管が一つの
流体交互配列素子の2つの出口(A′)、(B′)が第
I 象限と第III象限にくるように管路構成をとることを
特徴とする流体交互配列素子。
(3) a shape-deforming portion having one passage within the conduit;
It is a fluid alternating array element having a structure including at least one unit connecting a moving part having two passages A and B, and the shape deforming part maintains the cross section of one passage as a parallelogram while changing the shape of the passage. It has a structure in which the shape is continuously changed without substantially changing the cross-sectional area perpendicular to the extending direction of the pipe, and the moving part has the same shape at a position adjacent to the shape-changing part. It has two passages whose sum of cross-sectional areas orthogonal to the extending direction of the conduit is approximately equal to the adjacent cross-sectional area of the deformed portion, and the centers of the two passages are point-symmetrical to each other through the center line of the conduit. In the fluidic alternating array element, which bends without interfering while taking a position, and in which the two passages overlap each other at both ends of the moving part, the entrances of the two passages are connected to two passages perpendicular to the extending direction of the conduit. Orthogonal X-axis (X-O-X') and Y-axis (Y-O-Y')
Among the four quadrants of the plane divided by
The entrance (B) of the two passages is in the II quadrant (X-O-Y' plane)
When the fluid flow tubes are arranged to pass through the two outlets (A') and (B') of one fluid alternating array element, respectively,
1. A fluid alternating arrangement element characterized by having a conduit configuration so as to be located in quadrant I and quadrant III.
(4)管路内において1つの通路をもつ形状変形部と、
2つの通路A、Bをもつ移動部とを連結した1ニットを
少なくとも1個備えた構造の流体交互配列素子であつて
、形状変形部は1つの通路の断面が平行四辺形を保ちつ
つ該通路の管路の伸びる方向に直交する断面積を実質的
に変化させることなく形状を連続的に変化させた構造を
有しており、移動部は前記形状変形部と隣接した位置で
は、形状が同じで管路の伸びる方向と直交する断面積の
和が前記変形部の隣接する断面積にほぼ等しい2つの通
路を持ち、かつ前記管路の中心線を介して2つの通路の
中心は互いに点対称の位置をとりつつ干渉することなく
屈曲し、前記2つの通路は移動部の両端において互いに
重なり合つている流体交互配列素子において、2つの通
路の入り口を、上記管路の伸びる方向に直角な2つの相
直交するX軸(X−O−X′)とY軸(Y−O−Y′)
により区切られた面の4つの象限のうち、1つの通路の
入り口(A)を第III象限(Y−O−X′面)に、もう
1つの通路の入り口(B)を第1象限(X−O−Y′面
)をそれぞれ通るように配した時、流体の流れ管が一つ
の流体交互配列素子の2つの出口(A′)、(B′)が
第IV象限と第II象限にくるように管路構成をとることを
特徴とする流体交互配列素子。
(4) a shape-deforming portion having one passage within the conduit;
A fluid alternating array element having a structure including at least one 1-knit unit connecting a moving part having two passages A and B, wherein the shape-deforming part maintains the cross section of one passage as a parallelogram while moving the passage. It has a structure in which the shape is continuously changed without substantially changing the cross-sectional area perpendicular to the extending direction of the pipe, and the moving part has the same shape at a position adjacent to the shape-changing part. has two passages whose sum of cross-sectional areas perpendicular to the extending direction of the conduit is approximately equal to the adjacent cross-sectional area of the deformed portion, and the centers of the two passages are point-symmetrical to each other with respect to the center line of the conduit. In the fluid alternating array element, the two passages overlap each other at both ends of the moving section, and the entrances of the two passages are arranged in two directions perpendicular to the direction in which the pipes extend. two orthogonal X-axes (X-O-X') and Y-axes (Y-O-Y')
Among the four quadrants of the surface divided by -O-Y' plane), the two outlets (A') and (B') of one fluid alternating array element are placed in quadrants IV and II, respectively A fluid alternating array element characterized by having a conduit configuration as shown in FIG.
JP59116699A 1984-06-08 1984-06-08 Improved method for alternate fluid arrangement and apparatus therefor Granted JPS61607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116699A JPS61607A (en) 1984-06-08 1984-06-08 Improved method for alternate fluid arrangement and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116699A JPS61607A (en) 1984-06-08 1984-06-08 Improved method for alternate fluid arrangement and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS61607A true JPS61607A (en) 1986-01-06
JPH0133212B2 JPH0133212B2 (en) 1989-07-12

Family

ID=14693650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116699A Granted JPS61607A (en) 1984-06-08 1984-06-08 Improved method for alternate fluid arrangement and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796650A1 (en) * 1996-03-20 1997-09-24 Maeda Corporation Mixing method and mixing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796650A1 (en) * 1996-03-20 1997-09-24 Maeda Corporation Mixing method and mixing apparatus
US5947600A (en) * 1996-03-20 1999-09-07 Maeda Corp. Static mixing method

Also Published As

Publication number Publication date
JPH0133212B2 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
US3382534A (en) Plate type fluid mixer
JP2891438B2 (en) Static mixing device
WO1984003470A1 (en) Crossed polymer laminate, and process and apparatus for its production
US5094793A (en) Methods and apparatus for generating interfacial surfaces
US7066641B2 (en) Micromixer
EP1066107B1 (en) Fractal stack for scaling and distribution of fluids
US4222671A (en) Static mixer
JP4031556B2 (en) Static stirring apparatus having an assembly of a plurality of chamber strings
US5944419A (en) Mixing device
US3613173A (en) Mix-spinning apparatus
KR20080082894A (en) An apparatus for the heat-exchanging and mixing treatment of fluid media
US11220035B2 (en) Complex films made from modular disk coextrusion die with opposing disk arrangement
CN107847885A (en) Double-walled stream shift unit baffle plate and associated static mixer and the method for mixing
JP3810778B2 (en) Flat plate static mixer
JPS61607A (en) Improved method for alternate fluid arrangement and apparatus therefor
US3295552A (en) Apparatus for combining spinning compositions
JPH0247932B2 (en)
JP3873929B2 (en) Liquid mixing device
JP4478932B2 (en) Micro mixer
US20230321615A1 (en) Static mixer
JPH0461088B2 (en)
JPS58132105A (en) Spinning pack for ternary system sea island type conjugated fiber
WO2002102502A1 (en) Micromixer
JPS629012B2 (en)
JPS58109124A (en) Kneader